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Abstract

In first-person shooters, players aim by aligning the crosshair onto a target and
shoot at the optimal moment. Since winning a match is largely determined by
such aim-and-shoot skills, players demand quantitative evaluation of the skill
and analysis of hidden factors in performance. In response, we build a simulation
model of the cognitive mechanisms underlying aim-and-shoot behavior based on
the computational rationality framework. Unlike typical aimed movements in
HCI, such as pointing, the aim-and-shoot offers a unique task scenario: as play-
ers move the mouse with their hand, the first-person view camera rotates, which
in turn directly affects the target’s visible position on the screen. That is, dur-
ing the aim-and-shoot process, players experience a stronger coupling between
perception and motor processes. To realistically simulate such complex mecha-
nisms, we model players’ perceptual, decision-making, and motor processes more
sophisticatedly than any existing model. Model fitting based on amortized in-
ference showed that our model could successfully reproduce the behavior of 20
FPS players (10 professionals) on several key measures, outperforming a base-
line. Additionally, model fit parameters revealed that professionals had distinct
cognitive or motivational characteristics.
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1. Introduction

First-person shooter (FPS) is a video game genre played by nearly a billion
gamers over the past few decades (Newzoo, 2022). In an FPS game, a player
controls a character from a first-person perspective to shoot and destroy en-
emies. There is usually a weapon’s crosshair in the center of the first-person
view, and the player can rotate the view camera to aim at the enemy. In the
competitive session, slight skill differences can decide victory or defeat among
similarly ranked players. This extreme competition has led players to discuss
necessary skills for winning and methods to improve them (Lamers James and
O’Connor, 2023; Park et al., 2021).

The aim-and-shoot skill, i.e., the ability to quickly align the crosshair to an
enemy and fire the weapon with the correct timing, is likely the most basic and
essential among skills in FPS games (Park et al., 2021; Warburton et al., 2023;
Rogers et al., 2024). Even in professional matches, a player’s excellent aim-
and-shoot skill often significantly impacts the game’s outcome. For instance,
Polish CS:G0 (Counter-Strike: Global Offensive) professional player Filip “Neo”
Kubski showcased his superior aim-and-shoot skill by eliminating all opponents
in a 1 versus 5 situation on match point of the semi-final!, leading his team to
the finals. For this reason, millions of FPS players dedicate a significant amount
of hours to aim training with dedicated software? (Roldan and Prasetyo, 2021;
Meta, 2018; Rogers et al., 2024). Esports teams often hire professional coaches
to help athletes with aim training and evaluation. Local esports academies are
also being established to offer classes centered on aim-and-shoot skills.

Despite its high practical interest and importance, scientific explanations of
the aim-and-shoot behavior in FPS are rare in online communities and academia
(Park et al., 2021). Players today are not given a scientific theory to explain the
cognitive mechanisms behind aim-and-shoot behavior, nor a technology to ana-
lyze the latent factors that determine aim-and-shoot performance. AimLab, an
aim-and-shoot training application with millions of active users, only provides
descriptive statistics on visible behavioral differences between players (e.g., shot
accuracy, completion time) (Statespace, 2018; Roldan and Prasetyo, 2021). This
lack of solid analytical foundation has led amateur players to train by simply
mimicking the in-game behavior of professional players or relying on untested
guidelines floating around in the community (Park et al., 2021). Also, in pro-
fessional players’ training and coaching process, scientific evidence is used to
a limited extent (Horst et al., 2021; Rerick and Moritz, 2023; Koposov et al.,
2020).

The ultimate goal of our study is to build a scientific model that can ex-
plain the cognitive mechanisms underlying aim-and-shoot behavior, enabling
deeper analysis and evaluation of a player’s aim-and-shoot skills. Our model-
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ing is grounded in the computational rationality (CR) framework (Gershman
et al., 2015; Lewis et al., 2014; Oulasvirta et al., 2022): we assume that human
behavior is the result of bounded rationality that emerges under external (i.e.,
task environment), internal (i.e., cognitive capacities), and utility (or reward)
constraints. Accordingly, we implement an artificial aim-and-shoot agent with
human-like perception, decision-making, and motor capabilities, which can be
adjusted by model parameters. We use deep reinforcement learning (RL) to
learn the agent’s optimal aim-and-shoot policy to maximize the collection of re-
wards that are presumably in common with those optimized by human players
(e.g., shorter execution time, higher hit rate). Eventually, the trained agent can
realistically predict how a player with specific perceptual and motor characteris-
tics and specific motivational arousal will behave in a given aim-and-shoot task
scenario. By fitting a model to an actual player’s input behavioral data, we can
also infer the player’s cognitive and motivational characteristics.

Unlike typical aimed movements in HCI, such as pointing, the aim-and-
shoot offers players a unique task scenario: hand (or mouse) movement during
the aim-and-shoot process directly affects the visible position of the target on
the screen, as it causes rotation of the first-person view. That is, during the
aim-and-shoot process, players experience a strong coupling between perception
(i-e., estimation of the target’s current and future position) and motor processes
(i.e., planning and execution of hand movements). This can make aim-and-shoot
movements qualitatively distinct from typical aimed movements and provide
additional challenges to players’ perceptual and motor processes. For example,
when players want to estimate the future position of a target to build a new
motor plan, they must take into account that the previous motor plan (already
in execution) will be disturbed by motor noise. Additionally, as targets on the
screen show more complex movements due to the added influence of camera
rotation, players are also required to have more precise and predictive gaze
control skills in synchronization with motor processes. These issues do not exist
in typical 2D aimed movements, which is why a simple conversion of existing
CR models of aimed movements, such as the point-and-click model (Do et al.,
2021), is not sufficient for modeling aim-and-shoot behavior.

To faithfully reproduce the underlying mechanisms of aim-and-shoot behav-
ior, we model human perception, decision-making, and motor functions more
elaborately than any other aimed movement model (see Table 1). More specifi-
cally, the model proposed in this study is implemented with the point-and-click
model, which can be considered a state-of-the-art (SOTA) CR model of aimed
movement, presented by Do et al. in 2021 (Do et al., 2021), as a starting base.
The point-and-click model provides a solid, broad description of human motor
and decision-making functions that must be considered in modeling not only
aim-and-shoot behavior but also all aimed movements such as intermittent pre-
dictive control (Bye and Neilson, 2008; Bye, 2009), signal-dependent motor noise
(Schmidt et al., 1979), and click decision-making (Park and Lee, 2020). On top
of that base, our model implements the following mechanisms that are not con-
sidered or only limitedly considered in existing models: (1) perception of target



Table 1: Comparison of our aim-and-shoot model with existing aimed movement models
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future position based on efference copy® of previous motor plan, (2) movement
of gaze on the screen and its kinematics (i.e., main sequence), (3) noise in pe-
ripheral vision, and (4) variability in reaction time (Hultsch et al., 2002). The
model has eight free parameters representing the cognitive characteristics of the
simulated agent, including motor and visual noise, from which it can replicate
a wide range of intra-player and inter-player variability. By applying multi-task
RL techniques (Moon et al., 2022), the model can simulate optimal aim-and-
shoot behavior without additional training even when parameters change.

For the model evaluation, we collected aim-and-shoot behavior from 20 FPS
players, consisting of 10 professionals and 10 amateurs. A model that simply
converted the point-and-click model to a 3D aim-and-shoot scenario without the
aforementioned modifications* was used as the baseline for evaluation. Utiliz-
ing neural inference techniques (i.e., amortized inference) (Moon et al., 2023),

3Motor plans for human movement are updated intermittently, and the copy of the previous
motor plan that exists at the time a new motor plan is created is called an efference copy.
Efference copies do not contain motor noise because they are copies of the unexecuted plan.
4Therefore, the baseline model cannot simulate gaze movements.



both models were fitted to the aim-and-shoot behavior dataset. As a result, our
model outperformed the baseline in replicating key features of aim-and-shoot
behavior (e.g., trial completion time, shooting success rate, saccadic deviation®,
movement trajectory, etc.). More specifically, our model was able to replicate
aim-and-shoot completion time, shooting success rate, and saccadic deviation
with mean absolute error (MAE) accuracy of 43.5 ms, 10.8%p, and 0.80°, re-
spectively (see Table 6 for all results in more detail). By analyzing the inferred
parameters, we found evidence that the high performance of professional players
may result from their distinct motivational characteristics as well as their lower
levels of cognitive noise.
We summarize the contributions of this study more specifically as follows:
e A novel CR model was proposed that can simulate player behavior in
aim-and-shoot tasks in which perceptual and motor processes are more
strongly coupled than typical aimed movements.
e The explanatory and predictive power of the model was tested by fitting
it to aim-and-shoot behavior data collected from 20 players, including 10
professionals.
e By analyzing the inferred parameters, we provide initial evidence on how
professional players can achieve higher aim-and-shoot performance than
amateurs.

2. Backgrounds

2.1. Basic Mechanisms of Human Aimed Movement Control

The underlying cognitive mechanisms by which humans perform aimed move-
ments have been covered extensively in previous studies, showing that a human’s
aimed movement is performed in four steps (Bye and Neilson, 2008; Bye, 2009;
Do et al., 2021; Lee et al., 2020). First in the sensory analysis (SA) step, the
position of the target is first estimated based on the given sensory signals (i.e.,
visual perception). Then, in the response planning (RP) step, an appropriate
motor plan is built to move the pointer or body to the estimated target posi-
tion. In the response execution (RE) step, the built motor plan is executed.
At last, if a click action is required at the end of an aimed movement (as in
the point-and-click or aim-and-shoot cases), the appropriate click timing must
also be estimated during motor planning and execution (Park and Lee, 2020;
Do et al., 2021).

Since a non-negligible level of cognitive noise commonly affects each step,
achieving the goal of the aimed movement by only executing a single motor plan
(i.e., a ballistic movement) is not easy. Therefore, humans periodically update
the existing motor plan while the current one is executed. The update period is
known to be approximately 100 ms due to the human psychological refractory
period (Smith, 1967). This intermittent motor control process is widely observed

5The visual angle (°) between the central crosshair and the gaze at the moment when the
gaze was most deviated from the crosshair



in various types of aimed movements (Martin et al., 2021; Wang et al., 2021;
Park and Lee, 2020). The BUMP (Basic Unit of Motor Production) theory
(Bye and Neilson, 2008; Bye, 2009; Do et al., 2021) is a useful control model
(Miiller et al., 2017) that can reliably replicate the general mechanism of human
intermittent motor control. BUMP is particularly suitable for modeling that
relies on repeated simulations; it includes an algorithm that quickly generates an
optimal motion plan that satisfies the minimum acceleration constraints (a.k.a.,
Optimal Trajectory Generation or OTG function) (Sparrow and Newell, 1998;
Jiang et al., 2002; Neilson and Neilson, 2005). BUMP has been adopted in
point-and-click model, the latest CR model of human aimed movement (Do
et al., 2021), and also applied in this study.

During the intermittent control process, humans have a copy of the pre-
viously constructed motor plan, called an efference copy (Angel, 1976). This
record of the motor plan is kept in the human internal memory and is used
to predict the consequences that the execution of the motor plan will bring to
the environment (Grof et al., 2002; van Beers et al., 2002; Blakemore et al.,
1998). In the aim-and-shoot process, efference copy helps players predict how
the target’s position on the screen will change as the view camera rotates if
the motor plan is executed without noise. In general aimed movements in HCI,
such as pointing, there is less need for motor efference copy to be considered in
the perception process because the positions of the pointer and target can be
controlled relatively independently from each other.

2.2. Challenges in Visual Perception in Aimed Movements

An accurate estimate of the target position is essential for the success of
aimed movements, but various limitations of human visual perception may affect
it. One dominant factor is the limited resolution of peripheral vision. The
farther the target is from the gaze position, the less precise the estimate becomes
(Strasburger et al., 2011; Wells-Gray et al., 2016; Hussain et al., 2015). If players
move their gaze closer to the target, peripheral noise can be minimized, but this
is not an easy task because the target moves complexly on the screen due to
camera rotation during the aim-and-shoot process. Another problem players
may encounter is inaccurate estimates of the crosshair’s position while gazing
at the target. To overcome this problem, some players seek to use more visible
crosshair colors and shapes (Rawat, 2021). The peripheral vision effect can be
generally modeled (Hussain et al., 2015) as the standard deviation (o,) of the
target position estimate distribution increasing in proportion to the distance
from the gaze center to the target (e, in visual angle): o, o e.

Rapid gaze movements towards a target are also affected by kinematic con-
straints, resulting in saccadic movements. A regular relationship is observed be-
tween saccadic movements’ amplitude (A) and peak velocity (V'), which is called
the saccadic main sequence (Bahill et al., 1975). These kinematic constraints
can be critical in aim-and-shoot tasks, where the situation changes rapidly. Ac-
cording to a previous study (Gibaldi and Sabatini, 2021), the main sequence
can be approximately described by the linear relationship: V = a- A + b, where
a and b are free parameters.



In saccadic movements, the landing position of the gaze is known to be
determined stochastically due to signal-dependent motor noise (Kowler, 1990).
More specifically, the larger the amplitude of gaze movement, the higher the
variability of the landing position. The EMMA (Eye Movements and Movement
of Attention) model (Salvucci, 2001), which has been widely adopted in HCI
studies (Jokinen et al., 2017, 2021; Fleetwood and Byrne, 2006), assumes that
the landing position of the gaze at the end of a saccadic movement is sampled
from a Gaussian distribution centered on the target position, and its standard
deviation increases in proportion to the amplitude of the movement in visual
angle.

When a target is moving, as in the aim-and-shoot task, aimed movements
toward the target must be based on predictive control, i.e., motor plans should
be built toward the future position of the target. To do this, players have
to visually encode the target’s movement pattern. If the target’s movement
pattern is limited to constant-speed linear motion (as assumed in this study),
the task for players to estimate the target’s future position is simplified to
visually estimating the target’s speed. The performance of humans in visually
perceiving target speed can be explained through Stocker’s model (Stocker and
Simoncelli, 2006; Wang and Li, 2007). According to the model, the precision in
speed estimation decreases as the target speed increases or its contrast with the
background decreases.

2.8. Challenges in Motor Ezxecution and Click Decision-Making in Aimed Mowve-
ments

Even in the case of perfect target localization and motor planning, perfect
execution of the motor plan is unlikely because of motor noise and external
disturbances. One important limitation comes from signal-dependent motor
noise (Schmidt et al., 1979); noise proportional to the average speed of the
motor plan is added to the location of arrival (Lin and Tsai, 2015). When
pointing toward a stationary target, as in general office work, users can reduce
the motor speed when the pointer gets close enough to the target, minimizing
the impact of motor noise. In contrast, when the target is moving at high speeds,
such as in an aim-and-shoot scenario, the impact of motor noise becomes more
significant and persistent as players must constantly move their hands to track
the target with the crosshair.

Most aimed movements in HCI, including aim-and-shoot, require target ac-
quisition with a button input (click) at the end of the movement. If the click
timing is not properly planned and executed, the task will likely fail even if the
target is reached. According to the latest model of human clicking behavior
(Park and Lee, 2020), players plan to press a button at a specific moment while
the previous motor plan is being executed. In this process, the probability of a
successful click is determined by the inherent timing ability of the players (Lee
and Oulasvirta, 2016). The further away the button input timing is planned
from the present, the lower the precision, which results from the scalar property
of the human internal clock (Wing and Kristofferson, 1973b,a; Gibbon et al.,
1984). People with higher timing abilities can execute button inputs at planned



timing more precisely than others. For example, more precise button input abil-
ities have been observed in musicians (Lee and Oulasvirta, 2016) and gamers
(Park and Lee, 2020).

2.4. Modeling Input Behavior and Performance of Computer Users

Building scientific models that predict user input behavior and performance
is an important and long-standing research topic in HCI. By modeling input be-
havior, we gain rich insights to improve (Kim et al., 2018), optimize (Oulasvirta,
2017; Lee et al., 2020), and personalize (Gajos and Weld, 2004; Sarcar et al.,
2018) interactions. Scientific models that successfully predict and explain user
behavior in tasks such as point-and-click (MacKenzie, 1992; Wobbrock et al.,
2008; Park and Lee, 2020), steering (Accot and Zhai, 1997), reaction (Seow,
2005), and moving-target acquisition (Lee et al., 2018; Lee, 2022) have already
been built and validated. Traditionally, they are based on simple regression
models with a limited number of parameters that predict aggregate statistics
such as mean trial completion time or error rate (e.g., Fitts’ law (Fitts, 1954)).
However, if we want to identify the cognitive mechanisms underlying input be-
havior and also predict or simulate behavior at higher temporal and spatial
resolution, more advanced computational modeling techniques should be con-
sidered.

We model the aim-and-shoot behavior based on the theory of computational
rationality (CR) (Gershman et al., 2015; Lewis et al., 2014; Oulasvirta et al.,
2022). Rooted in the theory of Bounded Rationality (Simon, 1990) proposed by
Herbert Simon, CR suggests that user behavior is the outcome of maximizing a
particular utility (or reward) function under inherent perceptual, cognitive, and
motor constraints. Technically, CR models are implemented as virtual agents
equipped with perceptual and motor constraints similar to real users. Through
deep RL, the agent can be trained to follow an optimal action policy that maxi-
mizes the expected reward (Do et al., 2021; Moon et al., 2022). As a result, the
agent can mimic the actual user behavior. CR models have successfully repli-
cated the behavior of real users in various tasks such as typing (Jokinen et al.,
2021), point-and-click (Do et al., 2021; Moon et al., 2022), visual search (Chen
et al., 2015; Acharya et al., 2017), button-pressing (Oulasvirta et al., 2018), and
mid-air pointing (Cheema et al., 2020; Ikkala et al., 2022). CR model proposed
here is the first one devoted to aim-and-shoot behavior.

3. The Aim-and-Shoot Agent Model

In this section, we detail the process of modeling the cognitive mechanisms
underlying aim-and-shoot behavior. The aim-and-shoot task scenario is first
explained, an overview of the model’s architecture is presented, and then the
implementation of each sub-module is explained.
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Figure 1: The aim-and-shoot task scenario modeled in this study

3.1. The Aim-and-Shoot Task Scenario

We assume that the simulated agent is using a display of size 53.13 cm (W)
x 29.88 cm (H) in a typical desktop environment (see Figure 1). The mouse
is located just below the center of the agent’s right hand. The agent interacts
with a simplified aim-and-shoot task defined in a 3D virtual game environment.
When a trial is initiated, a sphere target spawns within the monitor space. The
agent can move its gaze position during the trial. The agent has to rotate the
first-person camera by moving the mouse to align the sphere and the crosshair
(i.e., atm) and then click to eliminate the target (i.e., shoot). The trial is
considered successful if the target is under the crosshair when clicking (hit).
Otherwise, it is a failed trial (miss). Regardless of the shoot result, the trial
ends when the agent performs a click action. The mouse displacement (in mm)
is multiplied by the in-game sensitivity (in °/mm) to determine the change in
the camera’s azimuth and elevation angles (in °). We select 1°/mm as the
agent’s mouse sensitivity among the optimal range for FPS aiming as reported
by the previous study (Boudaoud et al., 2022). We assume the agent does not
lift the mouse, and the head position is fixed during the trial. Translation of
the view camera is not allowed.

The virtual environment is rendered with a field of view of 103° in width and
70° in height. The crosshair is fixed at the center of the view. At every trial,
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Figure 2: Overview of the model architecture

the initial task conditions are randomized as follows. The camera direction
is randomly initialized to have 1.2° or smaller angle size with the reference
direction (both azimuth and elevation angles are 0°). The target sphere, with
a random radius from 4 mm to 13 mm on the display, spawns at a random
position within the range 2° to 37° in azimuth and 1° to 21° in elevation to the
reference direction. The target rotates on an orbit equidistant to the camera
in 3D space, on a randomly chosen orbit plane, with an angular speed ranging
from 0 °/s to 40 °/s. On the monitor, this results in the target linearly moving
in a random direction at speed from 0 cm/s to 15 cm/s approximately. Please
refer to Appendix A.1 for more details on the task scenario covered in this study.

3.2. Overview of The Aim-and-Shoot Model

8.2.1. Model Architecture

The model consists of four sub-modules: (1) Perceive, (2) Aim, (3) Gaze, and
(4) Shoot (see Figure 2). The integrated system of four modules constitutes our
virtual aim-and-shoot agent. Through the Perceive module, the agent estimates
the position of the crosshair and the position and speed of the target. Based
on the information estimated through the Perceive module, the Aim module
generates a motor plan of view camera rotation (M?®) that is expected to align
the target center on the crosshair. Meanwhile, the Gaze module simulates the
process by which the agent plans and executes gaze movement (i.e., gaze control
plan M9). The Shoot module determines whether and when to perform mouse
button input while the motor plans built in the Aim and Gaze modules are
being executed. At each decision-making step, the agent’s policy function ()
determines how the Aim, Gaze, and Shoot modules will operate (i.e., action
variables) based on the information input from the Perceive module (i.e., state
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Table 2: Parameters that determine the level of cognitive noise simulated in each module and
the reward setting of the agent

Cognitive 8§ Range Description Module
Om [0.0, 0.5]' Signal-dependent motor noise Aim
0, [0.0, 0.5]2 Peripheral vision noise Perceive
0 [0.0, 0.5]2 Speed perception noise Perceive
0. [0.0, 0.5]* Internal clock precision Aim, Shoot

Reward r Range Description

Th [1,64]  Maximum trial success (target hit) reward
Tm [1,64] Maximum trial failure (target miss) penalty
Ah [5,95]  Temporal decay rate of trial success reward
Am [5,95]  Temporal decay rate of trial failure penalty

!(Lin and Tsai, 2015; Schmidt et al., 1979), 2(Hussain et al., 2015),
3(Stocker and Simoncelli, 2006; Wang and Li, 2007), (Rakitin et al.,
1998; Park and Lee, 2020)

variables). Through deep RL, the policy function is determined to maximize
the expected accumulated reward.

3.2.2. Model Parameters

The model has a total of eight free parameters (see Table 2). Four of them
are cognitive parameters (i.e., #) that determine the noise characteristics of
each sub-module. The remaining four (i.e., » and \) determine the shape of
the reward function that the agent obtains as a result of interaction with the
environment. Each cognitive parameter can be determined within a certain
range, and each range was determined as broadly as possible by referring to
existing literature. The appropriate range of reward parameters was determined
empirically through trial and error.

3.2.3. Mathematical Notations

We use the symbols p and v to represent positions and velocities. As the
subscripts in p and v, the target, crosshair, mouse, gaze, and eye (head) are
denoted as t, ¢, m, g, and e, respectively. The hat symbol (A) implies that the
value has been perceived (or estimated) by the simulated agent. For instance, p;
refers to the true target position, and p; refers to the estimated target position.
The symbol ¢ is used to represent time-related variables, k is used to represent
model coefficients, and M is used to represent the agent’s motor plans.

3.8. Model Agent Implementation
3.3.1. Deciston-Making Framework

Before going deeper into the implementation of each submodule, we first
explain the basic framework of the agent’s decision-making process. Based on
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recent studies (Bye and Neilson, 2008; Bye, 2009; Do et al., 2021; Park and Lee,
2020), we assume that human aim-and-shoot behavior is performed through in-
termittent motor control consisting of three distinct steps: (1) Sensory Analysis
(SA), (2) Response Planning (RP), and (3) Response Execution (RE). In the
SA step, the agent perceives (or estimates) from the task environment the in-
formation needed to build motor plans, such as the positions of the target and
the crosshair. In the RP step, the agent builds appropriate motor plans, such
as camera rotation, gaze movement, and click timing, based on the information
obtained in the SA step. In the RE step, the agent actually executes the con-
structed motor plans and receives rewards from the environment as a result.
The time required for each step is generally set to 0.1 s, referring to the human
psychological refractory period (PRP) (Smith, 1967). A SA-RP-RE chunk is
called a BUMP (Basic Unit of Motor Production). Before one BUMP is fin-
ished, a new BUMP is started, resulting in the motor plan being intermittently
updated with a more recent one. Adjacent BUMPs overlap by two steps (see
Figure 3).

The agent’s decision-making is synchronized to the RP step and occurs once
per BUMP. Under this framework, t=0 always means the moment the RP of the
current BUMP begins. Similarly, the start time of the previous and next RP (or
decision step) can be expressed as the moment t=—t, and t=t,, respectively.
The following sections describe the implementation of each submodule in detail
based on this framework.

8.8.2. Aim Module

Let p., U., P:, and ; represent estimates of the position and velocity of the
crosshair and the position and velocity of the target, respectively. p. and v, are
estimated to be the values at the moment t=t,, and p; and v, are estimated to
be the values at the moment ¢t=t,4-¢;,, that is, the agent is looking into the future
(see Figure 3). Here, tj, is called the prediction horizon of motor control. These
estimates are obtained in the SA step through the Perceive module, and the
operation of the Aim module starts thereafter. The description of the Perceive
module is deferred to the next section.

The operation goal of the Aim module is to construct a motor plan that
starts execution at t=t, and ends at t=t,+t;, and is expected to make the
crosshair and target overlap and the relative speed become zero when execution
is completed. There are infinite camera rotations that make this possible, but
based on previous literature (Bye and Neilson, 2008; Bye, 2009; Sparrow and
Newell, 1998; Jiang et al., 2002; Neilson and Neilson, 2005; Do et al., 2021),
we assume that the agent pursues a camera rotation that satisfies the minimum
acceleration criteria. In the BUMP model, such camera rotation can be obtained
in closed-form via the OTG (Optimal Trajectory Generation) function:

M < OTG(pe, Oc, P, 0:) (1)

12



. B S oty o Discarded (A)
- T = ’!\\‘\\;\\\%/- motor plan
|9 SA RP RE \\&_\\\?\'_ b l
Previous  Current mp—— n '!k\;\\ NN
suvp  Bump > | SA RP BE rotor plan 4 f@&
N\ !
Next Next o
BUMP% SA RF\ ’g.RE m?))t(or plan +1
\ 7=
Time “Motor plan replaced ‘.,
t=—tp t=0 t =t, t= éi;--~-t.;_;p__+__th
(B1)
Current -3-----5 Current
motor plan “*~.._motor plan
"
Next
motor plan

Figure 3: (A) The intermittent motor control process simulated by the Aim module, based on
the BUMP model. (B1) The previous motor plan (in orange) is executed from t = 0 to t = ¢,
and replaced with the current motor plan (in blue). (B2) The current motor plan (blue) will
be replaced with the next motor plan at ¢ = 2t, (in green).

Here M¢ represents the (ideal) rotation plan of the view camera® from t = t,
to t = t, + t5. The camera rotation plan generated in the previous and next
BUMP are denoted as M?; and M“+1, respectively. A detailed formula of the
OTG function can be found in Appendix A.2.

The motor plan M?® is then executed during the subsequent RE step, and
signal-dependent motor noise (Schmidt et al., 1979; Lin and Tsai, 2015) is added
during this process. More specifically, noise is added separately in directions
parallel and perpendicular to the camera angular velocity vector w®. Noise is
sampled from a Gaussian distribution and added to the angular velocity vector,
and its standard deviation is proportional to the magnitude of the instantaneous
angular speed (=||w*®||) (Lin and Tsai, 2015; Do et al., 2021). The standard devi-
ations of the noise distribution in parallel (o) and perpendicular (o ) directions
are expressed as:

o = O, o1 =0.192-0,,w"|| (2)

Here, 6,, is a parameter introduced to deal with inter-player variability. For

6Since we assume a constant gain function of the mouse, the camera rotation plan and the
hand motor plan on the desk can be converted to each other by simply multiplying or dividing
them by the agent’s mouse sensitivity 1°/mm.
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Figure 4: The reaction time for aim or gaze movement can be determined independently for
each trial.

simplicity, rather than introducing separate parameters for each direction, the
magnitude of noise in the perpendicular direction was assumed to be 0.192 times
that of the noise in the parallel direction, as found in a previous study (Moon
et al., 2022). Due to motor noise, camera rotation in the RE step is performed
differently from the original motor plan M?®.

Note that the camera will naturally remain still from the moment the target
is given until the first motor plan is created, i.e., until the first pair of SA-RP
steps are completed (i.e., for 0.2 seconds) (Bye and Neilson, 2008; Bye, 2009).
This time interval represents the fundamental delay (or reaction time) of human
hand (or mouse) movements. Considering that human reaction time may vary
stochastically for each trial (Ratcliff, 1978), we implemented the Aim module
so that the agent’s mouse reaction time can be determined at a desired value
rather than a fixed value of 0.2 seconds (see Figure 4).

3.3.3. Perceive Module

The role of the Perceive module is to estimate the future position and velocity
of the target (p;, v;, at t = t,,) and crosshair (p., v¢, at t = t, + t;) based on
the sensory signals given during the SA step (from ¢t = —t, to ¢ = 0) and then
pass those estimates to the Aim module’. To achieve this goal, the module
first estimates the positions and velocities of the target and crosshair at the
moment ¢ = 0. More specifically, the following two pieces of information are
used in this process: (1) the position of the gaze on the screen (pgo) at ¢ = 0,
and (2) the position of the head in 3D space (peo) at ¢ = 0. Based on previous
studies on peripheral vision noise (Hussain et al., 2015), the Perceive module
then estimates the positions of the crosshair and target on the screen as follows:

Do — N (= peo, =0, -€.- 1) and Py — N(puw=pi0, X =16, € - 1) (3)

Here, €. and ¢; represent the eccentricity of the crosshair and target from the
gaze position at ¢t = 0, respectively, based on the head position (unit: visual

"For the sake of simplicity, we assume that the agent can perceive the size (or radius Ry)
of the target perfectly without noise.
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angle °, see Figure 5). N represents a 2D normal distribution with mean p

and covariance ¥; and 6, is a parameter introduced to deal with inter-player
variability in peripheral vision noise.

In addition to the positional information at time ¢ = 0, the velocity of the
crosshair and target at ¢t = 0 must be estimated to finally estimate p;, vy, pc,
and wv.. First, it is assumed that the agent knows prior information that the
crosshair is fixed at the center of the screen and does not move. Therefore, it
is assumed that the on-screen velocity of the crosshair perceived by the agent
(=v,) is always 0. Second, for the sake of simplicity, we assume that the agent
always perfectly perceives the direction of movement of the target on the screen.
However, it is assumed that perceptual noise is added to the target speed (||vi]|)
perceived by the agent at time ¢ = 0. More specifically, the perceived speed (§)
is sampled from the following log-normal distribution (£LN), as the Stocker’s
model (Jogan and Stocker, 2015) states:

§=03-(s"—1) where '+~ LN (p=In(1+ %), 0 =0,) (4)

Here, s and § represent the actual and estimated on-screen target speed at t = 0,
respectively, but note that their unit is visual angular speed (°/s) with respect to
the head position; 6, is a parameter introduced to reflect inter-player variability
in speed perception. Finally, the velocity of the target at ¢ = 0 perceived by the
agent can be expressed as:

D10 = (8/8) - Vo unit: m/s (5)

Due to the nature of the aim-and-shoot task, the velocity of the target on the
screen expressed in Equation 5 is actually the sum of two velocity components:
(1) the velocity of the target’s own motion and (2) the velocity of target motion
created by camera rotation, both at time ¢t = 0. From the efference copy of the
previous motor plan (M* ;) currently being executed, the agent can estimate at
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Figure 6: The process by which the agent estimates the future position of the target through
the Perceive module

what velocity the target will move on the screen due to camera rotation at time
t = 0. If the estimated vector is ¥3™, by subtracting 3™ from the estimated
on-screen target velocity ¥i, the agent can infer the velocity of the target’s
intrinsic motion (v¢™™*) as follows:

B0 = g — D3 (6)
Note here that 93™ is obtained by the agent under the assumption that the
motor plan executes perfectly without noise.
Finally, based on prior information that the target moves at a constant
velocity, the agent can estimate the target’s future position and velocity at time
t =1, +t, as follows:

Pt =Pro+ AP + (ty +tn) s - 05" and B, = o™ (7)
Here, p3™ is the displacement of the target on the screen that is ewpected to
be created by the camera rotation resulting from the ideal execution of the
previous motor plan M?, from ¢t = 0 to t = t,, (i.e., efference copy). On the
other hand, ¢4 refers to the noise added when the agent’s internal clock encodes
the time interval (t,+t;) and is sampled at every decision step from a normal
distribution as follows:
ty = N(pu=1,0=0.) (8)

Due to the above internal clock noise, the precision of the target position esti-
mated by the agent becomes lower when the estimate is made for the further
future. A more detailed description of the internal clock encoding mechanism
will be provided in Section 3.3.5, where the implementation of the Shoot mod-
ule is described. Figure 6 illustrates the mechanism handled by the Perceive
module.

8.8.4. Gaze Module

The Gaze module simulates the agent’s gaze control process. We assume
that gaze control is synchronized with the cycle of the Aim module; at the start
of each RP (i.e., time ¢ = 0), the agent determines the next position on the
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Figure 7: The process by which the Gaze module simulates the agent’s gaze movement

screen to which to move the gaze. However, unlike the camera rotation motor
plan, the prediction horizon of the gaze control plan is fixed at t = ¢,. To
simplify the model, the potential positions to which the agent can decide to
move its gaze are limited to positions on the line segment between the target
and the crosshair at time ¢ = ¢, (see Figure 7A). This assumption can be made
because moving the gaze away from both the target and the crosshair is not a
rational decision in terms of minimizing peripheral noise. More specifically, this
gaze control process is expressed mathematically as:

Py = (1 —kg) - Pep + kg - Ptp 9)

Here, py, Pcp, and Py, represent the target gaze position, perceived crosshair
position, and perceived target position at time t=t,, respectively. The k, is a
variable between 0 and 1 introduced to determine the operation of the Gaze
module. When k, is 0, the module plans to move the gaze to the crosshair
position at time ¢ = ¢,,, and when £ is 1, it plans to move the gaze to the target
position at time t = ¢, (Figure TA).

Motor noise is also involved in gaze control (Kowler, 1990), and the posi-
tion P, where the gaze will actually arrive is sampled from a two-dimensional
Gaussian distribution with a standard deviation proportional to the saccadic
amplitude (A in visual angle °) as follows:

Py N(p=py, X=01-A-1) (10)

The gaze moves straight on the screen from the current gaze position to pg
(Figure 7B). In this process, the peak speed of gaze movement (max(|vy|)) is
determined based on the human main sequence model (Bahill et al., 1975) as

follows:
max(|lvg|) = a+b-max(0,A—1) (unit: °/s) (11)

Here, a and b are free parameters of the model and are determined empirically
in this study. Among the infinite number of gaze trajectories that satisfy the
required peak speed (max(]|vgl|)) and saccadic amplitude (A), the actual gaze
movement MY is determined as the one that satisfies the minimum jerk assump-
tion (see Figure 7C). In this process, gaze may arrive at p, earlier or later than
time t=t,. If it arrives early, the gaze remains stationary until ¢t=t,. If it arrives
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late, it is replaced and executed with a new gaze plan created at time t=t,. A
detailed formula of the minimum jerk trajectory is described in Appendix A.3.

Similar to the Aim module, the Gaze module is also implemented so that the
gaze begins to move only after a certain reaction time elapses after the target
is first given. With reference to previous studies on human aimed movement
(Boucher et al., 2007), the reaction times of gaze and hands were implemented
so that they could be determined independently.

3.8.5. Shoot Module

The Shoot module simulates the process of the agent deciding whether to
click a mouse button (whether to shoot or not) and, if so, when to click. The
decision is made once every time a new motor plan M is created in the Aim
module (i.e., at every t=0). The binary variable representing the decision to
click or not to click is kg; When kg is 1, it indicates that the agent has decided
to click, and when kg is 0, it indicates that the agent has decided not to click.
If the agent decides to click, the value of the variable ts, which indicates the
planned timing of the click, is also determined. The agent determines the value
of ts between 0 and 1; If ¢, is 0, it means that the agent decided to click at the
start of the motor plan M?* (i.s., at t = t,,), and if ¢, is 1, it means that the
agent decided to click at the end of the motor plan M® (i.e., at t = ¢, + ¢p).
If the agent has decided to click within a motor plan, the Aim module stops
creating subsequent new motor plans. The process is illustrated in Figure 8.

According to previous studies (Rakitin et al., 1998; Lee and Oulasvirta, 2016;
Lee et al., 2018; Lee, 2022; Lee et al., 2024a), the human internal clock partici-
pates in determining click timing as a kind of countdown timer, and the precision
of the internal clock decreases as it counts down to a more distant future timing.
This scalar property of the internal clock can be expressed mathematically as
follows, using ¢4, a Gaussian random variable with standard deviation 6. and
mean 1 (see Equation 8):

ts =ty (tp +ts-tn) (12)

Here, ¢, represents the timing at which shooting actually occurs, including the

18




influence of internal clock noise. Note that ¢, is added to the right-hand side of
the equation because the execution of the motor plan M* begins at ¢t = ¢,,.

8.4. Optimizing Aim-and-Shoot Control Policy of The Model Agent

Our model agent, which integrates the four sub-modules, can simulate a wide
range of aim-and-shoot behavior by determining the values of 4 action variables
for each RP step. In this study, we specifically follow the computational rational-
ity framework and assume that agents determine action variables in a way that
maximizes expected accumulated rewards. The function that determines the
action variable for a given aim-and-shoot situation (i.e., environmental states)
is called a policy function (), and it can be optimized through deep RL.

8.4.1. Problem Formulation

To optimize the policy function, we formalize the agent’s decision-making
process as a Markov decision-making process (MDP). Decisions are made at the
start of each RP, that is, every 0.1 seconds. When state variables are determined
at each decision step, the policy function returns corresponding (optimal) action
variables. In our formulation, there are 6 state variables and 4 action variables
(see Table 3). The specific meaning of each variable can be found in the previous
sections on the implementation of sub-modules.

Table 3: State and action variables of the control policy

Symbol Definition (Dimension)

Di Estimated target position at ¢ = ¢, (2D)
w O™ Estimated target intrinsic velocity at t =t, (2D)
2 Ry Target radius (1D)
% O Estimated mouse velocity at ¢t = t, (2D)

Py Gaze position on the monitor at t = 0 (2D)

Pe Head (eye) position (3D)
S 73 Prediction horizon in the Aim module (1D)
g kg Gaze damping coefficient in the Gaze module (1D)
E ks Binary shoot decision in the Shoot module (1D)

ts Shoot timing coefficient in the Shoot module (1D)

As a result of decision-making for each step, the agent receives a specific
reward. The function of the reward r obtained for each step can be expressed
as follows:

0 ifks =0
r=<ry-(1—\,/100)T if k;, = 1 and target hit (13)
~Tpm - (1 = A\ /100)Tif ky = 1 and target missed
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Here, rp, (or r,,) refers to the reward (or penalty) that can be obtained when
the agent succeeds (or fails) in shooting the target immediately after the start
of the trial. Under the assumption that humans consider the reward to be
obtained per unit time (Banovic et al., 2013; Munichor et al., 2006; Klapproth,
2008; Ashby and Gongzalez, 2017) rather than its absolute accumulated value,
the reward or penalty that the agent obtains as a result of shooting decreases
as the trial completion time (7') increases, with each decay rate being A, and
Am. Intuitively, \;, = 10 indicates that the reward for the target hit is reduced
by 10% per second. From this we can make the agent pursue quick success
while avoiding failure without sufficient exploration, resulting in more realistic
behavior. If the agent took too long to aim (i.e., longer than 3 seconds), the
target went out of the agent’s view, or the elevation angle of the target became
too high (i.e., larger than 83°), the agent was considered to have failed to acquire
the target, received a huge penalty (r = —100), and the trial ended.

3.4.2. Deep RL

We trained the agent through Soft Actor-Critic (SAC) (Haarnoja et al.,
2018). Our aim is that the learned policy works optimally with different sets
of cognitive (0:,,60p,0s,0.) and reward parameters (7, T, An, Am). Because
different parameter values lead to other state transitions on MDP, a conventional
policy that is a function of only the state usually cannot solve this problem.
Instead, we adopted the recent multi-task RL approach (Moon et al., 2022).
We first set the range of @ and r as in Table 2. The range of 0 includes the
known distribution of the parameter values (Lee and Oulasvirta, 2016; Lee et al.,
2019, 2018; Park and Lee, 2020; Lee et al., 2021). The policy was then trained
on episodes with varying (0, r) sampled on the ranges. The sampled (0, r) was
provided as auxiliary inputs to the policy network along with the state s so
that the output action variables can be determined considering both the given
characteristics of the agent (6,7) and current task state s: a = n(s,0,r).

We built the actor and critic networks for the policy, each with an input
layer (12 units, same as the state dimension), 3 hidden layers (512 units), and
an output layer (4 units, same as the action dimension). While the state s
was fed into each network as primary inputs, the model parameters (0, r) were
provided by concatenating them to the input layer and hidden layers (Moon
et al., 2022). We adopted an Adam optimizer (Diederik and Ba, 2015) with
a learning rate of 0.00005 for training. The batch size was 2048, the discount
factor was 0.9, and the entropy regularization coefficient was initialized at 0.999
and converged to 0.2. We trained the policy for 20 million episodes, and it took
approximately 9 hours with a PC equipped with an AMD Ryzen 9 5950x CPU
(16 cores), an NVIDIA RTX 3080 GPU, and 64GB of RAM. Figure 9 shows the
changes in success rate and reward during the training process.

3.5. The Baseline Model

Our model is basically an expanded and advanced version of the 2021 point-
and-click model (Do et al., 2021) (see Table 1). To rigorously assess how signif-
icant such expansions were, we also build a strong baseline model. The baseline
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Figure 9: The success rate (left) and reward (right) curve of the aim-and-shoot model and
the baseline model during the training

model can be considered a simple conversion of the point-and-click model into
the 3D aim-and-shoot interaction scenario without significantly modifying exist-
ing modules. More specifically, the baseline model has the following differences
compared to our model: (1) there is no Gaze module, and the positions of
the target and crosshair are always perceived accurately, (2) the mouse reaction
time is fixed at 0.2 seconds (i.e., the first SA-RP interval), (3) the target’s future
position is extrapolated by directly perceiving the target’s own speed (efference
copy not considered), (4) the Shoot module is implemented based on the inter-
mittent click planning (ICP) model (Park and Lee, 2020)%, so the agent does
not determine the click timing as a separate action variable.

The parameters of the baseline model are identical to our model except that
0, is not included (Table 2). The same reward function and deep RL process are
applied (see Figure 9 for the reward and success rate during the training). Due
to fewer perceptual noises, the baseline model shows an overall higher success
rate and reward than our model.

4. The Aim-and-Shoot Behavior Dataset

To validate the model, we first build a dataset of the aim-and-shoot behavior
of real FPS players. Both professional and amateur players were included in
the dataset to cover a wide range of cognitive and motivational characteristics.
In this section, the design and results of the data acquisition user study are
described in detail.

4.1. Method

4.1.1. Participants
Twenty participants were recruited. Ten participants were active FPS pro-
fessionals on Valorant (Riot Games, 2020) and PUBG: BATTLEGROUNDS (PUBG

8With reference to previous studies (Do et al., 2021; Moon et al., 2022), the parameters of
the ICP model were determined as follows: ¢, (0.185), v (19.93), and ¢ (0.399).
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Table 4: Participants in the user study

Exp. on Primary

Habitual

Group No. Age Gender FPS (y) game  sensi. (°/mm) Handedness Mouse device Rank (%)
1 18 M 9 PUBG! 0.63 R G Pro X Superlight <0.1
2 18 M 10 VAL? 0.83 R G Pro X Superlight <0.1
3 18 M 7 PUBG 0.43 R Razor Viper Ultimate <0.1
= 4 17 M 7 VAL 0.64 R G Pro X Superlight <0.1
5 5 15 M 3 PUBG 1.14 R BenQ ZOWIE FK2-B  <0.1
z 6 17 M 5 VAL 1.07 R G Pro Wireless <0.1
L§ 7 18 M 4 VAL 0.49 R BenQ ZOWIE EC2-B <0.1
R 8 16 M 5 VAL 0.50 R Logitech G102 <0.1
9 15 M 6 VAL 2.20 R Logitech G502 Hero <0.1
10 17 M 5 VAL 0.36 R Logitech G703 <0.1
1 25 M 3 DBD? 1.50 R Logitech G304 20~30
2 26 F 0 - 1.50 R G Pro Wireless* -
3 23 M 11 PUBG 3.30 R Logitech G102 -
g 4 24 M 14 ow+* 1.08 L G Pro Wireless 0.1~1
z 5 24 M 10 oW 1.25 R G Pro X Superlight 20~30
= 6 24 M 11 oW 0.98 R G Pro Wireless* 10~20
;:5 7 28 M 0 - 1.50 R G Pro Wireless* -
8 23 F 3 PUBG 1.50 R G Pro Wireless* -
9 19 F 1 ow 1.50 R G Pro Wireless* -
10 25 M 10 ow 1.30 R G Pro Wireless* 0.1~1

1~4 PUBG: BATTLEGROUNDS (PUBG Corporation, 2017), Valorant (Riot Games, 2020), Dead by Daylight (Be-
haviour Interactive, 2016), Overwatch (Blizzard Entertainment, 2016)
* Provided by the experimenter.

Corporation, 2017). All ranked in the top j0.1% tier at their primary game.
The other 10 participants were amateur players, where two ranked in the top
2% tier, four ranked in the top 10% to 30%, and the rest had not played ranked
games. We put participant details in Table 4.

4.1.2. Task

Participants performed an aim-and-shoot task in a typical desktop environ-
ment with the same scenario (see Section 3.1) given to our model agent. Each
trial begins when participants successfully aim and shoot a red reference target
created at a location where both azimuth and elevation angle are 0. When a
trial begins, a grayscale-colored main target is created with a specific location,
radius, and speed. If a shooting event (left click) occurs when the crosshair is
located within the main target, the trial is considered successful. Regardless of
whether target acquisition is successful or not, when a shooting event occurs,
the trial ends, and another reference target for the next trial is created at the
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same 3D location. Participants were instructed to perform this task as quickly
and as accurately as possible. The scenes of the task are displayed in Figure 10.

4.1.83. Design
The user followed a 2x2x2x2x2 mixed design. The independent variables
and levels were:
Radius: Small (4.5 mm) or Large (12 mm)
Speed: Stationary (0 cm/s) or Moving (15 cm/s)
Color: White (255, 255, 255) or Gray (30, 30, 30)
Sensitivity: Default (1 °/mm) or Habitual
Group: Professional or Amateur
Here, Radius, Speed, and Color determine the characteristics of the main tar-
get. Color was introduced as an independent variable because the background
contrast of the target may affect participants’ speed perception noise (Stocker
and Simoncelli, 2006). Multiplying Sensitivity by the physical displacement of
the mouse (unit: mm) determines the amount of rotation of the first-person
view camera (unit: °). The Habitual condition reproduced the familiar sensi-
tivity that each participant uses on a daily basis when playing their primary
FPS game (Table 4). Except for Group, all others were within-subject factors.
The total number of unique conditions experienced per participant was 18.
The following behavioral data were logged with timestamps: gaze position on
the monitor, head position in the physical world, click events, view camera
orientation and target position in 3D space. Gaze data was collected at 150 Hz,
and the remaining data at 240 Hz.

(B)

Figure 10: User study screen captures: (A) The green dot is the crosshair. The white circle
is the main target to be shot. (B) The red sphere is the reference target. Please note that we
increased the exposure to make overall scenes more visible.

4.1.4. Procedure

As each participant arrived, we adjusted the chair and monitor heights to
align the participant’s eye level with the monitor center. The monitor distance
from the eyes was initially set to approximately 58 cm to 63 cm, and participants
were asked not to get too far or close to the monitor. The participant signed the
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consent form, and then we gave the participant an overview of the experiment.
The eye tracker was calibrated after that.

Participants performed 2 blocks for each unique Radius-Speed-Color-Sensitivity
combination, containing 60 aim-and-shoot trials per block. As a result, each
participant completed 2,160 trials. The participants completed all blocks in the
first Sensitivity condition and then moved on to the second Sensitivity condi-
tion. Both the orders of Sensitivity conditions and the blocks within a sensitivity
condition were randomized across participants. Between blocks, we performed a
short calibration verification session of the eye tracker, where participants were
asked to gaze at a dot that appears on the 11 fixed positions of the screen.
After the verification session, the participants could rest until the next block
started. The participants filled out a questionnaire after finishing all trials. The
entire experiment took about 80 minutes per participant. Considering the bur-
den of recruiting participants for each group, the compensation was 90 USD for
professionals and 15 USD for amateurs. IRB approved our user study protocol.

4.1.5. Apparatus

The task environment was implemented using FPSci, an open-source FPS
experimentation tool (Spjut et al., 2022). The user study was hosted on the
desktop with AMD Ryzen 9 5950x CPU, RTX 3080 GPU, and 32GB RAM and
presented on a BenQ Zowie XL2540k gaming monitor with a 240 Hz refresh rate.
The eye tracker was Gazepoint GP3 HD Eye-Tracker, operating at a sampling
rate of 150 Hz. Participants were encouraged to bring their mouse and use
it (see Table 4), but those who did not were provided with a Logitech G Pro
wireless mouse. The polling rate of all mice was set to 1,000 Hz.

4.2. Result

4.2.1. Post-processing

We synchronized aim behavior data and gaze data by considering the latency
estimated from video captured by a high-speed camera. We then oversampled
the gaze data to 240 Hz through cubic spline interpolation (see Appendix B.1
for details). We removed outliers by considering trial completion time and shot
error’; The 1.5 IQR (Inter-Quartile Range) method was applied. Additionally,
trials in which more than 60 % of the measured gaze data were invalid (i.e.,
due to eye closure, device error, gaze gone out-of-screen) or in which the gaze
was more than 3.5 cm away from the crosshair at the moment of shooting the
reference target were considered outliers and were removed. As a result, a total
of 3,265 trials were removed (7.6 %).

4.2.2. Descriptive Statistics
By analyzing the final dataset, we checked whether there were significant
behavioral and performance differences between professionals and amateurs. To

9The distance between the target and the crosshair at the moment of the shot
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Table 5: Main effect of independent variables on each dependent variable: significant differ-
ences (p < 0.05) are indicated in green. The values in parentheses are standard deviations.

Condition Level TCT (ms) ACC (%) SCD (°) GRT (ms) MRT (ms)
Player Professional [ 515 (86.3) 83.0 (20.3) 5.24 (1.51) 132 (23.0) 161 (9.9)
Group Amateur 568 (97.1)  75.6 (24.9) 4.37 (1.42) 170 (35.8) 162 (9.0)
Target Large 480 (59.7) 911 (10.1) 4.66 (1.44) 149 (31.0) 160 (9.1)
Radius Small 603 (84.5) 67.6 (26.2) 4.95 (1.61) 153 (39.7) 163 (9.5)
Target  Stationary | 530 (39.4) 93.4 (7.0) 4.56 (1.55) 150 (30.4) 161 (9.5)
Speed Moving | 553 (100.2) 64.8 (24.3) 5.05 (147) 152 (40.1) 161 (9.4)
Target White 533 (91.0) 792 (22.6) 4.78 (1.53) 145 (33.6) 158 (8.9)
Color Gray 550 (99.6) 795 (23.5) 4.84 (L54) 157 (36.6) 165 (8.6)
Mouse Default 543 (93.8) 78.8 (23.8) 4.85 (1.42) 150 (36.3) 161 (9.7)
Sensi. Habitual | 540 (97.6) 79.9 (22.3) 4.76 (1.63) 152 (34.9) 161 (9.2)

remove the learning effect, we discarded trials in the former block among two
blocks in each unique task condition. Accordingly, we employed 20,045 trials
(46.4 %) in the analysis. The following five metrics were calculated for each
participant and each unique task condition:

e Mean trial completion time (TCT): the average time from trial start to a

shot

e Accuracy (ACC): the rate of successful shots

e Mean saccadic deviation (SCD): the average visual angle from the initial

gaze position to the furthest gaze deviated position

e Mean gaze reaction time (GRT): the average time from the start of a trial

until a significant gaze shift is observed

e Mean mouse reaction time (MRT): the average time from the start of a

trial until a significant mouse displacement is observed
Here, GRT was calculated more specifically as the time from the start of a trial
to the start of the first saccade. Saccades were parsed from gaze trajectories
using the Python pymovement!? package (Krakowczyk et al., 2023), and saccades
with an amplitude of less than 1 © or that ended before 100 ms were ignored in
this process. In MRT calculations, the time of the mouse’s first movement was
determined based on acceleration thresholding!!

To confirm statistical differences in performance metrics between Group lev-
els, mixed ANOVA with an « level of 0.05 was performed. TCT of Professionals
(M=515 ms, SD=86) was significantly shorter than that of Amateurs (M=568
ms, SD=97): Fy 15=5.131, p=0.036, n520.222. ACC was significantly higher in
Professionals (M=83.0%, SD=20.3) than in Amateurs (M=75.6%, SD=24.9):

10We used the function pymovement.events.microsaccades with parameters set as
threshold_-factor=3.5, minimum _duration=6, and threshold=‘engbert2015°’.

1'When S is the mouse speed at t=0.1 (s), and Smax is the maximum mouse speed observed
when ¢t = T (s), the acceleration threshold is (Smax — S)/(T — 0.1).
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Figure 11: Changes in the distance from the crosshair to the target and the distance between
the initial gaze and the current gaze over time: the shaded area represents the standard
deviation. This is a visualization of data obtained from the user study, not a simulation.
Fy 18=5.445, p=0.031, 772:0.232. Interestingly, Professionals showed higher
ACC than Amateurs despite a shorter TCT. There was no significant difference
in SCD between Professionals (M=5.24°, SD=1.51) and Amateurs (M=4.37°,
SD=1.42): F}15=1.995, p=0.175, 1712,:0.100. GRT was significantly shorter on
Professionals (M=132 ms, SD=23.0) than Amateur (M=170 ms, SD=35.8):
F118=11.096, p=0.004, 7712):0.381. No significant difference was found in MRT
between Professionals (M=161 ms, SD=9.9) and Amateurs (M=162 ms, SD=9.0):
Fy 13=0.062, p=0.807, 773:0.003. We leave the summary of the overall result
in Table 5 (see Appendix B.2 for the detailed statistical results). In addition,
Figure 11 shows for each Group how the target and gaze moved over time on
average on the screen.
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Figure 12: Fitting results of the main sequence model: (left) for each participant, (right) for

all participants combined
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4.2.8. Main Sequence Modeling

The Gaze module of our agent model replicates the dynamics of human gaze
control based on the main sequence model (see Equation 11). To determine the
values of the model parameters (i.e., a and b), we fit the model to the dataset
obtained from the user study. As a result of model fitting for each Group and
each participant (see Figure 12), we found no significant difference in the in-
tercept (a) between Professionals (M=79.4, SD=8.6) and Amateurs (M=78.4,
SD=8.1), Fy15=0.072, p=0.792, n220.004, or in the slope (b) between Pro-
fessionals (M=36.0, SD=1.6) and Amateurs (M=35.1, SD=1.6), F} 15=0.696,
p=0.415, 77220.037. Therefore, we fitted the model on the entire dataset with-
out distinguishing Groups, determined the main sequence equation as follows,
and loaded it on the model agent: max(||vy||) = 78.7 + 35.6 - max(0, A — 1).

5. The Aim-and-Shoot Model Validation

In this section, we evaluate how well the implemented aim-and-shoot model
can fit the behavior of real players. The aim-and-shoot model and baseline
model are fitted to the dataset constructed from the user study, and the fitting
performance of the two is rigorously compared in various aspects. Considering
the general complexity of CR models, model fitting was performed by applying
the latest amortized inference technique (Moon et al., 2023).

5.1. Amortized Inference Engines

The goal of model fitting is to find optimal model parameters that make the
simulation of the CR model as similar as possible to the given actual human
behavior. Iteratively searching the parameter space to achieve this (Moon et al.,
2022) take extremely long time (i.e., a few days) in CR models with multiple
parameters (e.g., 8 for our model and 7 for the baseline). The recently proposed
amortized inference technique (Moon et al., 2023) resolves this issue, guaranty-
ing high fitting performance as well as fast fitting time to tens of milliseconds.
More specifically, we implemented an amortized inference engine for each of
our aim-and-shoot model and baseline model. By inputting the observed aim-
and-shoot behavior into each engine, optimal model parameters can be derived
through only a single forward pass of the neural network.

5.1.1. Engine Architecture

The inference engines were implemented using the neural network structure
presented in the previous study (Moon et al., 2023). To ensure a fair comparison,
the same structure was used for both our model and the baseline (see Figure 13).
The structure takes two different types of data as input: (1) summary statis-
tics and (2) behavioral trajectories. Summary statistics include trial completion
time, normalize shot error'?, saccadic deviation (N/A for baseline), mouse reac-

12The distance between the target and the crosshair at the shooting moment, divided by
the target radius. A value smaller than 1 indicates a target hit.
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Figure 13: The network architecture of the model parameter inference engine

tion time, gaze reaction time (N/A for baseline), target initial position, target
speed and size, and initial head position (N/A for baseline). Behavioral trajec-
tories include time series of on-screen target position and camera orientation,
all with timestamps.

The summary statistics are input into a multi-layer perceptron (MLP) with
two hidden layers of 128 units each, producing an output of size 64. The be-
havioral trajectories are processed through the Transformer-based architecture
known as the Perceiver, introduced by Jaegle et al. (Jaegle et al., 2021). This
network utilizes a combination of repeated cross-attention and self-attention
mechanisms. Employing a query vector of size (4 x 32) effectively transforms
the trajectories into a condensed vector of size 4. Consequently, each trial data
yields a 68-D vector. These 68-D vectors, stacked from multiple trials, are fur-
ther processed by another Perceiver network, which, using a query vector of size
(4 x 32), distills the information into a 32-D vector of latent features. Finally,
we used an MLP with two hidden layers of 128 units each, outputting the pre-
dicted model parameter values. ReLU activations were used in the MLPs, and
GELU activations were utilized in the Perceiver networks.

5.1.2. Engine Training

The parameters of the neural networks included in each engine are trained
based on large amounts of synthetic data. Here, synthetic data is generated
through the simulation of each model. More specifically, we first sampled a
total of 21M unique sets of model parameters for each model (see Table 2 for
sampling range). Then, for each unique parameter set, 64 trials were simulated
following the aim-and-shoot task scenario outlined in Section 4.1.2. Finally,
supervised learning was performed based on the obtained parameter-trial pair
datasets (1.3 billion pairs for each model). For the training, we utilized the
Adam optimizer, incorporating gradient clipping at a maximum of 0.5. For the
learning rate, we adopted Cosine Annealing with Warm Restarts (Glockler et al.,
2017), setting the maximum learning rate to 0.0001 and employing a learning
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rate decay factor of 0.9. The training took 200 thousand steps with a batch size
of 64. Dataset synthesis took approximately 120 hours, and the training took
45 hours with a PC (AMD Ryzen 9 5950x CPU, an NVIDIA RTX 3080 GPU,
64GB of RAM). We detailed the inference performances of trained engines in
Appendix C.

5.2. Model Fitting

5.2.1. Methods

Using amortized inference engines, we fit our model and the baseline model
to the dataset obtained from the user study. The fitting of each model for each
participant was performed four times, dividing the dataset into the following
four conditions: (1) White-Default, (2) White-Habitual, (3) Gray-Default, and
(4) Gray-Habitual. The reason data was not aggregated for each participant was
to address the impact that color and sensitivity may have on visual or motor
noise (Boudaoud et al., 2022; Hussain et al., 2015; Stocker and Simoncelli, 2006;
Shen et al., 2015). As a result, a total of 4 sets of 8 or 7 parameters are obtained
for each participant for our model and the baseline model, respectively. For gaze
reaction time (only in our model) and mouse reaction time, the actual measured
values for each trial were utilized.

To assess how similar the output of the fitted model is to the participants’

actual behavior, we analyze:

e Mean absolute error (MAE) of TCT, ACC, and SCD averaged for each of
the 16 unique task conditions

e Correlation (R?) between actual data and model output in TCT, ACC,
and SCD, binned by participant (R%,.) or binned by task condition
(R%ntra)

e Kullback-Liebler divergence (KLD) between each TCT, ACC, and SCD’s
distribution and each corresponding model output distribution, for each
participant

e The extent to which the gaze and camera trajectories output by the model
are similar to those in the dataset, for each participant and each trial, via
the dynamic time warping (DTW) algorithm (Vintsyuk, 1968; Berndt and
Clifford, 1994)

e How well the simulated pointing performance for stationary targets con-
forms to Fitts’ law'® (Fitts, 1954; MacKenzie, 1989, 1992) (RZs)

Note that analyzes related to SCD and gaze trajectories were not performed on
the baseline model because it does not address gaze movements. In addition
to fitting to the entire dataset, two-fold cross-validation was also performed to
check for overfitting issues.

BE[TCT] = a+b-logy(D/W + 1), where D is the initial distance from the crosshair to the
target, W is the diameter of the target
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Table 6: Summary of results from model fitting and ablated inference studies: statistical
significance was determined through paired t-test.

Two-Fold Summary-Only | Gaze-Ablated
Full Inference
. Cross Validation Inference Inference
Evaluation - - - -
Metri Aim-and- Baseli Aim-and- Baseli Aim-and- Aim-and-
etrics - -
Shoot aseine p Shoot aseine p Shoot Shoot
Model value Model value
Model Model Model Model
TCT 43.5 ms 219.6 ms | <.001 45.7 ms 231.7ms | <.001 47.0 ms 41.6 ms
MAE ACC 10.8%p 13.4%p <.001 12.4%p 15.5%p <.001 12.4%p 12.3%p
SCD 0.80° N/A - 0.88° N/A - 0.81° 1.18°
TCT 0.026 0.163 <.001 0.027 0.257 <.001 0.028 0.029
KLD ACC 0.508 0.545 0.014 0.617 0.605 0.661 0.514 0.570
SCD 0.130 N/A - 0.135 N/A - 0.131 0.177
TCT 0.70 0.41 <.001 0.65 0.33 <.001 0.65 0.73
RIana ACC 0.71 0.56 0.002 0.58 0.37 <.001 0.68 0.63
SCD 0.44 N/A - 0.42 N/A - 0.40 0.20
TCT 0.82 0.72 - 0.81 0.58 - 0.75 0.97
R%.. ACC 0.74 0.19 - 0.67 0.22 - 0.72 0.69
SCD 0.82 N/A - 0.81 N/A - 0.74 0.18
DTW Camera 308.1° 504.1° <.001 328.7° 524.4° <.001 322.2° 295.9°
Gaze 1.502 m N/A - 1.569 m N/A - 1.536 m 1.664 m
R2 White 0.97 0.87 <.001 0.95 0.76 <.001 0.98 0.97
Fitts Gray 0.97 0.85 <.001 0.96 0.74 <.001 0.98 0.97

5.2.2. Fitting Performance

Table 6 summarizes the model fitting results. Our model significantly out-
performed the baseline model in all of the 9 comparable evaluation metrics. In
particular, our model significantly improved the prediction of TCT and intra-
player variability of ACC compared to the baseline. Furthermore, our model
showed moderate fitting performance for gaze-related metrics that were not
obtained in the baseline model. In cross validation, when compared to the
fitting results for the entire dataset, the prediction performance of the base-
line model decreased more significantly than that of our model. In particular,
our model simulated behavior that sufficiently complied with Fitts’ law even in
cross-validation, but the baseline model did not. This shows that the baseline
model, despite having fewer parameters, is less free from the overfitting problem
than our model.

For all metrics, Figures 14, 15, 16, and 17 show how well our model and the
baseline model predicted intra-player and inter-player variability. The fitting

performance of each model to the distributions of TCT, normalized shot error,

and SCD can be seen in Figure 18. From these figures, we can see that the
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Figure 14: Correlation between simulated TCT and participant TCT (intra-player variability)

31



Accuracy of simuator (%)

100 | R2=0s67 & | 10— r2=079 10 | — R2=0.58 — RZ=079 — R2=0.80
075 08 08 08 08
0.6
050 B 06 06 06
o & 0.4
0.25 L 04 L
025  0.50 0.75 1.00 0.6 1.0 0.4 0.6 0.8 1.0 0.6 0.8 1.0 04 06 08 1.0
Professional 06 Professional 07 Professional 08 Professional 09 Professional 10
1.00 [ — recont 1 100 [ — &2 1 1.0 [ re=o0.50 110 [— Rezo7e <1 1.0 [ r2=0.90 ’
0.75 075 0.8 4 ?
08 08 3
0.50 0.50 06 QI)
06 =]
025 L 025 L2 04 | adi) 06 |- a
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 04 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 wn
Amateur 01 Amateur 02 Amateur 03 Amateur 04 Amateur 05 >0
100 [ pe_o60 — R?=081 | — R?=0.50 — RZ=074 Q 10 | — R2=0.81 ' 8
s 4
075 . 0.8 g
0.50 06 8_
[©)
025 | - 04 |-~ -
025 050 075 1.00 025 050 075 1.00 0.4 0.6 0.8 1.0 0.6 0.8 1.0 04 0.6 0.8 1.0
Amateur 06 Amateur 07 Amateur 08 Amateur 09 Amateur 10
1.00 e 1.0 = s 10 7= 2z = ]
— R?=081 0| — Rr?=079 0| — Rr2=073 — R?=085 — R?=0.60 <’
0.75

0.50

0.25

1.00

0.25 0.50 0.75 1.00 0.6 1.0 04 0.6 0.8 1.0 0.6 0.8 1.0 0.4 0.6 0.8 1.0
Professional 06 Professional 07 Professional 08 Professional 09 Professional 10
1.00 | — R2=075 | 100 | — R2=037 1 10| — r2=o0s6s 10 | — Rr2=065 — RZ=071
0.75 0.75 0.8
0.8
0.50 0.50 0.6 g
,'/” /’"‘ 06 m
025 L= 0.25 L= 04 L )
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.4 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 5
Amateur 01 Amateur 02 Amateur 03 Amateur 04 Amateur 05 D
1.00 [ R2=°'§ S| P [— ri-oee 110 — R2=074 7110 [ — R2=0ss q =
0.75 0.8 ’ 8_
Ca
0.50 0.6 g
025 | 04

Professional 01

Professional 02

Professional 03

Professional 04

Professional 05

0.5

— R2=0.65 V.

0.5
¥ L o P
o 0.0 L .
0.25 0.50 0.75 1.00 0.0 0.5 1.0 0.5 1.0 04 0.6 0.8 1.0 04 0.6 0.8 1.0
Professional 01 Professional 02 Professional 03 Professional 04 Professional 05
— R2=037 — R2=0.56

0.8

0.6

0.4

025 050 075 1.00

025 050 075 1.00 0.4 0.6 0.8 1.0 0.8 1.0 0.6 0.8 1.0
Amateur 06 Amateur 07 Amateur 08 Amateur 09 Amateur 10
1.00 R?=0.41 1.0 R?=0.24 1 10 R?=0.33 o — R?=025
0.8
05 05 06
- g 04 - e
00 L~ P P 0a L
025 050 075 1.00 0.0 0.5 1.0 0.5 1.0 0.4 0.6 08 1.0 0.4 0.6 0.8 1.0
Accuracy of participant (%)
O Small Q) Large O Stationary > Moving O White @ Gray O Habitual Default = Aim-and-Shoot Model —— Baseline Model

Figure 15: Correlation between simulated ACC and participant ACC (intra-player variability)
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Figure 19: Fitts’ law fitting results of model simulations and participant data
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TCT simulated by the baseline model tends to be significantly higher than the
TCT of actual participants. This trend is also visible in Fitts’ law fitting results
for stationary targets (see Figure 19); Simulations of the baseline model showed
higher Fitts’ law model slopes (b) than actual participants and also showed
poor fitting performance (R3;.). Similar to Figure 11, we displayed how the
target and gaze moved in the player’s and simulation’s behavior in Figure 20.
Simulations of our model tend to show faster return saccade after peak saccadic
deviation. Simulations of the baseline model performed shots more slowly.

5.2.3. Fit Parameters

By analyzing the dataset obtained from the previous user study, we found
that Professionals had lower TCT and higher ACC than Amateurs. We also an-
alyzed whether Group had a significant effect on the model parameters obtained
through fitting. For this purpose, we performed a mixed ANOVA analysis with
an « level of 0.05 for each parameter and including all independent variables
(Group, Color, and Sensitivity).

Upper two rows in Figure 21 show the Group differences in parameters ob-
tained by fitting our model and the baseline model to the full dataset. Our model
found statistically significant differences between Professionals and Amateurs for
only one parameter: A, (Fy,18=11.621, p=0.003, 772:0.392). The Aj, refers to
the rate at which trial success rewards decay over time, and the A, of Profes-
sionals (M=43.1, SD=5.8) was 21.1% higher than that of Amateurs (M=35.6,
SD=6.1). In other words, professionals have a stronger motivation to reduce the
time required for a successful shot. On the other hand, A,,, which refers to the
rate at which the failure penalty decays over time, tended to be 21.9% higher
for Amateurs (M=>50.8, SD=20.1) than for Professionals (M=39.7, SD=11.5).
In other words, Professionals have the motivational characteristic of trying to
avoid failure more consistently and persistently (not statistically significant, but
with a moderate effect size). Looking at other effects that were not statistically
significant but had relatively high effect sizes, we can see that Professionals are
able to perceive the target’s position (72=0.166) and speed (172=0.068) more
precisely and also receive higher rewards when successfully acquiring the target
(775:0.115). It is also worth noting that motor noise, which was expected to sig-
nificantly contribute to aim-and-shoot performance, was not noticeably lower in
Professionals than in Amateurs (F7,15=0.791, p=0.404, 7712,:().039). The Group
effect observed in the baseline fitting was overall similar to that of our model, ex-
cept for the result that the motor noise of Amateurs (M=0.31, SD=0.09) was sig-
nificantly higher than that of Professionals (M=0.18, SD=0.06): F} 15=12.507,
p=0.002, 72=0.410.

The third to sixth rows in Figure 21 show the main effects of other indepen-
dent variables on each model parameter. In our model fitting, as the contrast
of target color decreases, noise perceiving target position or speed tends to in-
crease, which is in good agreement with findings from previous visual perception
studies (Stocker and Simoncelli, 2006; Avidan et al., 2002; Duinkharjav et al.,
2022). On the other hand, the factor Color can be expected to have no signif-
icant effect on motor noise (as shown in the fitting results of our model), but
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when fitting the baseline model, motor noise was found to be significantly larger
in the Gray condition: F; 153=19.563, pj0.001, 772:0.521. Furthermore, baseline
model fitting showed that speed perception noise was statistically lower in the
Gray condition (Fj 15=12.018, p=0.003, 7712):0.4:00)7 which conflicts with find-
ings from previous studies (Stocker and Simoncelli, 2006; Avidan et al., 2002;
Duinkharjav et al., 2022). The effect of the Sensitivity factor was observed
similarly in both our and baseline model fittings; In particular, although it was
not statistically significant, participants’ motor noise tended to increase in the
unfamiliar Sensitivity (i.e., Default) condition. Meanwhile, the baseline model
fitting showed a tendency for the amount of speed perception noise to decrease
in the Default condition, although it is difficult to explain theoretically.

Only three interaction effects were significant: (our model) the effect of the
interaction between Color and Group on A, (p=0.015), (baseline) the effect of
the interaction between Group and Sensitivity on 6, (p=0.008), and the effect
of the interaction between Group and Color on A, (p=0.049). These three
interaction effects are depicted in Figure 22.

5.8. Feature-Ablated Inference

From the perspective of practitioners who wish to apply our model to the
training and evaluation of esports athletes, all of the information required to
perform inference may not always be measurable. For example, collecting raw
trajectories of the camera and eyes may be burdensome due to storage space
issues, or gaze-related data may not be obtained at all due to the lack of an eye
tracker. In this section, we verify the fitting performance of our model when
only partial information about aim-and-shoot behavior is given.

While keeping the neural network architecture intact, we trained two new
amortized inference engines: (1) Summary-Only and (2) Gaze-Ablated. The
Summary-Only engine excludes target and camera orientation trajectories and
only the following summary statistics are given as input to the network: TCT,
normalized shot error, SCD, both mouse and gaze reaction times, and initial
task conditions. In the Gaze-Abalated engine, all information related to gaze
is excluded. At this time, gaze reaction time (149 ms) and head position (0 m,
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Figure 23: The correlation between the parameters obtained from the full inference (z-axis)
and from the ablated inference (y-axis)

0.08 m, 0.575 m) were fixed as the overall average of the dataset measured in
the user study.

The model fitting performance through the two feature-ablated engines is
included in the right two columns of Table 6. The model fitting performance of
Summary-Only inference was worse than that of the full-inference engine, but
still showed sufficient performance for practical use. The performance of Gaze-
Ablated inference showed similar result to the full-inference except that gaze-
based evaluations substantially deteriorated, especially in R ., of SCD (from
0.82 t0 0.18). On the other hand, Figure 23 shows the correlation between model
parameters fitted with the full inference engine and parameters fitted with the
feature-ablated engines. Overall, the coefficient of determination (R?) of the
Summary-Only engine (M=0.73) tended to be higher than that of the Gaze-
Ablated engine (M=0.41). In summary, both engines can be useful for predicting
TCT or ACC, but if the reliability of parameters obtained through fitting must
be guaranteed, the use of the Gaze-Ablated engine should be avoided.

6. Discussion

The contributions of this study presented up to this point can be summa-
rized as follows: (1) a CR model that precisely simulates the cognitive process
underlying aim-and-shoot behavior was proposed and implemented (Section 3);
(2) aim-and-shoot behavior of 20 FPS players was collected (Section 4); (3)
The simulation performance of our model and the baseline model was evaluated
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through model fitting based on amortized inference (Section 5). The results of
the model fitting study are:

e Our model fit the aim-and-shoot behavior of real players significantly bet-
ter than the baseline and showed less risk of overfitting.

e The unique cognitive characteristics of professionals that allow them to
outperform amateurs have been revealed; professionals had lower levels of
cognitive noise overall and a stronger motivation for quick success.

e The parameters of the aim-and-shoot model can be robustly estimated
using only the summary-statistics of mouse (or view camera) and gaze
movement patterns.

e Tracking players’ gaze seems essential for meaningful analysis of aim-and-
shoot behavior.

In this section, we discuss the significance of the above findings in more depth.

Beating The Baseline

Our model was able to fit the TCT, ACC (or normalized shot error), and
SCD of real players much better than the baseline, despite having only one more
free parameter (i.e., §,). What is more noteworthy is that the performance of
the baseline deteriorated more significantly than our model in two-fold cross-
validation (see Table 6). In other words, the baseline model had a higher risk of
overfitting even though it had fewer parameters. This can be confirmed again
in the analysis of model fit parameters. Unlike our model, main effects of inde-
pendent variables that were difficult to explain theoretically were observed in
the baseline model fitting. For example, in baseline fitting, the motor noise pa-
rameter (6,,) significantly varied by the target color, which is logically difficult
to explain that signal-dependent motor noise, which is added independently of
the visual perceptual process (see Equation 2), varies depending on the target
color. As target color contrast decreases, the precision of target position (Hus-
sain et al., 2015) and speed (Stocker and Simoncelli, 2006) perception decreases,
resulting in lower aim-and-shoot performance (see Table 5), and we speculate
that the baseline model overfits such performance degradation with a single mo-
tor noise parameter. Baseline model fitting also showed that the speed noise
parameter (65) was lower when the target color was gray than when it was white,
which also contradicts findings in previous studies. In general, target color have
not been considered as key variables in modeling human aimed movement (Do
et al., 2021; MacKenzie, 1992; Looser et al., 2005; Ikkala et al., 2022), but our
results show that an experimental design that takes them into account can dif-
ferentiate the effects of visual perception and motor noise to more rigorously
verify the model’s performance.

Assuming that the participants in our study are not outliers, we can also
diagnose whether the models are overfitting the dataset by examining whether
the model fit parameters are within the range reported in previous studies.
Table 7 shows the ranges of each parameter reported in previous studies and the
mean and standard deviation of the model fit parameters obtained in this study.
Most model fit parameters were well within the range reported in previous
studies, but the internal clock noise (.) estimated from the baseline model
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Table 7: Mean and standard deviation of inferred parameters, and the range of parameters
investigated in previous literature

Aim-and-Shoot Baseline
Parameter Range Observed
Model Model
Om 0.23 (SD=0.06)  0.24 (SD=0.11) [0.10, 0.42]*
0, 0.14 (SD=0.08) - [0.09, 0.33)?
0 0.05 (SD=0.03)  0.19 (SD=0.05) [0.05, 0.40]3
0. 0.06 (SD=0.03)  0.30 (SD=0.07) [0.07, 0.20]*

}(Lin and Tsai, 2015; Do et al., 2021; Moon et al., 2022), ?(Hussain et al.,
2015), 3(Moon et al., 2022; Stocker and Simoncelli, 2006; Do et al., 2021),
4(Lee and Oulasvirta, 2016; Lee et al., 2018; Lee, 2022)

tended to be excessively high. Similar to the case of the motor noise parameter,
we interpret this as the baseline model overfitting missed shot cases (presumably
due to visual noise) through forced adjustment of the internal clock parameter.

Aside from the problems with model fit parameters, the baseline model
showed lower performance than our model in the fitting of TCT and ACC. In
particular, it is noteworthy that the TCT of the baseline model was significantly
longer (approximately more than 200 ms) than that of actual participants, re-
gardless of whether the target was stationary or moving. This may be partly
due to the fact that the hand reaction time of the baseline model was fixed at
200 ms, which is about 40 ms longer than the average of actual participants
(see Table 5). Furthermore, the TCT error of the baseline model tended to be
amplified as the task became more difficult, which may be because the noise
parameters of the baseline model were fitted too high compared to the reality.
If the noise parameters of the baseline model are lowered to better fit the TCT
on relatively high difficulty tasks, the TCT may instead unintentionally become
shorter than that of actual participants on relatively easy tasks. In fact, the
distributions of TCT in Figure 18 show that the baseline model fits the mode
of the distributions well overall, while giving up fitting the two tails. This is
an interesting result, considering that the point-and-click model, which is the
parent of the baseline model, successfully replicated both the TCT and end
point distributions in the 2D point-and-click task (Do et al., 2021). These re-
sults provide evidence that the unique perceptual challenges of aim-and-shoot
that we postulated may be real and that a deep understanding of aim-and-shoot
performance is difficult without considering them.

The Professional Behavior

It is already widely known that professional FPS players have aim-and-shoot
performance that overwhelms amateurs (Park et al., 2021; Dahl et al., 2021;
Rogers et al., 2024), and is consistent with the findings in this study. Factors
that make the difference have mainly been pointed out as professional players’
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shorter reaction times (Park et al., 2021; Koposov et al., 2020), more accurate
motor control skills (Donovan et al., 2022; Park et al., 2021), and more optimized
peripheral settings (Watson et al., 2024; Boudaoud et al., 2023; Kim et al., 2020;
Lee et al., 2020). Some of those differences were replicated well in our study:
the pros showed, on average, 38 ms shorter gaze reaction times and 8.3% lower
motor noise (6,,). The difference in motor noise between the two groups was
not as large as expected, but this does not directly mean that the overall effect
of motor noise on aim and shoot performance in FPS is small. Readers should
note that this study targeted only a small portion* of the complex and diverse
aim-and-shoot skills required in actual FPS games. In real FPS, where more
complex target movements are given, the differences in motor noise between the
two groups revealed in this study may result in more critical differences in game
performance (Allard et al., 1980; Allard and Starkes, 1980).

Meanwhile, the most interesting discovery we made in model fitting was the
high motivation of professional players to perform trials quickly and success-
fully (higher Ap). Two different interpretations are possible for this. First, to
facilitate recruitment, we provided professional players with higher compensa-
tion than amateurs, which may have resulted in them entering the study with a
higher motivational state. In fact, model fitting also showed that the r; reward
from trial success was higher for professionals, although this was not statistically
significant (but with a medium effect size). From one perspective, this may be
considered a failure of experimental control, but on the other hand, it can be
interpreted that we have once again confirmed the realism of the model simula-
tion, as the compensation differences in reality are reflected in the actual model
fit parameters. We believe that our study is the first to observe reward-related
model fit parameters in a CR model changing correspondingly to the amount
of monetary compensation given in the experiment.

The second interpretation focuses on the fact that professionals sought faster
success while also being less willing to give up quickly (lower A, 77127:0.113). In
our experiments, failed trials were not repeated, so in terms of hourly reward,
it is better to quickly give up on trials that take relatively longer time (e.g.,
small and fast targets). Therefore, we speculate that other hidden factors, not
just greater monetary compensation, cause professionals to have motivational
characteristics that distinguish them from amateurs. For example, one factor
may be that the aim-and-shoot scenarios that professionals have experienced
are significantly different from those of amateurs. In a typical FPS, players are
matched with players of similar skill levels, so professional players are naturally
placed under stronger time pressure. Since failing to shoot an enemy in a pro-
fessional match is more likely to lead to one’s death, players may have learned
to have a unique motivational state that seeks faster success and not giving up.

So, if professionals and amateurs had similar motivational parameters (r,,
Ty Ah, Am), how different would their performance be? In general, the mo-

14No camera translation was allowed and the target was circular and moved at a constant
velocity.
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Table 8: Mean and standard deviation of trial completion time and accuracy from the empirical
data, simulation data from the model fitting, and simulation data where the reward parameters
of professionals and amateurs are swapped

L. Simulation Simulation
Performance Group Empirical .
(Original result) | (Reward swapped)

TCT (ms) Pro. 514.2 (SD=111.7) | 526.7 (SD=128.0) 559.4 (SD=118.2)

Ama. [ 565.6 (SD=130.0) | 557.9 (SD=156.9) 594.3 (SD=140.9)

Pro. 83.1 (SD=37.4) 81.3 (SD=39.0) 86.5 (SD=34.2)
ACC (%)

Ama. 76.4 (SD=42.4) 74.2 (SD=43.8) 81.7 (SD=38.7)

tivational state of user study participants cannot be directly and accurately
controlled (Moon et al., 2022), but in answering this question, our model can
predict changes in aim-and-shoot performance by varying only the motivational
parameters while keeping cognitive characteristics fixed. Table 8 shows the
model’s simulation results when the motivational parameters of professional or
amateur players are set to the average of the opposing group. This additional
analysis reveals a significant effect of motivational state on TCT and ACC in
our model. It has also been confirmed in previous studies that participant moti-
vation has a significant impact on reaction (Ziv et al., 2022) or pointing (Moon
et al., 2022) performance. Another interesting observation is that the model
predicts that even if amateurs have the motivational state of professionals, they
will still have lower aim-and-shoot performance than professionals, possibly due
to fundamental differences in cognitive characteristics.

It also needs to be verified in future studies whether the parameters obtained
through fitting our model correspond well to the predictions of traditional psy-
chological theories that deal with human motivation, such as flow theory (Csik-
szentmihalyi and Csikzentmihaly, 1990) or attributional theory (Kukla, 1972;
Weiner, 1985). For example, flow theory (Csikszentmihalyi and Csikzentmi-
haly, 1990) predicts that the difficulty of a given task can affect motivation to
perform the task. In fact, in our study, a statistically significantly higher hit
reward (rp,) was fitted for the white target, which was easier to obtain, than
for the gray target. However, in this study, other variables that significantly
change task difficulty (e.g. target radius or speed) were assumed to have no
effect on reward parameters, and the validity of this assumption needs to be
tested more rigorously in future studies. At this point, readers may wonder
whether model fitting could be performed on the smallest task units to explore
the effect of target radius or speed on reward parameters. For example, in this
study, model fitting could be performed for each of a total of 16 unique condi-
tions (2x2x2x2). However, in our experience, this significantly increases the
risk of model overfit because it reduces the effective size of the dataset and also
unnecessarily mobilizes perceptual noise parameters in the fitting, which are as-
sumed to be unaffected by target radius or speed in the model. In other words,
we should probably find a way to keep cognitive parameters fixed regardless of
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target radius or speed during the model fitting process, while allowing reward
parameters to vary freely. To our knowledge, this is a challenge that has not
been addressed in previous CR models based on amortized inference. One pos-
sible solution might be to express the reward the agent receives as a function of
target radius (R) and speed (S), as shown below!®:

rn =Tho(co+c1-R+ca-5) (14)

where ¢g, c¢1, and ¢y are free parameters. However, this method significantly
increases the number of model free parameters and may require more computing
resources as well as advanced RL and inference architecture.

7. Guidelines for Gaze Control

In the CR framework, if a player is a novice, it means that the player has
not yet learned the optimal action policy m within the given cognitive bounds
(e.g., motor or vision noise). From that perspective, the way serious players of
competitive video games train today is not efficient; they often blindly copy the
actions seen in videos of professional players to improve their skills (Park et al.,
2021). The cognitive bounds of professionals may differ significantly from those
of amateurs, and therefore the optimal behavioral policy they should pursue may
also differ significantly from that of professionals. Our model is implemented
under the CR framework, so theoretically it can provide guidelines on what the
optimal aim-and-shoot behavior is for a player, regardless of his or her cognitive
characteristics.

To show the practical value of CR modeling and help efficient training of
novice FPS players, we provide quantitative guidelines on what the optimal
gaze control policy is for performing aim-and-shoot tasks, based on our model
simulations. This decision took into account the fact that there are relatively
fewer guidelines for optimal gaze control'® than for optimal mouse control (Kang
et al., 2024) in FPS, and that eye trackers are generally not affordable to amateur
players, making it difficult for them to perform gaze analysis themselves. Our
guidelines aim to show how much it is appropriate for gaze to deviate from the
crosshair on average (i.e., the SCD metric) when target distance, speed, and
radius each change over a wide range. We prepared and simulated a total of
four different agents: (1) Low cognitive noise & low motivational state (LL), (2)
low cognitive noise & high motivational state (LH), (3) high cognitive noise &
low motivational state (HL), (4) High cognitive noise & high motivational state
(HH). The parameter settings for each agent are in Table 9.

As a result of the simulation, Figure 24 shows how the SCD of each agent
changed on average when each target condition varied. The target velocity
condition was divided into cases where the target was moving away from the

15With reference to the flow theory, a quadratic function may be introduced instead.
16We did an informal web search and found that guiding articles on eye movement in FPS
are rare compared to those on mouse movement.
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Saccadic deviation (°)

Table 9: The parameter settings for the agent LL, LH, HL, and HH

Agent | 0, 0, 0 0. Th Tm An Am
LL 0.18 0.08 0.03 0.04 2881 24.07 3591 56.51
LH 0.18 0.08 0.03 0.04 43.05 11.62 43.58 32.55
HL 0.28 0.19 0.07 0.09 2881 24.07 35.91 56.51
HH 0.28 0.19 0.07 0.09 43.05 11.62 43.58 32.55

crosshair and cases where the target was approaching the crosshair. When sim-
ulating a specific target condition, the remaining conditions were randomized
within the range specified in the scenario in Section 3.1. Based on the interpre-
tation of the graphs, we can provide the following guidelines to FPS players:

e For targets that are more difficult to hit, such as those that are farther
away or smaller in size, it is better to move the gaze closer to the target.

e Even if the target is large enough, it is recommended that players with
relatively high congitive noise do not fixate their eyes on the crosshair.

e Considering the target’s movement direction and speed, the gaze must be
moved predictably to the target’s future position; That is, targets moving
away from the crosshair can result in a higher SCD, and targets moving
closer can result in a lower SCD.

e In conditions where the target approaches the crosshair, players with
higher cognitive noise are recommended to have a gaze control policy that
takes into account that the crosshair may overshoot or pass through the
target. This may result in a higher SCD.

e Even if there is a greater motivation to hit the target, there is no need to
significantly change the gaze control policy.

However, note that the above guidelines apply only when the target is moving at
constant velocity, and there is no camera translation. Furthermore, our model
assumes that the gaze is fixed on the crosshair at the time a target is given.

3.0 1
6 3.25
4 -
4 i
2.5 4 3.00
2 1 4
3 2.75
0
0.5 19.4 0 15 0 15 4 13
Target distance (cm) Target speed (cm/s) Target speed (cm/s) Target radius (mm)
(Moving away from crosshair) (Moving closer to crosshair)
= LL === LH == HL = HH

Figure 24: Average SCD of four agents (LL, LH, HL, HH) over increasing target distance, speed,
and radius
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8. Limitations and Future Work

This study has several limitations, which may lead to interesting follow-up
studies in the near future. First, in contrast to the extensive treatment of the
underlying cognitive mechanisms, this study deals with an aim-and-shoot task
scenario that is significantly simpler than those presented in real FPS games.
For targets with more complex movement patterns and shapes, further research
is needed to determine how the perceptual and motor control modules proposed
in this study should be modified. Furthermore, there may be multiple on-screen
targets with many distracting visual elements in the background. To extend our
model to such more realistic situations, we anticipate that it will be essential
to develop an image-based perception module that directly receives screen pixel
information as input (Kempka et al., 2016). An image-based peripheral vision
model (Rosenholtz et al., 2012; Lukanov et al., 2021; Wells-Gray et al., 2016) or
a saccadic suppression model (Matin, 1974) could also be included in the model.

Second, our model does not take into account a fundamental aspect of any
FPS: the presence of enemies. In future research, a scenario where multiple
FPS agents aim and shoot each other could be formulated as a multi-agent
RL problem (Vinyals et al., 2019). To implement more realistic competitive
scenarios, it is also necessary to expand the action space so that the agent can
translate the view camera (e.g., by pressing keyboard buttons with left hand
fingers). Implementation of the multi-agent model’s parameter inference engine
and its use in FPS training should also be addressed.

Third, the Gaze module implemented in this study has room for significant
improvement. In particular, the module assumed that gaze control decisions oc-
cur every 100 ms in synchronization with the hand control cycle, which makes
the model’s fixation duration shorter than reality (i.e., 200 to 300 ms) (Einh&user
and Nuthmann, 2016). This is the reason why the gaze returns to the crosshair
in our model’s simulation faster than that of the participants (see Figure 20).
Furthermore, target characteristics (e.g., familiarity) cause human fixation du-
ration to vary significantly (Loftus and Mackworth, 1978; Salvucci, 2001), and
our model with a fixed duration of 100 ms cannot replicate that phenomenon.
To solve these issues, hierarchical RL could be applied with hand control policy
and gaze control policy being independent, as was done in a recent study of
typing behavior (Jokinen et al., 2021).

Lastly, this study did not consider in modeling that upper limb kinetics have
a significant impact on mouse control performance (Lee and Bang, 2015; Kang
et al., 2024). In particular, we speculate that the effect on mouse sensitivity
observed in this study is deeply related to upper limb kinetics. With the rapid
development of human body biomechanics simulation libraries (Saul et al., 2015;
Todorov et al., 2012), several recent CR modeling studies (Moon et al., 2024;
Ikkala et al., 2022; Fischer et al., 2021; Hetzel et al., 2021) that included them
as model components have achieved good results in predicting human input
behavior. The Aim module of our model can be extended to have a biomechanics
component and allow the agent to move the mouse through the activation of
muscle tendons. We expect that such extensions will allow us to address poorly
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understood mechanisms in input performance, such as how wrist-aiming habit
affects performance and workload (Kang et al., 2024), or why optimal mouse
transfer functions exist (Lee et al., 2020).

9. Conclusion

In this study, we presented a CR model that can realistically simulate the
process by which FPS players control their hands and gaze to aim-and-shoot
a moving target on the screen. The model can broadly replicate the human
cognitive mechanisms underlying the aim-and-shoot process, for example, inter-
mittent motor control and signal-dependent motor noise for motor planning and
execution, and saccadic main sequence and peripheral vision for visual percep-
tion. Based on amortized inference engines, both our model and a baseline model
were fitted to a dataset of aim-and-shoot behavior of 20 FPS players, including
10 professionals. As a result, we confirmed that our model has significantly
higher fitting performance on several key metrics and less risk of overfitting
than the baseline. Through analysis of model fit parameters, we also discov-
ered hidden reasons why professionals can outperform amateurs. Professionals
had lower overall levels of cognitive noise than amateurs and also had distinct
motivational states, such as seeking quick success and not giving up easily. We
expect our model to open a new chapter in FPS skill analysis, in the field of
esports where even the slightest performance differences can be critical (Park
et al., 2021; Lee et al., 2024b; Kang et al., 2024). From a broader HCI research
perspective, our model provides a useful starting point for tackling important
remaining challenges in CR modeling, such as the inclusion of biologically plausi-
ble image-based visual perception or the exploration of competitive/cooperative
multiagent scenarios.
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Appendices
A. The Aim-and-Shoot Model Details

A.1. Task Initial Condition

Table A1l shows the detailed range and sampling distribution. The head
position, gaze position, and reaction time distributions were set based on the

empirical dataset (Section 4).

Table Al: The range and distribution of the aim-and-shoot task initial conditions and agent

initial states.

Condition & State Distribution Constraint Reference Unit
g Target position (azimuth) U(-37,-2)UU(2,37) 0 .
£ | Target position (elevation) U(—21,-1)u(1,21)
g Target radius U(4,13) mm
E Target angular speed U(0,40) °/s
@ | Target orbit axis (azimuth)  #/(—180, 180) 0 .
= Target orbit axis (elevation)  U(—90,90)
Camera direction (azimuth L o
Camera direction Eelevatiorz) u-12,12) Idirection] < 1.2 0
% Head position (vertical) N(p=0,0=1.7) [-6.5, 6.5] crosshair
E Head position (horizontal) N(p=7.8,0=1.9) [-4.2, 19.8] crosshair cm
S | Head position (distance) N (u=57.5,0=2.4) [40.8, 74.2] monitor
:ﬁo Gaze position N(p=pe, £=0.62 - 1) lpe —pgll < 3.5 crosshair cm
Mouse reaction time SN (p=132,0=34.5,a=1.43)  [100, 300] s
Gaze reaction time SN (1=80.1,0=88.1,0=6.04) [50, 300]

A.2. Optimal Trajectory Generation

Let the pairs of 1D position and velocity are given: x(0) = [2(0),%(0)]7 as
an initial state and x(N) = [#(N),2(N)]T as a final state. The objective is
to sample the N-step trajectory {x(k) = [z(k),@(k)]T | k € [0, N]} between
an initial and final state that satisfies the minimum acceleration criterion. Let
the interval between states (i.e., sample interval) be ¢ (s). We pre-define the

following matrices:

1t £2/2 = . :
G= [ ] , H= [ ] , T(k) = ZGJHHTGTW*’HJ) (k €1,
=0

0 1 t

<.
|

Then, we can compute the k-th state of the optimal trajectory as

x(k) = G*x(0) + T(k)T(N)* (x(N) — GVx(0))
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For the N-dimensional state case, doing this process on each dimension sepa-
rately will result in N-dimensional trajectory (in our case, N=2). For a more
detailed explanation of the process, please refer to the original paper Bye and
Neilson (2008).

A.3. Minimum Jerk Trajectory

For the given saccadic amplitude A and peak velocity V', the saccadic dura-

tion d is determined as %. For the time interval ¢ € [0, d], the saccadic speed

profile with the minimum jerk is expressed as

304 ([t\* AN
H="o((=) —2(-= -
=5 ((3) () + ()
This equation satisfies the objective constraints. First, the speed is zero at the

beginning and the end of the saccade: s4(0) = s4(d) = 0. Second, it reaches the
peak speed at the halfway point: s,(d/2) = V. Third, the gaze lands on the

destination at t = d: fod sq(t)dt = A.

B. The Aim-and-Shoot Dataset Details

B.1. Data Processing

B.1.1. System Latency

We synchronized the game event and gaze data by subtracting the system
latency of the eye tracker. We employed the following procedure to measure the
latency. First, we implemented an eye-tracking logger that provided a real-time
display of the user’s gaze position. Next, we positioned a mirror in front of
the user and below the monitor, allowing us to capture the user’s eye move-
ments while observing the eye-tracking logger’s display. Utilizing an iPhone 14
Pro with slow-motion recording capabilities at 240 frames per second (fps), we
recorded a video capturing both the eye-tracking logger’s display and the user’s
eyes reflected in the mirror. We analyzed the video to identify the optimal
time subtraction value that precisely synchronized the movement pattern of the
user’s eye with the corresponding display changes in the eye-tracking logger.
Finally, we subtracted the monitor latency from the obtained value, and the
measured system latency was 52 ms. This approach allowed us to accurately
determine the system latency of the eye tracker by establishing the temporal
offset between the user’s eye movements and the corresponding updates in the
eye-tracking logger’s display.

B.1.2. Improving Fye Tracker Data

We applied cubic spline interpolation on data with different sampling rates.
The game events were logged at 240 fps, while the gaze-related events were at
150 fps. We used the timestamp of the game events as a standard. We removed
invalidly logged physical eye positions so that the interpolated data replace
them. Since the eye tracker has its own filtering system for invalidly logged
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Table B1: Main effect of independent variables on each dependent variable: significant differ-
ences (p < 0.05) are indicated in green. The values in parentheses are standard deviations.

Condition Level TCT (ms) ACC (%) SCD (°) GRT (ms) MRT (ms)
Player Professional 515 (86.3) 83.0 (20.3) 5.24 (1.51) 132 (23.0) 161 (9.9)
Group Amateur 568 (97.1) 75.6 (24.9) 4.37 (1.42) 170 (35.8) 162 (9.0)
Signit Fris, 5.131, 5.445, 1.995, 11.096, 0.062,

D, T]ﬁ 0.036, 0.222 0.031, 0.232 0.175, 0.100 0.004, 0.381 0.807, 0.003
Target Large 480 (59.7) 91.1 (10.1) 166 (1.44) 149 (31.0) 160 (9.1)
Radius Small 603 (84.5) 67.6 (26.2) 4.95 (1.61) 153 (39.7) 163 (9.5)
Signit Fris, 271.741, 354.094, 11.011, 0.892, 25.971,

P, T]IQ, < 0.001, 0.938 < 0.001, 0.952 0.004, 0.380 0.357, 0.047 < 0.001, 0.591
Target  Stationary | 530 (89.4) 93.4 (7.0) 4.56 (1.55) 150 (30.4) 161 (9.5)
Speed Moving 553 (100.2) 64.8 (24.3) 5.05 (1.47) 152 (40.1) 161 (9.4)
Signit Fris, 4834, 197.650, 31.137, 0.323, 0.230,

D, 1712, 0.041, 0.212 < 0.001, 0.917 < 0.001, 0.634  0.577, 0.018 0.637, 0.013
Target White 533 (91.0) 79.2 (22.6) 478 (1.53) 145 (33.6) 158 (3.9)
Color Gray 550 (99.6) 79.5 (23.5) 1.84 (1.54) 157 (36.6) 165 (8.6)
Signit Fris, 23.922, 0.278, 1.341, 69.740, 145.567,

D, 77127 < 0.001, 0.571 0.604, 0.015 0.262, 0.069 < 0.001, 0.795 < 0.001, 0.890
Mouse Default 543 (93.8) 78.8 (23.8) 4.85 (1.42) 150 (36.3) 161 (9.7)
Sensi. Habitual 540 (97.6) 79.9 (22.3) 4.76 (1.63) 152 (34.9) 161 (9.2)
Signit Fi s, 0.084, 1.307, 0.453, 0.455, 0.161,

D, 77; 0.775, 0.005 0.268, 0.068 0.510, 0.025 0.508, 0.025 0.693, 0.009

gaze positions (on the monitor screen), we removed it only when its filtered
value is also invalid (e.g., out-of-screen).

The captured eye position data used the coordinate system originated from
the eye tracker focal camera with featured axes aligned or orthogonal to the
camera’s direction. The eye tracker was fixed at the bottom of the monitor, with
a 3 cm vertical distance from the monitor’s bottom. The camera’s directional
vector formed an angle of 23.5° with the perpendicular vector of the monitor.
To facilitate analysis, we converted the eye tracker camera’s coordinate system
to align with the monitor space (with the origin at the crosshair).

At last, we improved the accuracy of gaze position data in two steps. First,
in the verification session of each block, we obtained 11 clusters of gaze points
(i.e., fixations) corresponding to 11 fixed positions on the screen. We applied
the linear transformation to gaze position data that yielded the least square
error between them. Next, we translated the gaze position data so that the
mean of the initial gaze position lay on the crosshair.

B.2. Empirical Data Analysis
In Table B1, we put the statistical significance unreported in Table 5.
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Figure Cl: Parameter recovery performance of the aim-and-shoot model’s inference engine
(100 parameter samples x 200 observed trials).

C. The Amortized Inference Engine performance

The validation dataset consists of 100 (uniform randomly sampled) param-
eters and 600 simulated trials for each parameter. We randomly sampled 200
trials on each parameter and inferred the parameter using the trained inference
engines. The coefficient of determination (R?) between the true and inferred
parameters refers to the parameter recovery performance. We repeated this
process 100 times and averaged R? on every parameter. All inference engines
showed moderate or strong recovery performance on overall parameters (see
Figure C1 and Table C1). The result supports the reliability of the inference
engines’ output.

Table C1: Parameter recovery performance (R?) of inference engines.

O, 0, 0 0. Th Tm, Ah Am
Aim-and-Shoot Model | 0.88 090 0.84 0.86 0.77 0.73 0.76 0.69

Baseline Model 0.94 - 0.90 053 092 0.80 0.70 0.71
Summary-Only 0.86 089 081 0.85 076 0.70 0.71 0.65
Gaze-Ablated 0.85 083 084 08 073 072 072 0.63

We measured the completion time of inference when 100, 200, 400, 800,
or 1600 random trials were observed using the desktop environment in Sec-
tion 5.1. The aim-and-shoot model, the baseline model, and Gaze-Ablated
inference engine case took approximately 0.05 - N + 5.8 ms when N trials were
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Figure C2: The inference time by the number of observed trials.

given (R?=0.99). Summary-Only inference engine showed consistent inference
time, approximately 3.1 ms. The inference time linearly increases when the
trajectory part in the observed trial exists (i.e., processing trajectory data in
the Perceiver is a bottleneck). We visualize the results in Figure C2.
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