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Aim My Robot: Precision Local
Navigation to Any Object
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Abstract—Existing navigation systems mostly consider ‘“suc-
cess”” when the robot reaches within 1 m radius to a goal. This
precision is insufficient for emerging applications where a robot
needs to be positioned precisely relative to an object for downstream
tasks, such as docking, inspection, and manipulation. To this end,
we design and implement Aim-My-Robot (AMR), a local navigation
system that enables a robot to reach any object in its vicinity
at the desired relative pose, with centimeter-level accuracy. AMR
achieves high accuracy and robustness by leveraging multi-modal
sensors, precise action prediction, and is trained on large-scale
photorealistic data generated in simulation. AMR shows strong
sim2real transfer and can adapt to different robot kinematics and
unseen objects with little to no fine-tuning.

Index  Terms—Vision-based from

demonstration, visual servoing.

navigation, learning

1. INTRODUCTION

AVIGATION is a foundational skill that unleashes robots

from confined workspaces and lets them interact with
the open world. While there has been significant progress in
learning-based systems that can navigate without a geometric
map [1], [2], [3], [4], [5], understand semantics [4], [6], [7],
[8], [9], and follow human instructions [4], [8], [9], [10], [11],
these systems typically consider the goal reached when the robot
is within 1 m radius to the goal [8], [12]. This lax definition
of success hinders their applicability to the growing need for
mobile robots to navigate to objects precisely. For example, in
a factory, a forklift must position itself correctly to a pallet so
that the fork can be inserted into the pallet without collision
(Fig. 1(b)); an inspection robot can more clearly read gauges
when facing instruments perpendicularly at a proper distance.
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Fig. 1. Overview of AMR. Given a masked image describing the target object
and an object-centric pose (relative position and orientation), AMR tracks the
object while moving, avoids obstacles, and aligns the robot to the target object
with centimeter-level precision without maps or object 3D models.

Similarly, a home robot needs to position itself properly to open
a dishwasher (Fig. 1(a)), dock to a charging station, or place
objects at accurate locations (e.g. left side of a table). Lack of
precision in the final pose of the robot would incur failures due
to collision, out-of-reach, or not adhering to task requirements.

Precision navigation requires a robot to understand the geom-
etry of relevant objects (where is the goal?) and the local scene
structure (how to get there ?). One classical approach would be to
estimate the object’s pose, from which the desired robot pose can
be derived. But this usually requires specific object information
such as 3D models [13], and the object is initially visible. This
limits its applicability when the object 3D model is unavailable,
or the object is initially out of view. On the other hand, current
learning-based navigation [2], [4], [5], [6], [7], [9], [14] is not
quite applicable to real-world high-precision navigation tasks, as
they lack precise goal conditioning, often assume discrete action
spaces [2],[15], or trained on imprecise real-world data [5], [14].

In this work, we propose Aim My Robot (AMR), an end-to-end
vision-based local navigation model that navigates to objects
with centimeter-level precision. AMR does not require an object
CAD model, and instead uses a reference image with an object
mask and relative pose for precise goal specification. AMR takes
streams of RGB-D and LiDAR data as inputs and outputs trajec-
tories directly, eliminating the need of a metric map. We achieve
high precision and strong generalization via two contributions:
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S = back

S = left
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(c) Parameterization C' = {.S, d, 6} of the robot

Robot goal pose

(b) "Approach the cabinet's front face at 30° from the right side and
stand 0.84m away"

goal pose relative to the target object in the
reference image. Front side is the most visible
side in Ig. d and 0 are defined relative to S.

Problem setup. We specify the target object via a reference image / taken in the scene and an object mask M (in green). The goal condition C is defined

as the relative side and pose of the object in I . A robot needs to navigate to the object conditioned on C and tilt its camera to gaze at the object. Note the reference

image is not the final image captured by the robot at the goal.

1) a data pipeline for generating large-scale, photorealistic, and
precise trajectories to diverse objects; 2) a transformer-based
model that takes multi-modal sensor inputs (RGB-D + LiDAR)
and plan precise and safe trajectories. Experiments show that
AMR achieves a median error of 3 cm and 1° on unseen objects,
with little degradation when deployed on a real robot. It supports
robots of different sizes and can be finetuned quickly to support
more complex kinematics such as Ackermann steering vehicles.
AMR is the first system for high-precision visual navigation
with strong sim2real transfer. We hope it paves the way towards
precision robot autonomy.

II. PROBLEM DEFINITION

We consider the scenario where the robot has reached the
vicinity (<10 m, about a room size) of the object of interest
and needs to perform a local, object-centric high-precision ma-
neuver for docking, inspection, and manipulation. We formulate
this as a local navigation task where the goal G consists of the
target object and the relative base pose (in SE(2)) to the object.
For generality, we assume G is provided by another system. The
robot has a tilt-enabled forward RGB-D camera at 1.5 m high
and a 2D LiDAR mounted on the base, providing 360° coverage
(Fig. 2). Concretely, the robot is given past sensor observations
{ot,0¢-1,...} along with the goal G, and needs to move its
base to reach the specified pose while tilting its camera to gaze
at the object. The robot does not have the object’s 3D model or
a 2D/3D map.

Goal specification: Due to the lack of the object’s 3D model
and a map, one challenge is unambiguously defining the goal
G. To address this, we assume the robot is given a reference
image I with the target object mask M (Fig. 2(a) and (b)).
IR can be taken from the robot’s long-term memory or recent
observations. To make goal specification object-centric, we use
the fact that common objects have four dominant sides (i.e.
described by its bounding box). Denoting the most visible side
in Ir as the front, then the relative pose can be defined as
C ={S,d,0}, where S € {front, back, left, right} is the ap-
proach side, d € [0.0 m, 1.0 m] is the approach distance, and
0 € {0°,+15°,+30°} is the approach angle. See Fig. 2(c) for
an illustration. Hence, G = {Ir, M, C}.

Discussion: Existing object instance navigation systems re-
quire taking a close-up view for each object or mapping object

locations [8], [16], [17]. In comparison, our formulation uses
mask to specify the object instance in an image. It does not
require a close-up view or building a map. Moreover, it can
be interfaced with a high-level task planner (e.g. SAM [18],
TAMP [19] and LLM [20]) that outputs mask and pose pa-
rameters whereby AMR guarantees precise base and camera
positioning.

III. AiM MY ROBOT

In this section, we detail our technical approach. We first de-
scribe our data pipeline that generates large-scale, high-quality
demonstrations entirely in simulation. Then, we introduce AMR,
a multi-modal architecture for robust and precise local naviga-
tion.

A. Data Generation

Achieving strong generalization and high precision requires
training data containing diverse scenes, objects, and precise
trajectories. Since humans are poor at estimating distances and
angles from images, we forgo teleoperation and leverage simu-
lation and model-based planning for data collection.

Assets and simulator: We import the Habitat Synthetic Scenes
Dataset (HSSD) [21] which contains diverse room layouts
(100+) and objects (10,000+) into Isaac Sim. Since HSSD
contains Physics-Based Rendering (PBR) textures, Isaac Sim
is able to render photorealistic images using ray tracing (Fig. 3).
The diversity and realism of the perception data enable strong
visual sim2real transfer.

Sampling goal condition: We model the robot as a cylindrical
rigid body with a radius R (i.e. its footprint) sampled from
[0.1 m, 0.5 m]. The robot is randomly placed in the traversable
area of a room. A reference image [ is rendered either from
the robot’s initial camera view or from a random camera view
in the room. Then, the target object mask M (obtained from
the simulator) is randomly chosen from Ir. Non-objects such
as walls and floors are excluded. We sample a goal specification
C by randomly choosing a side S € {front, back, left, right},
distance d € [0.1 m,0.5 m] and angle 0 € {0°, £15°, £30°}.
Finally, we place the robot at the goal and check for collisions.

Trajectory generation: The robot kinematic model is assumed
to be a differential-drive robot. We run AIT* [22] in OMPL [23]
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Fig. 3.

Example rendered images of HSSD scenes in Isaac Sim.

Chair Cabinet  Picture Shelf Table

HHEW
i%ﬁ

Fig. 4. Sample objects in the scenes. We consider all objects, including those
that are not semantically labeled.

Unlabeled

using the ReedsShepp state space with a turning radius O for
planning the base motion. It is straightforward to change the state
space to model robots with other kinematics. The cost function
encourages the camera to look toward the goal while penalizing
excessive backward motion (small backward motion is allowed
if the robot can reach the goal faster). For each feasible path, we
render the camera observations along the path with a distance
gap of 0.2 m or an angular gap of 5°. The camera tilt angle is
set such that the lowest vertex of the object mesh appears at /4
above the bottom of the image (even when the object is out of
view).

B. Model

Transformers have seen wide adoption in vision and
robotics [2], [14], [18], [24] due to their excellent scalability and
flexibility. To this end, we design AMR to be a transformer-based
model (Fig. 5) based on two design principles: 1) a unified
approach to representing multi-modal sensory data, and 2) an
action decoding scheme that generates precise and collision-
free actions. The system has three stages: multi-modal sensor
encoding, goal-aware sensor fusion, and multi-modal motion
generation. We detail each stage as follows.

1) Encoding Multi-Modal Sensor Data: We use RGB, depth,
and 2D LiDAR observations to achieve high precision and
robustness. RGB is used for visual reasoning, depth provides
precise 3D geometric information, and LiDAR ensures a 360°
coverage for robust collision avoidance.

Encoding RGB-D: The current RGB image [; (224 x 224 x
3) is passed into a frozen (i.e. with locked weights) Masked
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Autoencoder (MAE-Base) [25] pretrained on ImageNetl1K to
obtain a 14 x 14 x 512 feature map. Each depth image is
resized to 14 x 14 and we compute the spatial location of
each depth pixel in the robot’s egocentric coordinate frame via
[2',y,2'] = RK !z,y,d]T + t, where K is the camera intrin-
sics and [R|t] is the camera extrinsics. We apply a sinusoidal
position embedding f for x’, v/, 2/, respectively, and concatenate
them to obtain the position embedding for each depth patch as
[f(2"); f(y); f(2')]. We add depth position embedding to each
corresponding RGB patch. To incorporate past observations
I;_;, we set the camera extrinsics [R|t] to be the transform
between the camera pose at t — 7 and the robot base pose at time
t, which can be obtained from the robot’s odometry. Compared
to concatenating RGB and depth tokens, which require twice
the number of tokens, using depth as the positional encoding
is more efficient since it keeps the number of visual tokens
unchanged.

Encoding LiDAR: We resample the LiDAR points into 256
points. The points are grouped into 32 directional bins. The
points in each bin (8 of (x,y) coordinates) are passed into a
Multi-layer Perceptron (MLP) to obtain one LiDAR token. In
total, there are 32 LiDAR tokens.

2) Goal-Aware, Robot-Aware Sensor Fusion: We tokenize
the reference image with the same frozen MAE. The mask M is
encoded by a shallow convolutional network, similar to [18].
All the visual tokens are flattened and passed to the Vision
Context Encoder F. The output tokens corresponding to the
robot’s observations are decoded into target masks using the
mask decoder G. This helps F to learn to track targets. We use
separate MLPs to tokenize the goal d, 6, .S and the robot footprint
(i.e.radius) R. Finally, all the tokens are input to the Multi-modal
Context Encoder H. The output serves as the context for motion
generation.

3) Motion Generation: The output of H is cross-attended to
separate transformer decoders for the base movement and the
camera tilt angle, respectively. AMR predicts base trajectory
and camera tilt angle at different frequencies. For base trajectory,
the robot follows the predicted trajectory up to 7" steps and then
predicts a new trajectory given the updated robot observations.
Multi-step prediction improves trajectory consistency and re-
duces unwanted oscillations. For the camera tilt angle, it predicts
a new value at every time step.

Base trajectory decoding: The base trajectory is parameter-
ized by a sequence of waypoints in egocentric polar coordinates.
To capture the multi-modal nature of robot trajectories, we use an
autoregressive transformer decoder. Since autoregressive clas-
sification requires discretizing the actions, to preserve the pre-
cision, we adopt multi-token classification with residual predic-
tions. Specifically, we represent each waypoint by a sub-action
tuple (direction 1; € [0, 27], distance r; € [0, 0.2 m], heading
¢; €10,27]),i=0,...,T — 1 and sample v, r, ¢ conditionally
in sequence. This representation reduces the number of bins
required for classification, as classifying ¢, r, ¢ at once would
require a combinatorial number of bins. In practice, we discretize
¥, r, ¢ into 30, 32, 12 bins, respectively. For each output token z,
we recover the continuous value 2’ = C'(z) + R(z, C(z)) where
C'(-) is the output from the classifier, and R(-,-) is an MLP that
predicts the residual.

Camera tilt angle decoding: Since camera tilt control is
uni-modal, we continuously predict the camera tilt angle « via
regression at each time step ¢.
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Network architecture. The reference image I and the robot’s RGB-D observations I+ are tokenized with MAE. The current LiDAR scan is tokenized by

grouping points into directional bins. Image and LiDAR tokens are input into the multi-modal context encoder jointly with the look-at pose and footprint tokens.

Finally, the output tokens of the context encoder are cross-attended to the base trajectory decoder and the camera tilt decoder. are the learned start tokens for

the decoders.

IV. IMPLEMENTATION DETAILS

Dataset: We converted 54 HSSD [21] environments into
Universal Scene Description (USD) format and generated 500 k
trajectories (7.5 M frames) in Isaac Sim [26]. We use 49 scenes
for training and 5 scenes for evaluation. There are 3,119 target
objects in the training scenes and 275 target objects in the test
scenes. Among the 275 test objects, 160 are unseen during
training. We randomly sampled robot starting locations and
target objects, and created 2000 navigation tasks in unseen
environments for evaluation.

Training: We train the model with a supervised loss function:

L= Lmask + Lbase + Ltill

where L, is pixel-wise L2 loss to regress the object mask
in all history frames, Ly is @ sum of classification loss and
regression loss for each waypoint, akin to [27], and Ly is an L2
loss that regresses the camera tilt angle. We train AMR for 150 k
steps with a batch size of 128 on 8 A100 GPUs. After the initial
Behavior Cloning phase, we ran the model in simulation and
identified failures (collision, tracking loss, imprecise reaching)
and used DAgger [28] to augment the dataset. For experiments
with HSSD, we trained all models without history (hist = 0),
as we found that history did not show noticeable benefits in
simulation. In our real robot experiment, we trained a model
with 4 past frames and compare it against hist = 0 model.

Deployment: We deploy AMR on a real mobile manipulator
with an omnidirectional mobile base and a simulated forklift
with Ackermann steering in Isaac Sim. Each trajectory contains
T = 12 waypoints, separated by dt = 0.2 s. To track the pre-
dicted trajectories, we use a Pure Pursuit controller [29] for the
omnidirectional robot and a Model Predictive Control (MPC)
controller for the forklift. The camera tilt angle is updated at
every time step, whereas the trajectory is updated with a new
prediction at every 8 steps. The models run at 12 Hz on an RTX
3090.

V. EXPERIMENTS

We perform quantitative experiments in simulation and the
real world. Each run performs closed-loop inference until the
robot comes to a stop, collides with obstacles, or exceeds the
time limit. We consider a run complete if the robot is within
1.0 m to the goal. Otherwise, we consider the run incomplete.
The error distribution contains the final pose error for only the
completed runs, and the completion rate is reported as a separate
metric. In real-world experiments, we measure the ground truth
goal pose against an occupancy map with 2 cm resolution. The
robot’s ground truth pose is obtained by classical Monte Carlo
Localization [30].

We conduct additional qualitative experiments to highlight
generalization to novel tasks using AMR: We show generaliza-
tion to new tasks and scenes in the real world, closing a fridge
drawer using the robot body and a forklift picking up a pallet.

A. Simulation Results With HSSD

Baseline: We compare our method against a classical pipeline
based on object pose estimation. We use FoundationPose [13]
to estimate the pose of the target object in the initial observation
given the CAD model. The posed bounding box is used to
compute the goal pose as described in Section II. Then, we run
the same planner to find a path using a groundtruth occupancy
map and navigate the robot to the goal. Note that such a sys-
tem uses extra information not required by AMR: 1) a CAD
model of the target object; 2) the object is visible in the robot’s
initial observation (required by pose estimation); and 3) perfect
mapping.

Quantitative Results: Fig. 6 compares the error distribution
between AMR and the classical approach. We consider two
cases: visible, where the initial observation is used as the ref-
erence image, and invisible, where the object is initially out-
of-view. The classical approach can only be used in the visible
case. In the visible cases, AMR performs better than the baseline
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Fig. 6. Navigation error distribution in the test scenes for various object

distances for completed runs. AMR outperforms the classical baseline when
objects are initially visible or out-of-view, with a higher completion rate. Note
that classical pose estimation requires the object to be initially visible.

TABLE 1
COMPARISON OF MEDIAN ANGULAR ERRORS (MAE) AND MEDIAN DISTANCE
ERRORS (MDE) FOR SEEN AND UNSEEN INSTANCES ACROSS SHARED
CATEGORIES IN THE TEST SCENES

Seen (136 unique objects)  Unseen (166 unique objects)

Category MAE (°) MDE (m) MAE (°) MDE (m)
Chair 1.45 0.05 1.08 0.04
Drawers 0.77 0.02 0.55 0.03
Couch 0.82 0.02 0.57 0.04
Picture 0.84 0.03 0.64 0.04
Shelves 0.65 0.07 0.68 0.02
Tables 7.14 0.04 1.20 0.04
Unlabeled 0.78 0.03 0.74 0.04

approach even when the object is far. In the invisible cases,
our approach outperforms the baseline approach with similar
accuracy and significantly lower variance. One interesting ob-
servation is that the angular error for the baseline increases when
objects are too close (0 — 2 m). This is usually caused by large
objects (e.g. furniture) being partially out of view. In contrast,
AMR actively moves the robot, making it more robust to state
estimation errors.

In Table I we compare the median pose errors between the
seen objects and unseen objects in the test scenes. We do not
see a clear gap, showing that AMR generalizes well to unseen
objects.

Qualitative results: Fig. 7(a) and (b) present two successful
runs with different goal poses and robot sizes. AMR plans safe
trajectories by considering the robot’s size and can track and
reach the target object precisely, even when the target is far or out
of view. Fig. 7(c) shows typical failure cases for both the baseline
and AMR. For the baseline, the failure is mainly caused by pose
estimation in challenging scenarios, such as occlusion and object
being too far. AMR sometimes fails to track the correct object
when there are repetitive objects and may go to the wrong side
when the viewpoint is ambiguous.

B. Ablation Study

To verify our design choices, we ablate our models by dis-
abling some of the components and analyze their impacts on
the precision (Fig. 8) and robustness (Table II). In particular,
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TABLE II
COLLISION RATE OF ABLATED MODELS

Full No mask dec. ACT decoder No DAgger No depth No footprint No LiDAR
3.8 7.1 5.8 5.5 17.7 26.2 25.6
TABLE III
MEAN NAVIGATION ERRORS IN A REAL KITCHEN
Fridge Sink Stove
Hist=0 1/24cm/23° 3/148cm/0.1° 3/2.0cm/0.8°
Hist=4 3/3.1cm/0.4° 3/79cm/0.2° 3/24cm/0.8°
Cabinet Spam Cup
Hist=0 2/3.1cm/1.7° 1/18cm/0.6° 3/9.6 cm/0.8°
Hist=4 3/21cm/06° 2/20cm/0.1° 3/8.7cm/0.9°

Each object we report (#completed / distance error / orientation error). 3 runs were
performed per object. Cells are colored green according to the number of completed runs.

we find Sensor Modality has the biggest impact. Without Li-
DAR, the robot is more prone to colliding with surrounding
objects. Likewise, the 3D information from depth helps the
robot avoid obstacles and approach targets accurately. Without
the Footprint token, the model suffers from a high collision
rate because the robot cannot consider its size when planning.
Our Autoregressive Trajectory Decoding scheme outperforms
Action Chunking Transformer (ACT) since it better captures
the multi-modal nature of navigation trajectories. While Mask
Tracking only moderately improves the precision, it improves
the model interpretability, as we find a strong correlation be-
tween incorrect mask tracking and robot navigating to the wrong
object.

Large-scale evaluation matters: In Fig. 8, all ablated models
have comparable median errors, indicating that they perform
almost equally well for more than half of the test cases, but their
long-tail failure cases vary significantly. This implies that our
method is more robust across large datasets with environment
variations.

C. Closed-Loop Hardware Evaluation

We evaluate our system in a real kitchen on a mobile manipu-
lator with an omnidirectional base and an RGB-D head camera
with tilt support. We use one reference image covering the whole
kitchen to specify 4 large objects (fridge, sink, stove and cabinet)
and two zoomed-in images for small targets (spam and cup). The
robot is initialized at three distinct starting locations. For each
run, we continuously run AMR to navigate the robot to all 6 ob-
jects, with the relative goal condition describing the robot facing
the object of interest, i.e., C=(d = 1 m, 0 = 0°, S = front). For
each object, we perform 3 runs.

In Table III, we show the number of completed trials and
compute the errors against hand-measured ground truths. hist=4
succeeded in all tasks except for spam starting at location #3.
Unlike in simulation, history is critical for the robot to track the
target, as hist=0 fails more often on large (fridge) and small
(spam) objects. Among the objects, sink has the largest distance
error due to unstable tracking and the lack of a large surface area,
as the sink is an object that is concave to the tabletop surface
and can easily be obscured. Except for sink and cup, all other
objects achieve distance errors on the order of 1.8 ~ 3.1 cm to
the goal specification.
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Fig. 8. Ablation study demonstrating effects of various choices on navigation
errors in the test scenes. We consider both complete and incomplete runs.

D. Qualitative Experiments

Generalization in new real-world scenes: In Fig. 10, we
show additional results of AMR navigating to diverse objects
in another real-world environment. AMR can handle objects
being out of view and large viewpoint changes (i.e., going to
the back of a cabinet). We refer the reader to the website for the
videos.

Closing the fridge drawer: In Fig. 11, we show that by
accurately aiming the robot at a target object, a robot can
perform downstream tasks using its body as the end effector.
The goal is specified by M = Ijayer and C = (d = 1m, 6 =
0°,.S = front). Once the robot reaches the goal, the robot moves
forward to close the drawer in an open loop.

Loading a pallet in a warehouse: We test AMR on a simulated
forklift to load a randomly placed pallet in a warehouse. Existing
work on controlling forklifts requires sophisticated modeling
and motion planning [31], [32] with privileged state information.
Here, we show that a learning system with onboard sensors
can achieve the same precision. We empirically generate ~ 500
demonstrations with forklift kinematics to finetune AMR. In
Fig. 11, we show AMR successfully navigates a forklift to face
apallet directly C = (d =2m, § = 0°, S = front). The precision
is sufficient such that the fork can be completely inserted into
a pallet by driving the forklift forward in an open loop fashion.
More information is provided on the website.

VI. RELATED WORK

Object-goal and instance-goal navigation: Object-goal navi-
gation typically refers to a robot navigating to any object of the
specified category (e.g., couch) [15], [33], [34]. Instance-goal
navigation enables a robot to reach a specific object by using a
close-up view of that object [8], [35]. These systems typically
consider the goal reached when the robot is within 1.0 m radius
to the goal. While [36] improves the last-mile goal approaching
through image matching, it cannot reach a precise pose relative to
an object. Unlike existing approaches, AMR is designed to reach
any object with centimeter-level precision. Such generality and
precision are enabled by a novel goal parametrization (reference
image with mask) and a model trained on diverse and precise
demonstrations.

Object pose estimation: Object pose estimation [13], [37]
provides an alternative solution to high-precision object-centric
navigation. State-of-the-art object pose estimation typically re-
quires prior knowledge of the object (CAD model, template
images, or object category), and the object must be visible in
the camera. These assumptions are difficult to satisfy since a
robot often needs to go to arbitrary objects, and the object
can be temporarily out of view. In contrast, AMR is trained
on diverse and photorealistic simulation data to learn general
knowledge of object instances and geometries. Furthermore,
unlike object pose estimation, which is “passive” and struggles
when the object is too small or too far, AMR is an active approach
akin to Image-based Visual Servoing (IBVS) [38] that refines
its predictions as the robot gets closer to the goal. AMR is
more sophisticated than IBVS since AMR reasons about objects,
adheres to robot kinematics, and handles collision avoidance.

Mobile manipulation systems: There is a surge of interest
in developing learning-based mobile manipulation systems [2],
[39], [40], [41], [42], [43]. Some works assume additional
information such as object pose or robot pose to be available
([39], [40], [42], [43]). Other systems show that it is possible
to directly map sensor observations to actions [2], [41], but
they only consider a limited set of scenarios (e.g. no need to
avoid unseen obstacles or handle unseen objects), so that high-
precision base positioning is not a major concern. As of today, the
most general and capable mobile manipulation systems are still
modular [16], [17], and they require mapping the environment
and objects beforehand. In particular, [16] shows that accurate
base positioning is crucial for successful manipulation. Our
work can be integrated into both learning and modular mobile
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References Final observations

-~
'

Fig. 9. Real kitchen experiments. Left: reference images and contours of target object masks. While the fridge is partially out of view, the model can still reach
the fridge. Middle: Initial view of the scene through the tilt camera. Right: robot observations after reaching each object overlaid with predicted masks (in cyan).

Start i : - End

Fig. 10. Real-world qualitative experiments in new scenes. Left: reference image with target object highlighted by the green mask. Remaining columns: robot’s
camera view while moving. The tracked object is highlighted by the cyan mask. The tasks are: (a) Go to the back of the cabinet and stand 0.8 m away. (b) Go to
the front of the landfill trashcan and stand 1 m away. (c) Go to the front of the table and stand 0.5 m away.

Closing Fridge Drawer Loading Pallet

Start J 1 Dock Forward (open loop) Baék ub (open loop) Start Dock Forward (open loop)

Fig. 11.  Using AMR for mobile manipulation tasks. Left: closing a fridge drawer by pushing the robot body towards the drawer. Right: forklift loading a pallet.
AMR accurately tracks the target objects throughout.

manipulation systems so that a robot can reach an accurate base  entirely in simulation, it transfers to real-world and unseen ob-
pose for manipulation without a prior map or object model. jects with little degradation in precision. AMR does not require
object 3D models or a map to operate, runs in real-time at 10 Hz,
and easily adapts to other robots with fine-tuning.
Limitations: AMR is designed for local navigation as it has a
We present AMR, a vision-based navigati()n model that nav- short-term memory. Sinceitis only trained in household environ-
igates to any object with centimeter precision. While trained —ments, its generalization in other scenarios, such as factories and

VII. CONCLUSION AND LIMITATIONS
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unstructured environments, is potentially limited. Additionally,
real robots have complex geometric shapes and sensor place-
ments, and our assumption of a robot being cylindrical with a
centered camera can hinder its applicability to diverse mobile
robots such as legged robots. However, we anticipate that these
limitations can be addressed by increasing the robot’s memory
window, improving the diversity of the training environments,
and more comprehensive modeling of robot shape and sensor
placements.
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