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Abstract. Once deployed in the field, Deep Neural Networks (DNNs)
run on devices with widely different compute capabilities and whose com-
putational load varies over time. Dynamic network architectures are one
of the existing techniques developed to handle the varying computational
load in real-time deployments. Here we introduce LeAF (Legacy Aug-
mentation for Flexible inference), a novel paradigm to augment the key-
phases of a pre-trained DNN with alternative, trainable, shallow phases
that can be executed in place of the original ones. At run time, LeAF al-
lows changing the network architecture without any computational over-
head, to effectively handle different loads. LeAF-ResNet50 has a storage
overhead of less than 14% with respect to the legacy DNN; its accu-
racy varies from the original accuracy of 76.1% to 64.8% while requiring
4 to 0.68 GFLOPs, in line with state-of-the-art results obtained with
non-legacy and less flexible methods. We examine how LeAF’s dynamic
routing strategy impacts the accuracy and the use of the available com-
putational resources as a function of the compute capability and load
of the device, with particular attention to the case of an unpredictable
batch size. We show that the optimal configurations for a given network
can indeed vary based on the system metrics (such as latency or FLOPs),
batch size and compute capability of the machine.

Keywords: Dynamic architecture, real-time systems, legacy, fast infer-
ence

1 Introduction

Deep Neural Networks (DNNs) deliver state-of-the-art results in a wide range
of applications. Very often, however, they are characterized by a high inference
cost [2,28]; when pushed to their limit, DNNs use a large amount of compu-
tational resources for small gains in model accuracy. These high resource costs
pose a barrier to the adoption of state-of-the-art DNNs in the field.

The reasons for these inefficiencies are varied. Large or deep DNNs require
high compute at inference time. Efficient, static architectures like residual con-
nections [6,9,13,14], pixel shuffle [23] or pruning [1,10,17,26] partially alleviate
this issue, but low utilization of computational resources is still possible when a
DNN overthinks about easy cases [25,32]. The complexity of dealing with ineffi-
cient DNNs is further increased when taking into account deploying models onto
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Fig. 1. The left panels shows LeAF-ResNet50, where shallow phases augment the
legacy DNN. The external routing policy, τ = π(s), is disentangled from LeAF-
ResNet50: it can be any user-defined function of the state of the compute device,
s; here, the shallow phases 2 and 4 are executed together with the legacy phases 3
and 5. The right panel compares LeAF-ResNet50 performance on an A100 GPU(solid
lines) and Jetson Xavier (dashed lines) as the batch size BS is varied between 1,8 and
64. The latency is normalized to the latency for the given batch size when using the
base network. Notice that the curves are different for different batch sizes.

a wide range of devices, as different computing systems require diverse optimal
implementations of the same DNN [7,25]. Even the computational load on the
same device changes over time [11]. These issues can be alleviated by affording a
DNN the ability to vary its architecture on the fly based on current system state.
Thus, providing this capability is highly desirable for practical implementation
and field deployment.

A variety of solutions to create DNNs with variable architecture exists. Dy-
namic DNNs are models that incorporate a gating policy function to route the
input towards complementary paths with varying compute complexity [21,25,27],
each specialized during training to handle different classes of data, thus making
dynamic DNNs highly accurate and efficient. Anytime prediction DNNs [12,24]
use early exits that allow selecting among a limited set of compute/accuracy
compromises. All-for-one [2] DNNs are initially trained to be flexible, i.e., such
that sub-networks can be run while keeping a high accuracy; a single DNN con-
figuration is then selected for deployment, based on the target device.

The analysis of networks with dynamic routing reveals interesting aspects in
terms of real performance and efficiency on deployed systems. Different paths
are characterized by different compute requirements and thus performances, that
also change with the device and its current load status. In other words, when
optimizing performance for deployment, all factors including not only the target
model performance, but also the batch size and the device compute capability
must be taken into account.

We introduce a DNN augmentation paradigm that provides full real-time
control of the DNN configuration, and preserve the legacy network. Our tech-
nique produces a flexible DNN whose architecture can be changed on the fly
accordingly to the constraints imposed by the state of the compute device, and
achieving accuracy/compute cost compromises in the same ballpark of that of
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existing state-of-the-art methods. We explore using this flexible inference and
characterize the performance.

In this work we provide several contributions:

– We introduce LeAF(Legacy Augmentation for Flexible inference), a paradigm
to transform pre-trained, static DNNs into flexible ones, while also allowing
execution of the legacy DNN. LeAF networks disentangle the gating policy
problem from the computational aspects, allowing selection of the optimal
accuracy/compute cost compromise on the fly.

– We perform a thorough analysis of the computational aspects of LeAF-DNNs
for different tasks, network architectures and compute devices. We analyze
the relation between FLOPs and latency and highlight the importance of
the batch size for the deployment of effective DNNs. The validity of these
insights extends beyond LeAF, showing for instance that results reported in
literature for batch size 1 do not generalize naively to larger batch sizes.

– We demonstrate that DNNs with variable architectures allow many possible
configurations, but few of them belong to the Pareto set in the accuracy
/ compute cost plane; we leverage this by fine-tuning LeAF-DNNs only for
those configurations, but the insight applies again to a larger class of variable
architecture networks.

2 Related Work

There are a few key differences in the attempts to speed up and reduce the energy
consumption of DNNs. The first major difference is the one between static and
variable network architectures. These can be further subdivided into anytime
prediction networks with early exits and architectures with variable data-flow
paths (generally referred to as dynamic networks in literature). An orthogonal
classification can be made between methods that disentangle the (or “use an
external”) routing policy from the task at hand (like LeAF) and those that do
not (or have an internal routing policy).

2.1 Static architectures

DNN training can be made faster or less energy hungry by the adoption of
skip/residual connections that help gradient propagation [6,9,11,14], but this
option does little to save energy at inference time - on the contrary, it may
favour the adoption of deeper networks characterized by costly inference. To
reduce latency or energy consumption at inference time, software implementa-
tions making an effective use of the underlying hardware (like pixel shuffle [23])
or reducing the computational cost of the DNN operations (as for reduced preci-
sion [3,33]) exist. Another widely used possibility when deploying DNNs is offered
by pruning. Weight pruning methods such as SNIP [15] or N:M pruning [26] re-
move individual parameters to induce sparsity, but need hardware support to
get the actual acceleration, whereas channel pruning methods are more practi-
cal on modern hardware (e.g., GPUs). Typically, pruning is formulated as the
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resource (memory, computes, latency, etc.) constrained problem of selecting an
optimal sub-network. Some channel pruning methods remove the least salient
channels until reaching the desired cost in terms of FLOPs [16,17,30], but these
same method hardly achieves optimal latency because of the documented dis-
crepancy between the FLOPs and latency on complex devices. Platform aware
methods achieves better latency reduction performances. HALP [22] estimates
the channel latency cost using prior knowledge of the target platform, and con-
sequently minimizes the loss drop under the user-defined latency constraints.
NetAdapt [29] iteratively removes channels until reaching the latency goal with
empirical latency measurements. However, these result in a single sub-networks
that are device-specific by definition, and are also constraint-specific. Thus, stor-
ing all of the sets of parameters associated with different network training, each
aimed at satisfying a different constraint, is possible but impractical because
of the large memory footprint and the overhead associated with moving such a
large amount of data in case of an architecture switch.

2.2 Variable architectures

DNNs with a variable execution path are implemented in different flavors. One
is to have the input automatically routed towards different blocks of the DNN,
each specialized during training to handle different classes (e.g., to classify pets
or vehicles). These DNNs are referred to as dynamic networks. One example is
the outrageously large neural network [21] that can be seen as a large mixture
of experts each with small inference computational cost, but overall character-
ized by an huge memory footprint. Other dynamically routed networks, like
SkipNet [27] or ConvNet-AIG [25], are designed such that, for a given input,
different set of filters or layers are skipped. Slimmable networks [31] also allow
skipping set of filters, but do not include any automatically routing mechanism,
and therefore cannot be referred to as a dynamic network. Dynamic DNNs can
surpass the original network in terms of accuracy at a lower computational cost,
but training is often non trivial as the gating function is non-differentiable, and
it also introduces a small computational overhead. Furthermore, the network ar-
chitecture and training does not support the legacy preservation of the original
DNN, contrary to LeAF.

A different type of DNNs with variable architecture is represented by any-
time prediction networks, where early exit blocks can be added on top of an
existing architecture as in the case of Branchynet [24] or Patience-based Early
Exit [32]. Measuring the confidence of the network output at an early exit allows
preventing the network overthinking and thus getting a high confidence result
in a short amount of time. Some anytime prediction DNNs adopt an ad-hoc
architecture that leverages information at multiple scales (see the Multi-Scale
DenseNet (MSDNet) [12]), while other authors propose changing the cost func-
tion for anytime prediction networks to handle the different levels of prediction
noise generated at different depths [11]. Dual dynamic Inference DDI [28] mixes
anytime prediction networks and dynamic bypasses, using an LSTM network for
gating functions.
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Overall, variable architecture DNNs achieves better performance / compute
cost compromises than static ones, but they have their own drawback. Legacy
is often not considered, as we do in LeAF. Anytime prediction networks have
limited flexibility, as the number of exits scales less than linearly with the network
depth, while in LeAF it is proportional to the number of combinations of the
shallow phases although only a fraction of these is useful in practice as we show
in Section 3.2. Furthermore, early exits are not easily integrated into non-purely
sequential architectures, like a U-nets. Lastly, the advantage claimed for variable
architecture DNNs often refer to edge devices working with batch size 1. This
is however only one of the interesting cases for latency reduction and/or energy
saving: in some applications, like stereo vision, the same DNN may process image
pairs, while servers are often required to handle large and possibly unpredictable
batch sizes.

2.3 Internal vs. external routing policy

Dynamic networks include the computation of the data routing path into their
architecture [7] - we say that they have an internal routing policy. Anytime pre-
diction DNNs offer the possibility to automatically stop the execution based on
the estimated confidence at a given exit (internal routing policy), but the user
also has the possibility to decide a-priori the desired exit and the resulting per-
formance / compute cost compromise, thus adopting an external routing policy.
In LeAF, we disentangle the problem of creating a variable network architecture
from that of selecting the best compute path for a given batch of any size. This
is something that we have in common with slimmable networks [31], probably
the closest work to ours, and one of the few aimed at creating a flexbile network
architecture, where the routing policy can be explicitly controlled by the user
and changed on the fly to meet the time-varying constraints of the compute de-
vice. The One-For-All approach [2] partially achieves the same level of flexibility
by adopting a network with an ad-hoc architecture that is trained to maximize
the accuracy of any of the possible sub-networks (1019) that can be extracted
from it. This offers the flexibility of easily picking the sub-networks with the best
performance / compute cost compromise for any target device. However, since
the sub-network has a static architecture with no routing option, any form of
flexibility is eventually lost once the DNN is fine-tuned and deployed in the field.
None of the aforementioned methods consider the legacy aspect in any way, as
LeAF-networks do.

3 Legacy Augmentation for Flexible Inference (LeAF)

3.1 LeAF overview

Many DNNs include sets of layers with similar characteristics, that we call
phases. For example, Resnet [8] has 6 phases (Fig. 1), Mobilenetv2 [20] has
12. LeAF augments the legacy DNN with alternative, user-selectable shallow
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Table 1. LeAF training parameters for ResNet-50 and Mobilenetv2. We use SGD with
step scheduler for the learning rate and batch size 32

Network Training step Learning Rate Parameters Epochs Shallow phases

LeAF-ResNet-50 base-training .1 lr step=10, lr gamma=.1 60 24 = 16

LeAF-ResNet-50 fine-tuning .1 lr step=10, lr gamma=.1 60 6

LeAF-Mobilenetv2 base-training 4.5e-3 lr step=1,lr gamma=.96,weight decay=4e-6 80 25 = 32

LeAF-Mobilenetv2 fine-tuning 4.5e-4 lr step=1,lr gamma=.97, weight decay=4e-6 100 10

phases that can be executed in place of the original ones. Each shallow phase is
designed to respect the original size of the input and output tensors, whereas in-
ternally the number of channels is a fraction of the original one. Thus, LeAF can
be applied to a variety of network shapes such U-nets, ResNets and GANs. For
a flexbile, LeAF-DNN with n phases, the number of possible execution paths
is then 2n, including the original one. During execution, any policy function
τ = π(s) can be used to control the set of active shallow phases (Fig. 1), where
s is the current state of the system (and could, for instance, include the current
load or target accuracy). As τ is a binary vector, reconfiguration overhead is
minimal allowing configuration updates in real time for any processed batch.

3.2 Training LeAF

To create a LeAF-DNN, we start from a pre-trained DNN with parameters
θ that are frozen while we train the parameters ω of the shallow phases. This
significantly decreases the overhead of training a DNN with multiple paths, while
also allowing to continue to execute the legacy network. To preserve the accuracy
of the legacy DNN, we also freeze any statistics in the batch normalization layers.

We train LeAF-DNNs using the adaptive loss in Eq. 1 based on [11] [31]
where J(ω, τi; θ,X, y) is the traditional loss (e.g., cross entropy) computed for
the execution profile τi, whereas αi is a multiplicative factor corresponding to
the fraction of time a path is expected to run. E[J(ω; θ, τi;X, y)] is the sample
average computed over the last 100 training iterations and is treated as a con-
stant re-weighting factor during training. In our experiments we set αi = 1/ |τ |
(therefore assigning to any path has the same probability of being executed).

Jtot adaptive(ω; θ,X, y) =

|τ |∑
i=0

J(ω, τi; θ,X, y)

E[J(ω, τi; θ,X, y)]
· αi, (1)

Before training, we initialize the weights ω of the shallow phases by sampling
from the original weights θ, as we found this to be more stable. Training is then
performed in two steps, using the parameters in Table 1. In the base-training
step, we use all the 2n configurations of the LeAF-DNN, and set αi = 1/(2n) ∀i.
In the forward pass, for each batch we loop over all the configurations and
accumulate the loss in Eq. 1 before doing the optimization step1.

1 We note that if the number of configurations becomes large, it may be more efficient
to randomly sample the configuration for each mini-batch.
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Fig. 2. Accuracy vs. FLOPs for various dynamic and flexible network methods includ-
ing pruning and LeAF.

Once the base-training step is complete, we measure the accuracy and com-
pute cost of each configuration, including a target batch size2,3. Fig. 3 shows the
accuracy vs. FLOPs for LeAF-Resnet-50 on Imagenet for batch size 256. Some
of the network configurations achieve a sub-optimal accuracy/FLOPs ratio: in-
cluding these in the cost function in Eq. 1 is detrimental of the final accuracy.
Therefore, we identify the configurations that reside in the Pareto set (Fig. 3),
set αi = 0 in Eq. 1 for all those configurations that do not, and proceed with
the fine-tuning training phase. To identify that a configuration is in the Pareto
set we iterate over all the configurations and determine if there another config-
uration with a lower system cost and higher model performance/accuracy. If no
such other configuration exists then the this configuration is considered in the
Pareto set. We eventually store the Pareto set configurations with their final
accuracy and costs in a look-up-table that can be easily used to implemented
the policy gating function τ = π(s).

Fig. 2 shows the results of various techniques for producing flexible networks.
It can be seen that LeAF results have similar performance to other techniques.
Thus we choose to use LeAF as a proxy to understand the impact of various sys-
tem characteristics on the execution of models. We believe the similarities of the
techniques makes the insights applicable to other dynamic network executions.

2 The compute cost can be derived analytically in case of FLOPs, or experimentally
in case of latency, energy or power consumption.

3 When the compute cost is measured in FLOPS, the batch size will be normalized
away. Other systems cost metrics (e.g., latency) may be a function of the batch size,
as detailed in the Results Section.
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4 Evaluation

LeAF provides a novel solution to augmenting pre-trained models to generate
flexible networks. The LeAF-DNNs with variable architecture can be used to
adapt the network working point based on system performance and achieve
performance / compute cost compromises similar to those of similar techniques.
For LeAF-ResNet-50 we show a top-1 accuarcy of 64.8% using approximately .69
GFLOPs with the same model that contains the weights of original ResNet-50,
and 76.146% at 4 GFLOPs (legacy network). This comes at a cost of 13.8% more
memory for the parameters in the model. We show that we can apply LeAF to
efficient networks such as MobileNetV2 for as little as 7.7% memory overhead
to store the weights.

4.1 Methodology

We apply LeAF to different network architectures to measure its effectiveness
and to study in detail the computational behavior of dynamic neural networks.
In particular, we consider as representative case studies the widely used ResNet-
50 and MobileNetV2 for image classification on Imagenet [5], each augmented
with LeAF.

To train, we use NVIDIA DGX systems with either 8 Tesla V100-DGXS-
16GB GPUs or 8 A100-SXM-80GB GPUs, with PyTorch 1.10 [19], CUDA 11.3
and cuDNN 8.2.2. We use pretrained DNNs from Torchvision [19] as legacy
networks for ResNet-50 and MobileNetV2.

For each network we grouped the layers into the phases as shown in Fig. 1.
For ResNet we create shallow phases by taking the ResNet residual layers in
conv2 x, conv3 x, conv4 x and conv5 x and using a fraction of the original
channel count. We add a 1 × 1 convolutional layer to the end of each shallow
phase to return the channel count back to its size in the original phase, and allow
switching between the shallow and original phase.We adopt a similar grouping
strategy for MobileNetV2 where we augment each of the 7 bottleneck groups
(but the first one) with shallow phases. In our evaluation we use shallow phases
containing 25% of the channels in the original phases. The shallow phases require
an additional 13.8% parameters in ResNet-50 and only 7.7% in MobileNetV2.
The lower amount in MobileNetV2 is due to the impact of the scaling factor
on the expansion factors in the inverted residuals. We then train each LeAF-
network with the procedure in the former Section and the meta parameters in
Table 1.

To measure the latency on a high-end GPU, we use a system with an AMD
EPYC 7742, 512 GB RAM and Ampere based A100-SXM-80GB GPU. We mea-
sure the average GPU execution time through the pyTorch profiler and report
it as latency. We ensure the clocks are locked to stock values.

Beyond evaluation on the A100 GPU, we also measure the performances of
LeAF-ResNet-50 on a Jetson Xavier NX system with 384 CUDA cores, main-
taining the FP32 precision of the network. We lock the clocks of the GPU to
1.1GHz for this evaluation. We vary the batch size from 1 to 256 by powers of 2.
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Fig. 3. Left: Accuracy vs. GFLOPs on a A100 GPU for LeAF-ResNet-50 for a batch
size of 256. Points are labeled with the active set of shallow phases. Right: Accuracy
Vs Latency on the same GPU for LeAF-ResNet-50 for a batch size of 256.

In the following, we perform a detailed analysis on the relation between
FLOPs, latency and batch size for LeAF-ResNet-50 and then move to the eval-
uation of LeAFon MobileNetV2 for image classification.

4.2 LeAF-ResNet-50: On High End GPU

Fig. 3 shows the Top-1 accuracy vs. FLOPs for LeAF-Resnet-50 in the left
plot and Top-1 accuarcy vs. latency in the right plot for a batch size of 256
on an A100 GPU. It can be seen that the plots have a similar but distinctly
different shape. This demonstrates that while GFLOPs can be used as a proxy
for latency it is better to use latency directly. This can be further illustrated by
examining the x-axis distance of the configuration with {0} to the neighboring
configurations of {None} and {1, 0}. In the GFLOPs plot (left) configuration {0}
is closer to {None} while in the latency plot (right) it is closer to configuration
{1, 0}. Furthermore the GFLOPs plot includes configuration {2, 0} on the Pareto
frontier while that point is not included when measuring latency directly.

This reinforces the idea, already emerged in previous works [22][4][29], that
latency and FLOPs are not completely interchangeable on complex, parallel
system like GPUs. For example, an underutilized GPU can actually provide
more parallel FLOPs without increasing the execution time by utilizing more of
the hardware. Furthermore, the scheduling of work on a GPU is complex and can
have unexpected interactions. This has an impact on the development of truly
flexible architectures for DNN: depending on the system constraints to satisfy,
one has to build the correct Pareto set for the problem in hand.

We bring to the attention of the reader another phenomenon that, to the best
of our knowledge, has not been highlighted before. Fig. 4 shows that, for varying
batch size, the Pareto set in the accuracy vs. latency space varies as well, that
may be (at least at first thought) unexpected. We believe the reason is again the
complexity of a GPU system, whose behavior in terms of latency is nonlinear with
respect to the occupancy of the computational cores. As for a given batch size a
shallow phase may saturate the compute capability of a GPU while another may
not, increasing the batch size may sometime (but not always) lead to zero latency
overhead when switching from the shallow to the legacy phase. Considering that



10 J. Clemons et al.

1

None

2

0

1,0

2,1

2,0

2,1,0

3

3,1
3,2

3,0

3,1,0

3,2,1

3,2,0

3,2,1,0

62

64

66

68

70

72

74

76

78

1.5 2 2.5 3

To
p

1
 A

cc
u

ra
cy

 [
%

]

Latency (ms)

ResNet50, bs=1

Pareto Frontier

LeAF-ResNet50, bs=1

None
0

2
1

2,1

1,0

32,0

2,1,0

3,0

3,1
3,2

3,1,0

3,2,1
3,2,0

3,2,1,0

62

64

66

68

70

72

74

76

78

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

To
p

 1
 A

cc
u

ra
cy

 [
%

]

Latency (ms)

ResNet50 bs=2

Pareto Frontier

LeAF-ResNet50, bs=2

None

3

2

1

3,2

3,12,1

0

3,0

3,2,1

2,0

1,0

3,2,0

3,1,0

2,1,0

3,2,1,0

62

64

66

68

70

72

74

76

78

3 4 5 6 7 8 9 10 11

To
p

 1
 A

cc
u

ra
cy

 [
%

]

Latency (ms)

ResNet50 bs=8
Pareto Frontier
LeAF-ResNet50, bs=8

None

3
2

1

3,2

0

3,1

3,0

2,1

2,0

3,2,1

1,0

3,2,0

3,1,02,1,0

3,2,1,0

62

64

66

68

70

72

74

76

78

35 45 55 65 75 85 95 105 115

To
p

 1
 A

cc
u

ra
cy

 [
%

]

Latency (ms)

LeAF-ResNet50 bs=64

Pareto Frontier

Fig. 4. Accuracy vs. latency for LeAF-ResNet-50 for batch size (bs) of 1, 2, 8, and 64,
after base-training. Each point is labeled with the set of active shallow phases.

the GPU task scheduler is not under direct control, predicting the latency based
on the configuration τ and batch size becomes a hard exercise (that is one of
the reasons why in OFA [2] latency is predicted through an additional DNN).
Therefore, when deploying a LeAF-DNN in the field and optimizing for latency
(or power, energy, and so on), one should select the working batch size a priori
and estimate the Pareto set accordingly to it. Alternatively, (although we did not
explore this possibility here), one could also create a LeAF-DNN that is trained
to deliver the highest accuracy for the configurations and batch sizes with the
highest system performance.

4.3 LeAF-ResNet-50 Latency On Mobile

Fig. 5 shows the Pareto sets in the accuracy vs. latency space at batch sizes of
1, 8, 16 and 64 when running on the Jetson Xavier NX. Similar to what was
already reported for the high-end A100 GPU, we notice that in this case the
Pareto set also varies as a function of the batch size for smaller batch sizes.
Fig. 5 shows that the relative positions of the configurations in the accuracy
vs. latency space are less stable for lower batch sizes as demonstrated by the
difference in the Pareto sets and relative configuration locations for the batch
sizes 1 and 8 when compared to batch sizes 16 and 64. However, it can be seen
that the relative position of the configurations stays consistent between batch
sizes 16 and 64. Though not shown here, our experiments show that this relative
positioning continues for higher batch sizes as well. Thus, for low batch size on
this platform, it would be best to use different configurations for different batch
sizes when optimizing for the latency. For larger batch size that fully utilize the
GPU, the relative system performance stabilizes.
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Fig. 5. Accuracy vs. latency for LeAF-ResNet-50 on an Jetson Xavier NX for batch
size (bs) of 1, 8, 16, and 64 after base-training. Each point is labeled with the set of
active shallow phases.

The upper right panel of Fig. 5 shows an example of the complex interactions
of scheduling work on these systems. The configuration {1, 0} repeatably took
longer to execute than the base configuration. We believe this to be caused by an
interaction between the kernel sizes, run-time framework and work scheduling.

To investigate the computational aspects of LeAF-ResNet-50 in more in detail
on this device, we used the nvprof profiling tool [18] and analyzed the load on
the GPU on Jetson Xavier NX system when running LeAF-ResNet-50. We found
that increasing the batch size of the GPU leads to higher utilization metrics. The
achieved occupancy is a measure of the utilization of the GPU’s full compute
capability, whereas the simultaneous multiprocessor (SM) efficiency is a measure
of how many of the SMs are running a given kernel. For batch size 8, these
two metrics are 46% and 89% respectively, meaning that almost 90% of the
SMs are active, while they are lower for smaller batch sizes (< 40% and <
85%, respectively). For batch sizes larger than 8 the processing becomes more
serialized leading to a latency increase that is more predictable and the Pareto
set no longer changes. We find that at batch size 64 and above, 95% of the
SMs are active further showing that more compute will be serialized. This is
consistent with our hypothesis that the Pareto set stops changing as the GPU
compute capability is saturated.

Overall, we found that the Pareto set is a function of the batch size both
on high-end GPUs (like the A100 tested in the main paper) and on GPUs with
smaller compute capabilities (like the Jetson Xavier NX tested here). Thus, when
trying to deploy a network without having to retrain, it is valuable to be able
adjust the network’s architecture dynamically based not only on the specific de-
vice and its load conditions, but also considering the specific application and
the expected distribution of the batch size so that we can optimize the system
performance. For example, mobile platforms may use a single camera or stereo
camera as inputs. Depending on which is used, the optimal flexible network
configuration can change. This can be extended easily to 8 cameras in an au-
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tonomous vehicle application where there may be different LeAF configurations
used to ensure optimal system performance.

4.4 Analysis As Function of Device

Our analysis of the LeAF ResNet-50 network shows different Pareto sets based
on the device that is being used to run the network as noted by comparing Fig. 4
and Fig. 5. For instance, when running on the Jetson Xavier NX and increasing
the batch size from 1 to 256 by powers of 2, we found that above a batch size
of 8 the shallow phase set {2, 0} is present in the Pareto set. However, when
running the same experiment on the A100 GPU, we found that {2, 0} is only
present in the Pareto set for a batch size of 2. Furthermore, we can see that in
Fig. 5 the Pareto set reaches a steady state with 6 shallow phase configurations
for the mobile system as the batch size increases. However, for the A100 GPU
in the main paper, the Pareto set reaches a steady state with 5 configurations
as the batch size increases. The difference is the shallow phase configuration
{2, 0}. It can also be seen that the points that do not belong to the Pareto set
form a different relative shape between the two devices. This shows that optimal
configuration for the same network and batch size can vary based on the device.
This is due to the fact that different phases saturate the capabilities of different
devices at different thresholds.

4.5 LeAF on MobileNetV2

We apply LeAF to MobileNetV2 to investigate its adoption on NAS-based DNNs
that are already targeted at efficient inference. As shown in Fig. 6, before fine-
tuning the top-1 accuracy of LeAF-MobileNetV2 goes from 71.79% for the legacy
configuration at 9.6 GFLOPs to 50.05% at 4.75 GFLOPs when all the five shal-
low phases are active. The Pareto set contains 10 configurations (out of the 32
possible execution paths) confirming that, in a DNN with variable architecture,
not all the paths are equally important. After fine-tuning the Pareto set con-
figurations, we observe an average increase of 2.4% in terms of accuracy (green
triangles in Fig. 6), that is more pronounced for low-compute configurations.

Fig. 7 shows the normalized latency and FLOPs for the different configu-
rations of LeAF-MobileNetV2 for batch size 1 and 256 on an A100 GPU. The
figures shows a stronger latency / FLOPs correlation (64% vs. 56%) for a larger
batch size. The fact that, for batch size 1, a significant decrease in FLOPs does
not correspond to a significant decrease in latency suggests that the system is
likely underutilized, while for larger batch sizes the occupancy is higher and,
since operations begin to be serialized even on a GPU, the scaling between la-
tency and FLOPs tend to become more linear.

The results on LeAF-Mobilenetv2 show that applying LeAF to DNNs de-
signed to be already fairly efficient led to a larger degradation in performances
(when compared to the results obtained for ResNet-50) as more shallow phases
are activated. This is expected, given the design space exploration performed to
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generate such networks. Nonetheless, LeAF continues to generate a single model
that can be tuned in real time to satisfy the system constraints.

5 Discussion and conclusion

In LeAF, we disentangle the selection and the execution of the compute path in
flexible DNNs, to increase their versatility. This turns out to be a critical feature
for the deployment of many real-time systems, where the currently available
system resources determine the operating point to use. For example, a mostly
idle system could use a highly accurate but costly DNN configuration, and switch
to a lower performing, less costly one in case of high load scenario. LeAF provides
flexible networks by augmenting a legacy network with lower system resource
paths. This technique allows us to convert any network into a flexible one while
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preserving the ability to run the original network at full accuracy. Our results
show that this technique produces models that are competitive with other state
of the art techniques for dynamic networks that, however, do not have this same
capability. We have shown the performance and capability of our technique while
varying the system compute capability, batch size and network models.

While our experiments were performed using LeAF networks, we believe the
results are applicable to other dynamic and flexible models. We have demon-
strated the need to directly use the target system metric in our comparison of
FLOP count and latency performance on the actual systems. We have shown
that as the compute capability of the system is varied, the target configurations
for running with a constrained resources will probably vary as well. Our analysis
shows the importance of the batch size on the performance of DNNs with vari-
able architecture - something that so far has not been highlighted enough. The
fact that beyond a target device one should also specify a target batch size adds
an additional axis to the problem of creating a flexible DNN. Optimizing perfor-
mance in real-time systems with time varying constraints is a complex problem.
LeAF helps to provide a way to maximize model performance as system resource
constraints are varied during run-time.
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