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Abstract 

We present a deep neural network (DNN) accelerator 
designed for efficient execution of transformer-based DNNs, 
which have become ubiquitous for natural language processing 
tasks. DNN inference accelerators often employ specialized 
hardware techniques such as reduced precision to improve 
energy efficiency, but many of these techniques result in 
catastrophic accuracy loss on transformers. The proposed 
accelerator supports per-vector scaled quantization and 
approximate softmax to enable the use of 4-bit arithmetic with 
little accuracy loss. The 5nm prototype achieves 95.6 TOPS/W 
in benchmarking and 1711 inferences/s/W with only 0.7% 
accuracy loss on BERT, demonstrating a practical accelerator 
design for energy-efficient inference with transformers. 
Keywords: DNN inference accelerator, BERT, transformers. 

Introduction 
Deep neural networks (DNNs) using attention-based trans-

former architectures have seen significant interest due to their 
superior performance in natural language processing [1] and 
vision tasks [2]. These trends suggest that transformers will be-
come an increasingly common workload across a wide range 
of applications, making them an important target for hardware 
specialization to improve performance and energy efficiency. 
We present a DNN inference accelerator that includes special-
ized capabilities targeting transformers, enabling high energy 
efficiency while maintaining high task accuracy. 

Accelerating Transformers 
Reducing arithmetic precision is a common technique to im-

prove energy efficiency on DNN workloads [3], as it reduces 
the cost of both multiply-accumulate (MAC) operations and 
data movement. However, reduced-precision math introduces 
quantization error, which can cause loss of task accuracy. Tra-
ditional quantization techniques that enable 4b math on small 
networks fail catastrophically when applied to more sophisti-
cated transformer networks, and attention layers in transform-
ers differ significantly from convolution layers in their shape 
and types of computations (see Fig.1). 

The inference accelerator presented in this work uses per-
vector scaled quantization (VSQ) to enable energy-efficient 4b 
math while maintaining task accuracy on transformers [4]. In 
addition to applying a coarse-grained scale factor for each out-
put column, VSQ applies a scale factor at vector granularity 
within each input matrix (see Fig.2). When input vectors are 
multiplied, their 8b scale factors are multiplied to scale the re-
sult. VSQ enables low-precision arithmetic with reduced quan-
tization error and minimal hardware overhead (see Fig.3). 

Transformers include non-linear operations such as softmax 
and GELU, which are expensive in hardware. This work im-
plements a hardware-friendly softmax approximation that uses 
base 2 instead of base e, low-precision fixed-point data formats, 
and online normalization to reduce data movement [5], greatly 
reducing hardware cost with minimal impact on accuracy (see 
Fig.4). GELU is replaced with the simpler ReLU operation. 

Deep Learning Inference Accelerator 
Fig.5 shows a block diagram of the accelerator, which con-

tains 16 vector lanes, each of which implements independent 
8b and 4b datapaths. Each lane performs a 64-element  
(32-element for 8b) multiply followed by an accumulating sum 
each cycle, as well as a scale factor multiplication to implement 
VSQ. The accelerator contains 132KB of SRAM storage for 
input matrices A and B. After accumulation is complete, a post-
processing unit (PPU) optionally performs operations such as 
ReLU, approximate softmax, bias addition, and scaling. Final 
results are stored in an 8.5KB output memory. 

The accelerator minimizes expensive SRAM reads by em-
ploying an output-stationary, local-A-stationary dataflow [6] 
(see Fig.6). A-matrix inputs are read out of the A-buffer once 
every 16 cycles and stored in a register for temporal reuse. 
B-matrix inputs are read once each cycle and reused across the 
16 lanes. 24b partial sums are temporally accumulated in a 16-
entry latch array before sending the completed sum to the PPU. 
This process is repeated to compute the output matrix by reus-
ing A-matrix and B-matrix inputs. The accelerator can com-
pute matrix multiply, convolution, and fully connected layers 
of different sizes by configuring the SRAM address generators. 
Buffer managers enable the pipelining of computation with the 
streaming of input data. The accelerator could be tiled spatially 
to compose a larger system.  

Measurement Results 
The 0.15mm2 accelerator is fabricated in a TSMC 5nm pro-

cess. Fig.7 shows the measured energy efficiency of the accel-
erator under different operating conditions and input densities. 
The system achieves 95.6 TOPS/W with 50%-dense 4b input 
matrices and VSQ enabled. VSQ imposes a 0.8% energy effi-
ciency overhead compared to 4b math with per-matrix scaling 
with 50% non-zero inputs at 0.67V. Table 1 shows achieved 
performance, energy efficiency, and task accuracy on a variety 
of workloads. Quantization-aware fine-tuning is applied to pre-
trained FP32 weights, enabling ≤1.1% accuracy loss on BERT 
when VSQ is enabled. Without VSQ, 4b inference for trans-
formers results in unacceptable accuracy loss even when re-
training techniques are applied. The system achieves 1711  
inferences/s/W running BERT-Base with a sequence length of 
128 on SQuAD. Table 2 presents a comparison with prior work. 
Fig.8 shows an annotated die micrograph. 

Conclusion 
The presented system achieves 2.2-5.8X better energy effi-

ciency and 4-16X better area efficiency than prior work. Unlike 
many prior proposals to improve energy efficiency, VSQ and 
approximate softmax allow the accelerator to maintain task ac-
curacy on cutting-edge DNN workloads. 
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 [3] [7] [8] [9] This work 
Process Technology 7nm 28nm 5nm 7nm 5nm 

Area (mm2) 19.6 1.9 5.46 3.04 0.153 
Supply Voltage (V) 0.55 – 0.75 0.6 – 0.9 0.55 – 0.9 0.58 – 0.83 0.46 – 1.05 

Frequency (MHz) 1000 – 1600 100 – 470 332 – 1196 290 – 880 152 – 1760 
On-Chip SRAM (KB) 8192 206 3072 2176 141 

Data Formats INT2/4, FP8/16/32 INT8 INT8, INT16 INT8/16, FP16 INT4 INT4 VSQ INT8 
Performance (TOPS) 102.4 (4b, 0.75V) 1.43 (8b, 0.9V) 14.7 (8b, 0.9V) 3.6 (8b, 0.83V) 3.6 (1.05V) 3.6 (1.05V) 1.8 (1.05V) 

Energy Efficiency (TOPS/W) 16.5* (4b, 0.55V) 17.5* (8b, 0.6V) 13.6* (8b, 0.6V) 6.8* (8b, 0.58V) 91.1† (0.46V) 95.6† (0.46V) 39.1† (0.46V) 
Area Efficiency (TOPS/mm2) 5.22 (4b, 0.75V) 0.75 (8b, 0.9V) 2.69 (8b, 0.9V) 1.2 (8b, 0.83V) 23.3 (1.05V) 23.3 (1.05V) 11.7 (1.05V) 

* Input densities not reported.    † Measured with 50% non-zero input densities. Includes estimated leakage power. 

Dataset, Task SQuAD v1.1, Reading Comprehension ImageNet, Image Classification 
Network BERT-Base BERT-Large DeIT-Small DeIT-Base 

Sequence Length 128 384 128 384 197 197 
 Baseline FP32 Accuracy (%) 87.5 87.5 90.3 90.9 79.8 81.8 
Data Bitwidth (4V = 4b VSQ) 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 

Accuracy Loss (%) 80 0.7 0.7 81 0.5 0 88 1.1 1.1 89 0.8 0.1 29 3.6 0.7 25 1.3 0.4 
MAC Utilization (%) - 98 99 - 98 99 - 98 99 - 98 99 - 94 96 - 97 98 

Throughput (inferences/s) - 88 45 - 28 14 - 25 13 - 8.1 4.1 - 210 108 - 56 28 
Energy Eff. (inferences/s/W) - 1.7k 745 - 539 235 - 502 216 - 160 69 - 3.5k 1.5k - 1.0k 406 
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Fig.6: Workload mapping and data reuse. 

Fig.5: Accelerator block diagram. 

Fig.4: Approximate softmax implementation. 

Fig.3: 8b/4b datapath with VSQ support. 

Fig.2: Per-vector scaled quantization (VSQ). 

Fig.1: Workload components of transformers. 

Fig.7: Chip measurements. 

Fig.8: Die micrograph. 

Table 1: Measured application performance at 0.67V. 

Table 2: Comparison to prior work. 
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