
A 17–95.6 TOPS/W Deep Learning Inference Accelerator with
Per-Vector Scaled 4-bit Quantization for Transformers in 5nm

Ben Keller*1, Rangharajan Venkatesan*1, Steve Dai1, Stephen G. Tell2,
Brian Zimmer1, William J. Dally1, C. Thomas Gray2, Brucek Khailany3

*Equally Credited Authors; 1NVIDIA, Santa Clara, CA, USA; 2NVIDIA, Durham, NC, USA; 3NVIDIA, Austin, TX, USA
Email: benk@nvidia.com, rangharajanv@nvidia.com

Abstract

We present a deep neural network (DNN) accelerator
designed for efficient execution of transformer-based DNNs,
which have become ubiquitous for natural language processing
tasks. DNN inference accelerators often employ specialized
hardware techniques such as reduced precision to improve
energy efficiency, but many of these techniques result in
catastrophic accuracy loss on transformers. The proposed
accelerator supports per-vector scaled quantization and
approximate softmax to enable the use of 4-bit arithmetic with
little accuracy loss. The 5nm prototype achieves 95.6 TOPS/W
in benchmarking and 1711 inferences/s/W with only 0.7%
accuracy loss on BERT, demonstrating a practical accelerator
design for energy-efficient inference with transformers.
Keywords: DNN inference accelerator, BERT, transformers.

Introduction
Deep neural networks (DNNs) using attention-based trans-

former architectures have seen significant interest due to their
superior performance in natural language processing [1] and
vision tasks [2]. These trends suggest that transformers will be-
come an increasingly common workload across a wide range
of applications, making them an important target for hardware
specialization to improve performance and energy efficiency.
We present a DNN inference accelerator that includes special-
ized capabilities targeting transformers, enabling high energy
efficiency while maintaining high task accuracy.

Accelerating Transformers
Reducing arithmetic precision is a common technique to im-

prove energy efficiency on DNN workloads [3], as it reduces
the cost of both multiply-accumulate (MAC) operations and
data movement. However, reduced-precision math introduces
quantization error, which can cause loss of task accuracy. Tra-
ditional quantization techniques that enable 4b math on small
networks fail catastrophically when applied to more sophisti-
cated transformer networks, and attention layers in transform-
ers differ significantly from convolution layers in their shape
and types of computations (see Fig.1).

The inference accelerator presented in this work uses per-
vector scaled quantization (VSQ) to enable energy-efficient 4b
math while maintaining task accuracy on transformers [4]. In
addition to applying a coarse-grained scale factor for each out-
put column, VSQ applies a scale factor at vector granularity
within each input matrix (see Fig.2). When input vectors are
multiplied, their 8b scale factors are multiplied to scale the re-
sult. VSQ enables low-precision arithmetic with reduced quan-
tization error and minimal hardware overhead (see Fig.3).

Transformers include non-linear operations such as softmax
and GELU, which are expensive in hardware. This work im-
plements a hardware-friendly softmax approximation that uses
base 2 instead of base e, low-precision fixed-point data formats,
and online normalization to reduce data movement [5], greatly
reducing hardware cost with minimal impact on accuracy (see
Fig.4). GELU is replaced with the simpler ReLU operation.

Deep Learning Inference Accelerator
Fig.5 shows a block diagram of the accelerator, which con-

tains 16 vector lanes, each of which implements independent
8b and 4b datapaths. Each lane performs a 64-element
(32-element for 8b) multiply followed by an accumulating sum
each cycle, as well as a scale factor multiplication to implement
VSQ. The accelerator contains 132KB of SRAM storage for
input matrices A and B. After accumulation is complete, a post-
processing unit (PPU) optionally performs operations such as
ReLU, approximate softmax, bias addition, and scaling. Final
results are stored in an 8.5KB output memory.

The accelerator minimizes expensive SRAM reads by em-
ploying an output-stationary, local-A-stationary dataflow [6]
(see Fig.6). A-matrix inputs are read out of the A-buffer once
every 16 cycles and stored in a register for temporal reuse.
B-matrix inputs are read once each cycle and reused across the
16 lanes. 24b partial sums are temporally accumulated in a 16-
entry latch array before sending the completed sum to the PPU.
This process is repeated to compute the output matrix by reus-
ing A-matrix and B-matrix inputs. The accelerator can com-
pute matrix multiply, convolution, and fully connected layers
of different sizes by configuring the SRAM address generators.
Buffer managers enable the pipelining of computation with the
streaming of input data. The accelerator could be tiled spatially
to compose a larger system.

Measurement Results
The 0.15mm2 accelerator is fabricated in a TSMC 5nm pro-

cess. Fig.7 shows the measured energy efficiency of the accel-
erator under different operating conditions and input densities.
The system achieves 95.6 TOPS/W with 50%-dense 4b input
matrices and VSQ enabled. VSQ imposes a 0.8% energy effi-
ciency overhead compared to 4b math with per-matrix scaling
with 50% non-zero inputs at 0.67V. Table 1 shows achieved
performance, energy efficiency, and task accuracy on a variety
of workloads. Quantization-aware fine-tuning is applied to pre-
trained FP32 weights, enabling ≤1.1% accuracy loss on BERT
when VSQ is enabled. Without VSQ, 4b inference for trans-
formers results in unacceptable accuracy loss even when re-
training techniques are applied. The system achieves 1711
inferences/s/W running BERT-Base with a sequence length of
128 on SQuAD. Table 2 presents a comparison with prior work.
Fig.8 shows an annotated die micrograph.

Conclusion
The presented system achieves 2.2-5.8X better energy effi-

ciency and 4-16X better area efficiency than prior work. Unlike
many prior proposals to improve energy efficiency, VSQ and
approximate softmax allow the accelerator to maintain task ac-
curacy on cutting-edge DNN workloads.

References
[1] A. Vaswani et al., NeurIPS, 2017. [2] A. Dosovitskiy et al., ICLR,
2021. [3] A. Agrawal et al., ISSCC, 2021. [4] S. Dai et al., MLSys,
2021. [5] J. Stevens et al., DAC, 2021. [6] R. Venkatesan et al.,
ICCAD, 2019. [7] H. Mo et al., ISSCC, 2021. [8] J-S. Park et al.,
ISSCC, 2021. [9] C. Lin et al., ISSCC, 2020.

2022 Symposium on VLSI Technology & Circuits Digest of Technical Papers978-1-6654-9772-5/22/$31.00 ©2022 IEEE 16

 [3] [7] [8] [9] This work
Process Technology 7nm 28nm 5nm 7nm 5nm

Area (mm2) 19.6 1.9 5.46 3.04 0.153
Supply Voltage (V) 0.55 – 0.75 0.6 – 0.9 0.55 – 0.9 0.58 – 0.83 0.46 – 1.05

Frequency (MHz) 1000 – 1600 100 – 470 332 – 1196 290 – 880 152 – 1760
On-Chip SRAM (KB) 8192 206 3072 2176 141

Data Formats INT2/4, FP8/16/32 INT8 INT8, INT16 INT8/16, FP16 INT4 INT4 VSQ INT8
Performance (TOPS) 102.4 (4b, 0.75V) 1.43 (8b, 0.9V) 14.7 (8b, 0.9V) 3.6 (8b, 0.83V) 3.6 (1.05V) 3.6 (1.05V) 1.8 (1.05V)

Energy Efficiency (TOPS/W) 16.5* (4b, 0.55V) 17.5* (8b, 0.6V) 13.6* (8b, 0.6V) 6.8* (8b, 0.58V) 91.1† (0.46V) 95.6† (0.46V) 39.1† (0.46V)
Area Efficiency (TOPS/mm2) 5.22 (4b, 0.75V) 0.75 (8b, 0.9V) 2.69 (8b, 0.9V) 1.2 (8b, 0.83V) 23.3 (1.05V) 23.3 (1.05V) 11.7 (1.05V)

* Input densities not reported. † Measured with 50% non-zero input densities. Includes estimated leakage power.

Dataset, Task SQuAD v1.1, Reading Comprehension ImageNet, Image Classification
Network BERT-Base BERT-Large DeIT-Small DeIT-Base

Sequence Length 128 384 128 384 197 197
 Baseline FP32 Accuracy (%) 87.5 87.5 90.3 90.9 79.8 81.8
Data Bitwidth (4V = 4b VSQ) 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b

Accuracy Loss (%) 80 0.7 0.7 81 0.5 0 88 1.1 1.1 89 0.8 0.1 29 3.6 0.7 25 1.3 0.4
MAC Utilization (%) - 98 99 - 98 99 - 98 99 - 98 99 - 94 96 - 97 98

Throughput (inferences/s) - 88 45 - 28 14 - 25 13 - 8.1 4.1 - 210 108 - 56 28
Energy Eff. (inferences/s/W) - 1.7k 745 - 539 235 - 502 216 - 160 69 - 3.5k 1.5k - 1.0k 406

for i ← 1, % do
&! ← IntMax &!"#, -!
			/!← 2$!	"%!

	

			1!← 1!"# ≫ &! −&!"#
			1!← 1! + /!
end for

for i ← 1, % do
/! ←	 &!≫(#!$#")

'#
end for

Im
pl

em
en

te
d

in
 P

PU

!""#$%. '$()*+% %! =	 2(#!$%")

∑ 2(##$%")'
	

IntMax

Max
Buffer

- LPW-
Pow2

#2("!#$")

&

Sum
Buffer

-
+

0! =	2(#!$%!)

>>

LPW-
Reciprocal
x

-IntMax

>>0! =	2(#!$%!)

*!

1!

Input Vector (%⃗)Algorithm Hardware Implementation

Fig.6: Workload mapping and data reuse.

Fig.5: Accelerator block diagram.

Fig.4: Approximate softmax implementation.

Fig.3: 8b/4b datapath with VSQ support.

Fig.2: Per-vector scaled quantization (VSQ).

Fig.1: Workload components of transformers.

Fig.7: Chip measurements.

Fig.8: Die micrograph.

Table 1: Measured application performance at 0.67V.

Table 2: Comparison to prior work.

M

K

K

N

VL

VS VS
1 12

2

2

1

N

M

3

3

3

4 4

for m =[0:M/VL) // Temporal tiling along M dimension
for n =[0:N/AD) // Temporal tiling along N dimension
for k =[0:K/VS) // Output stationary
for a =[0:AD) // A input stationary
for l = [0:VL) // Spatial B input activation reuse
for v = [0:VS) // Spatial output partial sum reuse

compute_MAC

1

2

3

4

4
AD

AD

VS: Vector Size, VL: Vector Lanes, AD: Accumulation collector Depth

Input Matrix A Input Matrix B Output Matrix C
INT8 Datapath INT4 Datapath

X
4 4

64-wide

+

x
8 8

814

X
8 8

X
8 8

32-wide

+

21
+

24

A Input
Vector

B Input
Vector

Partial
Sum In

24

X

X
4 4

X
4 4

Per-vector
Scale Factors

22
+

24

Partial
Sum In

24

24

Rounding

+
24

Partial
Sum In

24

VSQ Support
A Input
Vector

B Input
Vector

Partial Sum Out

128 8

384

Configurable Vector MAC Datapath

Accumulation
Collector

(768B, Dual Port)
Latch Array 16

Per-Matrix
Scaling

Bias
Addition

Latch Array

Bias Buffer

ReLU Vector Max

Quantize and Round

Approx. Softmax

Reciprocal

Output Buffer
(8.5KB, Single Port)

136
SRAM 512

Address Generator

Buffer Manager
Address Generator

Buffer Manager

16
 La

ne
s

Wgt Vector
SRAM

16 Banks

8Latch Array

Scale Buffer
256

128
264

2048

264

A-Buffer
(66KB, Dual Port)

B-Buffer
(66KB, Dual Port)

SRAM

Control

Status Out Softmax Out Data Out

Config In A Data In B Data In

…

…

…

Post-Processing Unit (PPU)

… …

…

…

…

8-bit Datapath

Update
every
cycle

Update every
16 cycles

4-bit Datapath VSQ Support

Write to PPU after
all accumulation
is complete

Traditional Quantization VSQ

One scale factor
per matrix

Two scale factors: one per
vector, one per matrix

High quantization noise Reduced
quantization noise

Traditional Quantization

Noise

Scaling

Max value
in matrix

Min value
in matrix

More scaling

-8 0 7

-8 0 7

Min value
in vector

Max value
in vector

VSQ

INT4 Quantization

FP32 data
distribution

VSQ Scale Factors

M

K

K

N

M

N

64

64
…

…

…

…

One scale factor for each 64-element input vector

Second scale factor for each input matrix

Bert-
Large

Bert-
Base

Model (m) 1024 768
Heads (h) 16 12

Sequence* (s) 384 384
Query size (q) 64 64

Layers (n) 24 12
MACs (x109) 123 35

Add &
Norm

ms
*Sequence varies with workload

4ms

4ms

ms

ms

Feed Forward
FC1

ReLU

FC2

Add &
Norm

ms

h

ss

h

ss

h

sq

ms

ms
Multi-Head Attention

Query Key Value
ms msms

Split Split Split

h

sq

h

sq

h

sq

BMM1

Scale

Softmax

BMM2

Concat

Proj.

MatMul
without
weights

MatMul
with

weights

Post-
processing

Datapath Ops

PPU Ops

Inputs

Transformer Encoder

Output

n

…

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

B Input
SRAMs

A Input
SRAMs

A Input
SRAMs

Output
SRAMs

Logic

431μm

355μm

2022 Symposium on VLSI Technology & Circuits Digest of Technical Papers 17

	Select a link below
	Return to Main Menu

