FVDebug: An LLM-Driven Debugging Assistant
for Automated Root Cause Analysis of Formal
Verification Failures

Yunsheng Bai, Ghaith Bany Hamad, Chia-Tung Ho, Syed Suhaib, Haoxing Ren

NVIDIA
{yunshengb, gbanyhamad, chiatungh, ssuhaib, haoxingr} @nvidia.com

Abstract—Debugging formal verification (FV) failures represents one of the most time-consuming bottlenecks in modern
hardware design workflows. When properties fail, engineers must manually trace through complex counter-examples
spanning multiple cycles, analyze waveforms, and cross-reference design specifications to identify root causes—a process that
can consume hours or days per bug. Existing solutions are largely limited to manual waveform viewers or simple automated
tools that cannot reason about the complex interplay between design intent and implementation logic. We present FVDEBUG,
an intelligent system that automates root-cause analysis by combining multiple data sources—waveforms, RTL code, design
specifications—to transform failure traces into actionable insights. Our approach features a novel pipeline: (1) Causal
Graph Synthesis that structures failure traces into directed acyclic graphs, (2) Graph Scanner using batched Large Language
Model (LLM) analysis with for-and-against prompting to identify suspicious nodes, and (3) Insight Rover leveraging agentic
narrative exploration to generate high-level causal explanations. FVDEeBuG further provides concrete RTL fixes through its
Fix Generator. Evaluated on open benchmarks, FVDEBuG attains high hypothesis quality and strong Pass @k fix rates. We
further report results on two proprietary, production-scale FV counterexamples. These results demonstrate FVYDEBUG’s
applicability from academic benchmarks to industrial designs.

I. INTRODUCTION

Formal Verification (FV) is a cornerstone of modern VLSI design, using mathematical methods to prove that hardware
designs adhere to their specifications [11, 12]. These specifications are captured through formal properties—often
written as SystemVerilog Assertions (SVAs) [30]—that express expected design behaviors, such as “a request must
be acknowledged within 3 cycles” or “the FIFO should never overflow.” When a design violates such a property,
industry-standard model checkers like Jasper [28] and VC FormaL [26] generate a Counter-Example (CEX): a concrete
execution trace showing cycle-by-cycle signal values that demonstrate the violation. This CEX, typically visualized as a
waveform, provides an explicit failure scenario revealing where expected and actual behavior diverge.

However, deciphering a CEX is a notoriously manual and time-consuming task, with debugging consuming nearly
50% of verification engineers’ time—their single largest activity [9, 19]. Engineers must trace signal dependencies
backward through waveforms, cross-reference RTL logic, consult specifications, and synthesize this information to
identify root causes—a process requiring deep understanding of design intent and implementation [17] that can stall
development for hours or days. Commercial tools excel at waveform visualization [27, 28] but offer little automated
reasoning; the burden of causal analysis remains manual.

Recent LLM-based approaches, while promising, have not yet captured the nuances of this workflow. Many are
adapted from software debugging and fail to address hardware-specific concepts like cycle-accurate timing [6,20,25],
while others rely on simplistic prompting strategies on raw trace files [14, 15]. In our empirical observations, these
methods often produce false positives—flagging benign behaviors as suspicious—or miss true root causes by failing to
trace multi-cycle causal chains.

We hypothesize that an effective automated debugger must emulate the structured, multi-source reasoning process of
a human expert. Instead of treating the CEX as a flat sequence of events, it must first be structured into a representation
that captures causality explicitly. We propose building a Causal Graph from the failure trace, where nodes represent
signal events (“signal @cycle=value”) and directed edges represent their immediate causal dependencies. This structured
"mental model" of the failure enables systematic tracing of failure chains—mirroring how engineers mentally traverse
waveforms backward to identify root causes.

We introduce FVDEBUG, the first end-to-end automated system that (i) builds such a causal mental model and
(ii) exploits it through an LLM pipeline deliberately mirroring how verification engineers work:

1. Graph Scanner acts like an engineer’s quick “sanity sweep,” scanning every level of the causal graph. Through
a context retriever that dynamically fetches relevant RTL code snippets and specification excerpts, the scanner
evaluates each signal’s behavior against both its implementation and intended functionality. A novel for-and-against

prompting scheme compels balanced evaluation—forcing the LLM to weigh evidence on both sides before flagging
suspicious behavior.

2. Insight Rover plays the role of the engineer’s deep dive: using the suspicious nodes from the scanner as initial seeds,
it begins an agentic search of the causal graph. At each step, the LLM is presented with candidate neighboring nodes
and autonomously selects which paths to pursue based on their relevance to forming coherent failure hypotheses.
It generates and iteratively refines multiple competing hypotheses, using the context retriever to back them with
cycle-accurate evidence and assigning confidence scores to converge on the most plausible root cause.

3. Fix Generator & Report synthesizes concrete RTL patches and produces comprehensive human-readable reports
containing ranked hypotheses, causal timelines, and diff-ready code suggestions. This structured output report
enables verification engineers and RTL designers to collaborate effectively with a shared, precise understanding of
the failure mechanism, replacing the fragmented debugging discussions currently scattered across communication
channels or email threads.

The main contributions of this paper are:

* FVDEBUG is, to our knowledge, the first realistic debugger that automates the entire FV debug loop—from CEX
to validated patch—while closely mimicking industrial engineering practice.

* We introduce novel techniques for FV debugging including causal graph synthesis from counter-examples,
for-and-against prompting for balanced signal analysis, and agentic narrative exploration that emulates how human
engineers progressively refine hypotheses.

* We develop a complete pipeline from failure trace to human-readable reports containing ranked root cause
hypotheses, supporting evidence, causal chain timelines, and concrete RTL fixes—enabling effective collaboration
between verification engineers and RTL designers.

* On 38 real hardware failures, FVDEBUG achieves 95.6 % hypothesis quality for root cause identification, 71.1 %
Pass@] and 86.8 % Pass@5 fix rates. We also showcase FVDEBUG on failures found in real-world larger designs.

II. RELATED WORK
A. LLM/AI-Driven Debugging without Waveforms
Static repair pipelines such as LLM-HDL leverage retrieval-augmented prompts to locate and patch functional RTL
bugs [23]. VErRIDEBUG couples contrastive embeddings with generative edits to unify localisation and fixing [32].
Beyond RTL, HLSDEBUGGER adapts encoder—decoder models to high-level synthesis code, substantially improving
logic-bug repair [31]. While effective on code-visible faults, these approaches [10, 13,24, 34] lack temporal reasoning
and cannot analyse failures that only manifest in execution traces.

B. LLM/AI-Driven Debugging with Waveforms

Trace-centric methods incorporate assertion failures or counter-examples directly into LLM prompts. ASSERTSOLVER
learns from contrasting “right vs. wrong” traces to diagnose simulation-time assertion failures [36]. GENAI-INDUCTION
proposes helper invariants that unblock formal k-induction [14]. The multi-agent framework SAARTHI iteratively proves
properties and analyses failing CEXSs in a closed loop [15]. These techniques typically still treat waveforms as flat text,
limiting root-cause fidelity on multi-cycle failures; our work tackles this via explicit causal graphs.

C. Commercial and Industrial Debug Solutions

Mainstream EDA platforms—Cadence Indago, Synopsys Verdi, Cadence JasperGold—provide rich waveform viewers
and coverage dashboards but leave causal reasoning to engineers [27-29]. Several start-ups now advertise Al-driven
RTL debug, while general-purpose coding copilots showcase agentic software-debug workflows [1-3, 8]. Technical
details remain scarce, and adapting these systems to waveform-centric hardware failures is non-trivial—highlighting the
need for deeper, graph-structured research.

III. METHODOLOGY

A. Problem Setup and System Overview

When a formal property fails verification, model checkers like JAsPER produce counter-examples showing signal values
over time that violate the property. However, these traces present signals as flat sequences, obscuring the causal

Example Output
Design H 2
implomentation [— _ . 55 s ougoT(
(RTL) O o R "suspicion_score”: 0.9,
(C I H : *analysis": "## Signal Behavior\...a_out <= {data_lock,
T [eXe) H H data_in}... This constitutes a significant violation of the
H H R +| specification.”
H - i)
Formal IASPER Jasper Output _‘— H "ready@C2": {
Testbench File '0} : "is_suspicious": false,
= PPRSS— 'suspicion_score": 0.1
) Causal Graph for m "analysis": "## Signal BehaviornThis signal s the
T the Failing) _ _) 2-bit counter...”
Property Graph Scanner: Identifying suspicious signal behavior }
Setup TCL Script [I l
e .
S — — | = g Fix IASPER
Agentic Graph Generator
ructi Exploration
Specification indexConstrucion anc 5 ploratior
Document) —
@ LLM-based Context f} ! Example Output
Analysis @ it suspicious g o # @ Ranked Hypotheses
_,f} nodes torative LM i | ## Hypothesis 1: Potential cnt_10 Initialization and
Additional Lm T Resetlssue
K led H **Confidence:** 48.5%
nowledge Context Retriever **Supporting Evidence:**
@ Insight Rover: Generating final root cause hypotheses - The RTL explicitly ...

Figure 1: Overview of FVDEBuUG. The system transforms formal verification counter-examples into actionable debugging
insights through four stages: (1) Causal Graph Synthesis builds a directed acyclic graph capturing signal dependencies,
(2) Graph Scanner performs efficient batched analysis to identify suspicious nodes, (3) Insight Rover explores competing
hypotheses through intelligent graph navigation, and (4) Fix Generator produces concrete RTL patches and debugging
reports. “C” denotes cycle in the example output of Graph Scanner.

relationships that explain why the failure occurred. Engineers must manually trace through waveforms to identify root
causes—a process that can take hours or days per bug.

FVDeBuUG automates this debugging process by transforming unstructured counter-example traces into structured
causal graphs and systematically analyzing them to identify root causes. Given a failing property, RTL design, and
counter-example trace, our goal is to automatically identify the root cause and generate fixes that make the design satisfy
the property. Figure 1 illustrates our four-stage pipeline.

B. Causal Graph Synthesis

The foundation of our approach is transforming the counter-example trace into a causal graph G = (V, &) where nodes
V represent signal events (signal, cycle, value) and edges & represent causal dependencies. This explicit structure
enables systematic analysis that would be intractable on flat waveforms.

B.1 Graph Construction

We construct the causal graph G through recursive dependency analysis using JasperGold’s built-in capabilities. Starting
from the failing property at the violation cycle, we recursively query JAsPER’s visualize -why command to identify
which signals caused each event. For example, querying why ready_add@5=0 might reveal that valid_out@5=0
and valid_in@5=1 caused this value, establishing edges from these parent events.

We parameterize the construction with a trace depth (default: 20 cycles) that controls how far back we trace
dependencies. This balances completeness against computational cost, as industrial designs can have very deep causal
chains spanning hundreds of cycles.

B.2 Graph Consolidation

The recursive construction initially produces a tree where reconverging paths create duplicate nodes for the same
signal-cycle pair. We consolidate these into a directed acyclic graph (DAG) by merging duplicates, ensuring each
unique event appears exactly once. This transformation is critical—it prevents redundant analysis of the same events
while preserving all causal paths. The resulting DAG typically contains far fewer nodes than the original tree, making
subsequent analysis tractable.

C. Graph Scanner

The Graph Scanner systematically evaluates each node in G to identify suspicious signal behaviors. Inspired by
constitutional Al [4] and self-critique mechanisms [18], we introduce for-and-against prompting that enforces balanced
reasoning. This requires the LLM to argue both sides before reaching conclusions, preventing confirmation bias where
the LLM might flag all behaviors as problematic or miss subtle issues.

Algorithm 1 Graph Scanner with Token-Aware Batching

1: Input: Causal graph G, scenario description, max_tokens

2: Output: Suspicious nodes, node analyses

3: for level in TopologicalLevels(G) do

4: remaining « level

5 while remaining not empty do

6: batch_size « BinarySearchMaxBatch(remaining, max_tokens)
7: batch « remaining[1:batch_size]

8 prompt < BuildPromptWithForAgainst(batch, context_cache)
9: response «— LLM.Generate(prompt)
10: for node in batch do

11: analysis « ParseAnalysis(response, node)
12: all_analyses.append(analysis)

13: if analysis.is_suspicious then

14: suspicious_nodes.append(node)

15: end if

16: end for

17: remaining « remaining[batch_size+1:]

18: end while

19: end for

20: return suspicious_nodes, all_analyses

C.1 Context Pre-fetching

Before analysis begins, we pre-fetch all necessary context to avoid redundant retrievals. We extract unique signal names
from G and pre-cache their RTL code snippets, specification excerpts, and design documentation. This context cache is
reused throughout the analysis.

C.2 For-and-Against Prompting

For each node, our balanced analysis technique requires the LLM to provide arguments both FOR and AGAINST the
signal behavior being suspicious. The LLM outputs signal behavior analysis, arguments for/against suspicion, a balanced
conclusion with suspicion score (0.0-1.0), classification as root cause vs symptom, and suggested fixes if applicable.

C.3 Token-Aware Batched Analysis

The core challenge is analyzing potentially thousands of nodes efficiently. Algorithm 1 shows our dynamic batching
approach that maximizes throughput while respecting token constraints. The scanner processes nodes level-by-level in
topological order, using BinarySearchMaxBatch to find the maximum batch size that fits within token limits.

D. Insight Rover

While the Graph Scanner identifies individual suspicious signals, the Insight Rover transforms these into coherent failure
narratives. Motivated by tree-of-thought reasoning [35] and multi-agent debate [16], we maintain multiple competing
hypotheses H and use the LLM as an autonomous agent to explore the most promising paths through G.

D.1 Hypothesis Management

Each hypothesis & € H represents a potential explanation for the failure. We initialize H from all suspicious nodes
identified by the Graph Scanner, ensuring comprehensive coverage of potential root causes. The system dynamically
adjusts to accommodate all suspicious nodes. Each /# maintains a narrative description, chronological timeline, evidence
collections, confidence score, and frontier of unexplored nodes.

This adaptive approach prevents premature pruning of potentially critical failure paths. While we configure a
minimum of 3 narratives, the system expands as needed—for instance. During exploration, weak narratives (confidence
< 0.2 after three iterations) are marked but retained for final reporting.

Algorithm 2 Insight Rover: Agentic Hypothesis Exploration

1: Input: Suspicious nodes, causal graph G, LLM
2: Output: Ranked hypotheses H with evidence
3: // Create hypothesis for each suspicious node
4: for node in suspicious_nodes do
5: theory «— LLM.GenerateTheory(node, G)
6: H .add(CreateHypothesis(theory, node))
7: end for
8: for iteration = 1 to max_iterations do
9 active « [h for h in H if h.confidence < 0.9]
10: if len(active) = O then
11: break
12: endif
13: for hin active do
14: next «— LLM.SelectNode(h.context, h.frontier)
15: analysis «— LLM.Analyze(next, h)
16: h.UpdateFromAnalysis(analysis)
17: h.frontier.expand(next.neighbors)
18: end for
19: ManageNarrativePool() // Record weak, spawn new if unexplored
20: if CheckConvergence() then
21: break
22: endif
23: end for

24: scores « LLM.EvaluateAll(H)
25: return SortByScore(H, scores)

D.2 Intelligent Exploration

Rather than exhaustively exploring all paths, the LLM examines each hypothesis’s current state and frontier, then selects
which nodes would best validate or refute that theory. Algorithm 2 shows how the LLM uses SelectNode to choose
frontier nodes, accumulates evidence through UpdateFromAnalysis, and manages the narrative pool until convergence.
This selective exploration reduces the search space by over 90% compared to breadth-first search.

D.3 Final Ranking

After exploration, we perform holistic ranking using LLM.EvaluateAll(H) that considers sufficiency, evidence quality,
mechanistic clarity, actionability, and narrative coherence. The function SortByScore orders H by these scores, with
top-ranked hypotheses becoming the basis for generating fixes.

E. Fix Generator with Ensemble Strategies

The Fix Generator translates root cause hypotheses into concrete RTL patches. Inspired by best-of-N sampling [7]
and self-consistency [33],we use an ensemble approach that generates fixes through multiple prompting strategies
(full context, suspicious focus, narrative focus, minimal context, bugs-and-suggestions-only), followed by a best-of
meta-strategy that reviews all generated fixes to select and refine the most promising solutions. This diversity ensures
robustness—if one strategy misinterprets the context, others can compensate.

E.1 Validation and Consensus Ranking

A critical challenge is ensuring generated fixes are applicable to the actual RTL code map R. We implement multi-level
validation through ValidateFix that checks exact substring matching, handles whitespace variations, and aligns structural
patterns. Algorithm 3 shows how each strategy generates fixes independently, validates them against R, and merges
duplicates identified by CreateSignature. The consensus information from multiple strategies becomes a ranking
signal—fixes generated by more strategies receive higher confidence scores.

Algorithm 3 Ensemble Fix Generation

1: Input: Context, RTL code map R
2: Output: Validated RTL fixes

3: unique_fixes « {}

4: for strategy in strategies do

5 prompt < BuildStrategyPrompt(strategy, context)
6 fixes «— ParseFixes(LLM.Generate(prompt))

7. for fix in fixes do

8 if ValidateFix(fix, R).is_valid then

9 sig « CreateSignature(fix)

10: unique_fixes[sig] « Merge(unique_fixes[sig], fix)
11: end if

122 end for

13: end for

14: return RankByConsensus(unique_fixes.values())

E.2 Report Generation

Beyond code fixes, FVDEBuUG produces structured debugging reports containing a report with the most likely root cause,
ranked hypotheses from H with supporting evidence, unified causal timeline, concrete RTL fixes with validation status,
and specification cross-references. This comprehensive output enables effective collaboration between verification
engineers and RTL designers.

IV. EXPERIMENTS

We evaluate FVDEBUG on the SVA-EvaL-Human benchmark [36], a curated collection of 38 real hardware debugging
challenges with human-verified ground truth fixes. Our implementation interfaces Python with Cadence Jasper 2023.12
through TCL commands. We compare FVDEBUG against several baselines and ablated versions to demonstrate the
effectiveness of our structured approach and understand each component’s contribution. In addition, we evaluate
FVDEBUG on two challenging CVA6 RISC-V processor failures originally discovered in AutoSVA [22], and we also
report results on proprietary, production-scale FV counterexamples (design details masked).

A. Experimental Setup

The SVA-EvaL-HumaN benchmark comprises diverse hardware designs with formal verification failures, ranging from
simple arithmetic units to complex system-level modules. Each design includes a counter-example trace, the buggy RTL
code, and the ground truth fix verified by human experts. We refer readers to [36] for detailed design descriptions and
failure characteristics.

A.1 Baselines and Ablations

We evaluate the following methods, using 03-mini [21] as the underlying language model for all approaches:

Unstructured Baselines: (1) Direct LLM: Provides the counter-example trace, RTL code, and failing property
directly to the LLM, asking it to identify the root cause and generate fixes. This represents the naive approach without
any structural analysis or specialized prompting. (2) Flat Trace Analysis: Parses the counter-example into a structured
chronological format, presenting signals and their values over time, but without constructing the causal graph. The
LLM analyzes this temporal sequence to identify issues. This baseline isolates the value of causal structure versus mere
temporal organization.

Component Ablations: (1) FVDEBuG w/o For-Against: Replaces our balanced evaluation prompting with standard
bug-finding prompts that only ask for suspicious behaviors without requiring counterarguments. This ablation measures
the impact of enforced analytical balance on false positive reduction. (2) FVDEBuUG w/o Rover: Uses the Graph Scanner
to identify suspicious nodes but skips the Insight Rover’s narrative construction phase. Fixes are generated directly
from the scanner’s suspicious node analysis without exploring causal narratives. This tests whether sophisticated
narrative exploration is necessary beyond initial suspicion identification. (3) FVDEBUG w/0o Ensemble: Leverages only
a single fix generation strategy (specifically, the full_context strategy) rather than our ensemble approach with multiple
prompting perspectives. This ablation quantifies the benefit of diverse fix generation strategies.

Table 1: Comparison of FVDEBUG against baselines and ablations on the SVA-EvaL-Human benchmark. Best results
in bold.

Root Cause Hypothesis Quality Fix Generation
Method Quality@Best NDCG@5 MRR Kendall’st Pass@1 Pass@5
Unstructured Baselines
Direct LLM 0.783 0.981 0.806 0.526 0.605 0.658
Flat Trace Analysis 0.474 0.948 0.804 0.511 0.632 0.816
Component Ablations
FVDEeBuUG w/o For-Against 0.953 0.969 0.817 0.634 0.632 0.868
FVDEBUG w/0 Rover 0.795 0.844 0.567 -0.176 0.643 0.821
FVDEeBuG w/o Ensemble 0.956 0.983 0.858 0.708 0.684 0.763
FVDEegBuG (Full) 0.956 0.983 0.858 0.708 0.711 0.868

A.2 Evaluation Metrics

Our evaluation uses two complementary assessment strategies. First, we assess the quality of generated root cause
hypotheses through LLLM-based evaluation metrics that compare hypotheses against ground truth: (1) Quality @Best:
Evaluates the absolute quality of the best hypothesis generated, regardless of ranking. (2) NDCG@5: Measures
ranking quality by comparing hypothesis scores against ground truth relevance, with higher-ranked correct hypotheses
contributing more. (3) MRR: Captures the average reciprocal rank at which the first relevant hypothesis appears. (4)
Kendall’s 7: Quantifies correlation between predicted rankings and ground truth quality.

Second, we measure functional correctness through Pass @k metrics, where proposed fixes are validated by applying
them to the RTL and re-running formal verification in Jasper: (1) Pass@1: Measures first-attempt success rate for
generated fixes. (2) Pass@5: Captures whether any of the top five fix suggestions resolves the failure.

These complementary metrics address different aspects of debugging effectiveness—hypothesis quality metrics
capture whether the system correctly identifies and explains root causes, while Pass@k metrics verify that this
understanding translates into working fixes. Notably, high hypothesis quality often correlates with fix success, as
accurate root cause identification is essential for generating correct patches.

B. Main Results

Table 1 presents comprehensive evaluation results across all methods. FVDEeBuUG achieves the highest Quality @ Best
score of 0.956, demonstrating superior root cause identification, while achieving the best fix generation performance
with 71.1% Pass@1 and 86.8% Pass@5 rates.

C. Analysis of Results

The results reveal three critical insights. First, causal structure is essential: Flat Trace Analysis achieves only 0.474
Quality @Best despite temporal organization, while causal graph-based approaches achieve 0.795-0.956, demonstrating
that explicit causal relationships are fundamental to accurate root cause identification. Second, narrative construction
drives performance: removing the Insight Rover causes dramatic degradation, confirming that connecting suspicious
nodes into coherent causal chains is crucial. Third, ensemble strategies improve robustness: while single-strategy
generation maintains hypothesis quality (0.956 Quality @Best), it achieves lower Pass@5 (0.763 vs 0.868).

Notably, the for-against prompting ablation achieves high individual hypothesis quality (0.953) but lower ranking
correlation (Kendall’s 7: 0.634 vs 0.708) and Pass@1 (0.632 vs 0.711), suggesting that balanced evaluation improves
consistency and translates to better fix generation. Overall, FVDEBUG’s combination of causal graphs, narrative
exploration, and ensemble strategies produces both accurate understanding and practical fixes.

D. Evaluation on Complex Processor Designs

To further assess FVDEBUG’s capabilities on realistic hardware complexity, we evaluate on two challenging FV failures
from the CVA6 RISC-V processor [22]. These failures, originally discovered in the AutoSVA project!, represent real
verification challenges encountered in production-grade processor designs:

*« MMU Ghost Response: A memory management unit (MMU) issue where misaligned requests trigger duplicate

https://github.com/PrincetonUniversity/AutoSVA

as__lsu_lookup_transid_was_a_request (C:3, V:FAIL)

|-- lsu_lookup_transid_response (C:3, V:1/bl) PP SA— 5
| |-- lsu_res_hsk (C:3, V:1’bl) ‘I L []
|| '-—- load_valid_o (C:3, V:1'bl) b ® %\
s
[‘-~ i_pipe_reg_load.d_i[196] (C:2, V:1’bl) et e i samplod o ®
[|-- i_load_unit.ex_i.valid (C:2, V:1’bl) e T, o Oo P e ea@aaoen
| | | |-- i_mmu.misaligned_ex_g.valid (C:2, V:1’bl) [u-loag, store_unit Isu fookup_transid_was_a_request °
[| | '-- i_mmu.misaligned_ex_n.valid (C:1, V:1’bl) ""‘:"wk”"W“"""""“"@“"ﬂ"“‘"'m" OOD rossfo.0
[[|- i_mmu.lsu_req_ i (C:1, V:l’bl) oot store_ul@bvasond vatt o
| | | | | |-- 1ld_translation_req (C:1, V:1’bl)
| | | | | ‘-- lsu_ctrl.fu (C:1, V:LOAD) u_tosd_store_ukleva.su_res_val
| | | | ‘—— i_mmu.misaligned_ex_i.valid (C:1, V:1’bl)
| | | | |-- data_misaligned (C:1, V:1’bl)
| | | | | |-- lsu_ctrl.operator (C:1, V:SD) Y-y o e® . e
[[| ‘-- lsu_ctrl.vaddr[2] (C:1, V:1’bl) ° -
[[‘- lsu_ctrl.overflow (C:1, V:1’b0) o_oad_store_unatu_dsa 1101 “ * e .
[| i_mmu.pmp_data_allow (C:2, V:l’bl) otond_store e) o
| I ‘-- i_load_unit.state_g[1:0] (C:2, V:2/b00) u_toad._store_ @ ev o O a9 oy, ®
| -- lsu_res_transid (C:3, V:3'b000) @ et @] | & ® LSS RO S, Oog
I ‘-— load_trans_id_o (C:3, V:37b000) S - o o o8 ‘. Sole O
I ‘- i_load_unit.load_data_g.trans_id (C:2, V:3’b000) 2 28l 6% 0%
|-- lsu_lookup_transid_sampled (C:3, V:4’b0000) t? %0000000000%080%
| |-- 1lsu_lookup_transid_response (C:2, V:1’b0) - 000030D o 30[?
| |-- lsu_lookup_transid_sampled (C:2, V:4/b0000)_.,,,.u)g...,m_q[n] OOgD 09 ®
| ‘-— lsu_lookup_transid_set (C:2, V:1’b0) oo o s @i s N Jeo
|-- lsu_lookup_transid_set (C:3, V:1’b0) “mm;ém“& °
| ‘-- lsu_req_hsk (C:3, V:1’b0) i ™ ,,,;,,,@.,,, cnt_n(0] e Cycle
, u_toag_store_un@Va fu_data_ifufo] °
! I== lsu_req rdy (C:3, V:17b0) fu_ddia) (0] u_load_store_uk{bva isu.ready_o e® i
| ‘-- lsu_reqg val (C:3, V:1’b0) fo_cs@ o) @ e e & mE
I |-- u_load_store_unit_sva.fu_data_i.fu[0] (C:3, V:17b0) Tsu_byp m:;..u o) P .
I | *-- fu_data_i.fu[0] (C:3, V:1/b0) su_bypass,
I ‘-- u_load_store_unit_sva.lsu_valid_i (C:3, V:1’b0) W Jowdsiore ‘@“"“‘m‘”e-"" bypass | @""m y [
\ ‘- lsu_valid_i (C:3, V:1'b0) ..Qf:'."@ ' s o
‘-- u_load_store_unit_sva.rst_ni (C:3, V:1’bl) e ®e
‘-- rst_ni (C:3, V:1'bl)
(a) Partial causal graph from the CVA6 LSU failure. “C” and (b) Visualization of the same failure’s causal graph. The image

“V” refer to cycle and value, respectively. is generated via Gephi [5].

Figure 2: CVAG6 LSU failure: textual subgraph (left) and full-graph visualization (right).

exception responses, violating transaction ID uniqueness properties.

¢ LSU Transaction ID Mismatch: A load-store unit (LSU) failure where simultaneous exceptions and cache
responses cause responses with untracked transaction IDs.

Table 2 illustrates the substantial scale of these industrial designs. The LSU failure alone involves analyzing 1,918
lines of RTL across 7 files, generating a causal graph with 169 nodes and 1,145 edges tracking 122 unique signals.
Through our graph consolidation technique (Section B.2), duplicate nodes from reconverging paths are merged into a
DAG structure, making the analysis computationally tractable.

Table 2: Scale and complexity metrics for CVA6 processor designs

Design RTL Files Lines of Code Graph Nodes Graph Edges Unique Signals
CVA6 MMU 3 695 172 235 76
CVAG6 LSU 7 1,918 170 239 122

Figure 2a shows a representative subgraph from the LSU failure’s causal analysis, illustrating the complex signal
dependencies FVDEBUG must navigate. This snippet traces backwards from the failing assertion through 5 levels of
causality—a fraction of the full 20-level, 170-node graph.

Table 3 presents evaluation results. FVDEeBuUG achieves highest Quality @Best (0.713) despite the complexity,
though absolute scores are lower than simpler benchmarks, reflecting the inherent difficulty of multi-module processor
debugging. While automated fix generation for such multi-line issues remains future work, FVDEBUG’s ability to
navigate these massive causal graphs and identify root causes with 0.713 quality represents an advance for industrial
verification workflows.

E. Industrial FV Case Studies (Proprietary Designs)

We evaluate FVDebug on two proprietary, production-scale FV counterexamples (CEX), with design details masked per
policy. Signal names have been replaced with descriptive placeholders in angle brackets (e.g., <signal_name>) to
protect intellectual property. For each case, an expert provides the ground truth root cause, which we use to verify the
FVDEBUG’s outputs.

CEX-1 (FV Testbench Error)

This high-difficulty case involves an incorrect internal token counter. FVDEBUG correctly identifies the root cause as a

Table 3: Comparison of FVDEBUG against baselines and ablations on CVA6 processor failures. Best results in bold.

Hypothesis Quality Metrics

Method Quality@Best NDCG@5 MRR Kendall’s 7
Unstructured Baselines

Direct LLM 0.575 0.801 0.500 0.333
Flat Trace Analysis 0.475 0.800 0.531 0.100
Component Ablations

FVDEBUG w/o0 For-Against 0.644 0.791 0.531 0.306
FVDEeBuG w/o Rover 0.300 0.742 0.276 0.294
FVDEeBuG (Full) 0.713 0.875 0.667 0.371

functional bug in the testbench logic.

FVDEBUG Root Cause: The <internal_token_count> calculation is incomplete—it only sums 4
specific FIFO token counts but does NOT include the mesh input path (<mesh_in_signal>) where
tokens are actually entering the design.

Expert evaluation confirms an "Excellent Match," noting that FVDebug correctly identifies the missing signal in the
counter logic and understands the architectural flaw. The system pinpoints the specific functional error and recommends
the correct fix, aligning perfectly with the expert’s independent analysis.

CEX-2 (Missing Constraint)

This case involves a FIFO overflow caused by a missing input constraint. FVDebug diagnoses the issue as a failure in
the backpressure mechanism.

FVDEBuG Root Cause: Backpressure Mechanism Failure: The FIFO continues accepting write requests
(<fifo_write_enable>=1) even when the FIFO is full (<fifo_full_status>=1). This is
caused by an unconstrained input signal (<req_valid_signal>) driving write logic without proper
backpressure handling.

This analysis is rated as a "Strong Match" by the expert. Although the terminology differs slightly (FVDEBUG’s
“backpressure failure” vs. the expert’s “credit protocol violation”), the core diagnosis is identical. FVDEBUG successfully
identifies the problematic input signal and recommends the correct solution: adding a constraint to the formal testbench.

Table 4: Industrial CEX complexity and FVDebug performance metrics (masked design details).

Case RTL Files Lines of Code Unique Signals Graph Nodes Graph Edges Graph Depth Jasper Calls LLM Calls Total Runtime
CEX-1 (Testbench Error) 265 560,202 123 189 227 15 163 25 4m 12s
CEX-2 (Missing Constraint) 257 554,983 41 80 86 11 67 21 6m 07s

Table 4 summarizes the complexity and performance metrics for these case studies. Despite the scale of the
designs—over half a million lines of code—FVDEBUG automatically constructs and analyzes deep causal graphs, tracing
the chain of dependencies back up to 15 levels from the point of failure for CEX-1. With a modest number of calls
to Jasper and the LLM, FVDEBUG pinpoints the root causes in minutes, demonstrating its capability to accelerate the
debugging of complex failures in production-scale industrial designs.

V. CONCLUSION AND FUTURE WORK

We presented FVDEBUG, an automated FV debugging system that transforms counter-examples into causal graphs and
applies a multi-stage LLM pipeline—balanced scanning and agentic narrative exploration—to generate high-quality
root-cause explanations and practical fixes. On open benchmarks, FVDEBUG achieves strong hypothesis quality and
Pass@k rates. On proprietary, production-scale counterexamples, we demonstrate applicability by reporting graph- and
code-scale metrics with expert-verified root causes.

Looking forward, the causal graph approach naturally extends to simulation-based verification, where graphs could
be constructed from signals whose values mismatch golden references rather than from failed properties. This would
unify debugging workflows across verification methodologies, providing consistent root cause analysis regardless of
failure detection method.

REFERENCES

[1] Alpha Design Al Chipagents: Agentic Al for RTL design and debug. https://chipagents.ai, 2025.
Accessed Jul. 2025.

[2] ChipStack Al Chipstack — chip design reimagined. https://www.chipstack.ai, 2025. Accessed Jul.
2025.

[3] Anthropic. Claude code. https://www.anthropic.com/claude-code, 2025. Accessed Aug. 2025.

[4] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna
Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv
preprint arXiv:2212.08073, 2022.

[5] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open source software for exploring and
manipulating networks, 2009.

[6] Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models to self-debug.
arXiv preprint arXiv:2304.05128, 2023.

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

[8] Cursor. Cursor — the Al code editor. https://cursor.com, 2025. Accessed Aug. 2025.
[9] Harry D Foster. 2020 wilson research group functional verification study. Technical report, Siemens EDA, 2020.

[10] Weimin Fu, Kaichen Yang, Raj Gautam Dutta, Xiaolong Guo, and Gang Qu. Llm4sechw: Leveraging domain-
specific large language model for hardware debugging. In 2023 Asian Hardware Oriented Security and Trust
Symposium (AsianHOST), pages 1-6. IEEE, 2023.

[11] Orna Grumberg, EM Clarke, and D Peled. Model checking. In Infernational Conference on Foundations of
Software Technology and Theoretical Computer Science; Springer: Berlin/Heidelberg, Germany, 1999.

[12] Aarti Gupta. Formal hardware verification methods: A survey. Formal Methods in System Design, 1(2):151-238,
1992.

[13] Muhammad Hassan, Mohamed Nadeem, Khushboo Qayyum, Chandan Kumar Jha, and Rolf Drechsler. Prompt.
verify. repeat. llms in the hardware verification cycle.

[14] Aman Kumar and Deepak Narayan Gadde. Generative ai augmented induction-based formal verification. In 2024
IEEE 37th International System-on-Chip Conference (SOCC), pages 1-2. IEEE, 2024.

[15] Aman Kumar, Deepak Narayan Gadde, Keerthan Kopparam Radhakrishna, and Djones Lettnin. Saarthi: The first
ai formal verification engineer. arXiv preprint arXiv:2502.16662, 2025.

[16] Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent debate. arXiv preprint
arXiv:2305.19118, 2023.

[17] Minh Luu, Surya Jasper, Khoi Le, Evan Pan, Michael Quinn, Aakash Tyagi, and Jiang Hu. Vcdiag: Classifying
erroneous waveforms for failure triage acceleration. arXiv preprint arXiv:2506.03590, 2025.

[18] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. Advances in
Neural Information Processing Systems, 36:46534-46594, 2023.

[19] Ann Mutschler. Debug tops verification tasks, Dec 2018. Semiconductor Engineering.

[20] Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin. Lever:
Learning to verify language-to-code generation with execution. In International Conference on Machine Learning,
pages 26106-26128. PMLR, 2023.

[21] OpenAl OpenAl 03-mini. https://openai.com/index/openai-o3-mini/, January 2025. Accessed:
2025-08-26.

[22] Marcelo Orenes-Vera, Aninda Manocha, David Wentzlaff, and Margaret Martonosi. Autosva: Democratizing
formal verification of rtl module interactions. In 2021 58th ACM/IEEE Design Automation Conference (DAC),
pages 535-540. IEEE, 2021.

[23] Khushboo Qayyum, Chandan Kumar Jha, Sallar Ahmadi-Pour, Muhammad Hassan, and Rolf Drechsler. LIm-
assisted bug identification and correction for verilog hdl. ACM Transactions on Design Automation of Electronic
Systems, 2025.

[24] Dipayan Saha, Shams Tarek, Hasan Al Shaikh, Khan Thamid Hasan, Pavan Sai Nalluri, Md Ajoad Hasan, Nashmin
Alam, Jingbo Zhou, Sujan Kumar Saha, Mark Tehranipoor, et al. Sv-llm: An agentic approach for soc security
verification using large language models. arXiv preprint arXiv:2506.20415, 2025.

[25] Atefeh Sohrabizadeh, Jialin Song, Mingjie Liu, Rajarshi Roy, Chankyu Lee, Jonathan Raiman, and Bryan Catanzaro.
Nemotron-cortexa: Enhancing 1lm agents for software engineering tasks via improved localization and solution
diversity. In Forty-second International Conference on Machine Learning.

[26] Synopsys Inc. Ve formal. https://www.synopsys.com/verification/
static—and-formal-verification/vc—formal.html, 2023.

[27] Synopsys, Inc. Verdi Automated Debug System, 2024. Online product page, accessed Jun 2025.
[28] Cadence Design Systems. Cadence JasperGold Formal Verification Platform, 2023. Version 2023.12.

[29] Cadence Design Systems. Indago debug platform — product brief. https://dvcon-proceedings.org/
wp-content /uploads/Indago%E2%84%A2-Debug-Platform-Overview.pdf, 2025. Accessed
Jul. 2025.

[30] Srikanth Vijayaraghavan and Meyyappan Ramanathan. A practical guide for SystemVerilog assertions. Springer,
2005.

[31] Jing Wang, Shang Liu, Yao Lu, and Zhiyao Xie. Hlsdebugger: Identification and correction of logic bugs in HLS
code with LLM solutions. In Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), 2025.

[32] Ning Wang, Bingkun Yao, Jie Zhou, Yuchen Hu, Xi Wang, Nan Guan, and Zhe Jiang. Veridebug: A unified llm
for verilog debugging via contrastive embedding and guided correction. /ICLAD, 2025.

[33] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny
Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171,
2022.

[34] Ke Xu, Jialin Sun, Yuchen Hu, Xinwei Fang, Weiwei Shan, Xi Wang, and Zhe Jiang. Meic: Re-thinking rtl debug
automation using llms. In Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided
Design, pages 1-9, 2024.

[35] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large language models. Advances in neural information processing
systems, 36:11809-11822, 2023.

[36] Jie Zhou, Youshu Ji, Ning Wang, Yuchen Hu, Xinyao Jiao, Bingkun Yao, Xinwei Fang, Shuai Zhao, Nan Guan,
and Zhe Jiang. Insights from rights and wrongs: A large language model for solving assertion failures in rtl design.
DAC, 2025.

A. EXAMPLE OUTPUT REPORT

This appendix presents a complete example output from FVDEBUG analyzing an accumulator design failure from the
SVA-EvaL-Humanbenchmark. The report demonstrates the system’s ability to identify root causes, rank competing
hypotheses, and generate concrete fixes.

A. Ranked Hypotheses

@ Hypothesis 1: Upstream Control Logic Issue

Confidence: 48.5%

Hypothesis Statement

The accumulation control chain (likely the ready_add/end_cnt logic) is not properly asserting end_cnt when the
count reaches 3, which prevents valid_out from being driven high as expected.

Supporting Evidence
e The RTL code assign end_cnt = ready_add && (count == ’d3); shows that even if count equals 3,
end_cnt will remain low unless ready_add is high.

* The always block for valid_out (lines 55-62) shows: else if (end_cnt) valid_out <= 1’bl;, yetat
cycle 3, valid_out remains 0 even though the assertion expected it to be high.

* The failing assertion (accu.valid_out_check_2_assertion atcycle 3) directly indicates that valid_out is
not asserted as required when count==3 and valid_in is high.

Contradicting Evidence

* The design intentionally gates end_cnt on ready_add, meaning that if ready_add is low then a low end_cnt is
valid as per design.

e The definition of ready_add as (valid_out | !valid_in) may be intentionally crafted for specific input
conditions.

@ Hypothesis 2: Wrong Condition in ready_add Signal

Confidence: 46.9%

Hypothesis Statement

The use of the OR operator in the definition of ready_add = valid_out | !valid_in might be causing the
end_cnt condition to fail when valid_in is expected to be high, thereby preventing valid_out from being asserted.

Supporting Evidence

¢ The RTL shows assign ready_add = valid_out | !valid_in;, indicating that the state of valid_out
and valid_in directly affect the ready_add signal.

e Atcycle 3, countis 2/ b1l (i.e., 3) which is exactly the threshold condition, but with valid_in being 1’ b0, the OR
operator prevents proper accumulation triggering.

Analysis
¢ The ready_add signal definition appears nonstandard and may inadvertently disable accumulation triggering when
valid_inis high.

e This could be either a design intent problem or an under-constrained formal property where the assumption about
valid_in being high is missing.

» There is a possibility that the duplicated accumulation logic is introducing subtle timing issues.

B. Causal Chain Timeline

© Causal Chain Timeline

Cycle 1 A The count node is observed at 2’ b11 (value of 3), which is the threshold for asserting end_cnt. However,

the expected behavior (resetting counter and driving valid_out high) does not occur.

Cycle 1 The node end_cnt, which should signal the end of accumulation when count equals 3, is observed as 1’ b0. Its

value is computed as ready_add && (count == ’d3) making it dependent on ready_add.

Cycle 3 A The assertion accu.valid_out_check_2_assertion fails because valid_out is 0 when expected

to be 1.

Cycle 3 The count signal is 2’ b11, indicating the counter reached value 3 but did not trigger the end_cnt condition.

Cycle3 valid_out = 1'b0 (suspicious)

C. Suggested Fix
/ RTL Fix (Confidence: 90%)

1

>

3

4

5

6

// Buggy Code:

assign ready_add = valid_out

// Fixed Code:

| !'valid_in;

assign ready_add = valid_in & !valid_out;

// Explanation: The original logic makes the module ready to add

// when there is NO valid input (!valid_in), which is backwards.
// The fix ensures ready_add is high only when:

// — New valid data is available (valid_in = 1)

// — Previous data has been processed (valid_out = 0)

This section demonstrates the critical importance of balanced evaluation through a real debugging example from the
accumulator design. We compare the analysis quality with and without for-and-against prompting on the same suspicious

si

. Causal Graph Visualization

o RTL
module accu(
input clk
input rst_n
input [7:0] data_in
input valid_in
output reg valid_out s

output reg [9:0] data_out

T~

~

Failing property with counter-
example (CEX):
(count == 3 && valid_in) |=>
| valid_out == 1;

\/

JASPER

Batch mode via TCL script recursively caling
visualize -why,visualize -get_value,
get_signal_info, etc.

=

Count
@C3(2'b11)

count add_cnt
@C1(2'b11) @C1 (1°b0)

valid_in
@C1(1’b1)

ready_add
@C1(1’b0)

accu.valid_out_check_2_assertion

@C3 (FAIL)

end_cnt

valid_in
@C3 (1°b0)

valid_out
@C3 (1’b0)

@C1(1°b0)

valid_out
@C1(1’b0)

<signal_name>
@C<cycle_number>
(<signal_value>)

“Caused by” relationship
according to Jasper why
analysis

Causal Graph for the
Failing Property

Figure 3: Causal graph automatically generated by FVDEBUG for the accumulator verification failure.

B. CASE STUDY: IMPACT OF FOR-AND-AGAINST PROMPTING

gnal.

A. The Problem: ready_add Signal Analysis

Consider the ready_add signal in an accumulator module at cycle 1, where the signal controls when data should be
added to the accumulator. The RTL implementation is:

Listing 1: RTL implementation of ready_add signal

assign ready_add = valid out | !valid_in;
At cycle 1, we observe:
* ready_add = 1'Db0 (not ready to add)
e valid_in = 1’Dbl (valid input available)
* valid_out = 1’Db0 (no valid output yet)
e count = 2’bll (already at maximum count)

B. Without For-and-Against Prompting
When prompted with standard bug-finding instructions ("Analyze if this signal behavior indicates a bug"), the LLM
produces:

Standard Prompting Analysis

Analysis of ready_add@C1:
The signal ready_add islow when valid_inishighand valid_out islow. According to the RTL logic valid_out

| !'valid_in, thisevaluatestoO | !'1 = 0 | 0 = 0, which matches the observed value.
Conclusion: The signal behavior is correct and follows the RTL implementation. No bug detected. The logic is working as
designed.

Confidence: Normal behavior (no issue found)

This analysis completely misses the fundamental design flaw—the LLM focuses solely on whether the implementation
matches the RTL, without questioning whether the RTL logic itself makes sense.

C. With For-and-Against Prompting

When prompted with mandatory balanced evaluation, requiring both FOR and AGAINST arguments, the same LLM
produces:

For-and-Against Prompting Analysis

Analysis of ready_add @C1:
Arguments FOR Being Suspicious (REQUIRED - MIN 2):

e Thelogic valid_out | !valid_in seems counterintuitive because ready_add should ideally be high when
valid_in is high (indicating new data is ready), not when it’s low.

* The dependency on valid_out being high to set ready_add might create a circular dependency or delay in
processing new inputs when valid_out is low.

Arguments AGAINST Being Suspicious (REQUIRED - MIN 2):

* The design might intend for ready_add to be high in scenarios other than just new data arrival, such as during
certain states of output validity.
* The inversion of valid_in might be a design choice to handle specific edge cases or reset conditions not detailed
in the provided context.
Balanced Conclusion: The behavior of ready_add is suspicious due to its reliance on the inverted valid_in, which

contradicts typical ready signal behavior. This is likely a root cause of potential data handling issues.
Classification: ROOT CAUSE (Suspicion score: 0.70)

D. The Actual Bug and Fix

The for-and-against analysis correctly identified the root cause. The original logic makes the module ready to add data
when there is no valid input (!valid_in), which is backwards. The correct implementation should be:

Listing 2: Corrected ready_add implementation

assign ready_add = valid_in & !valid_out;

This fix ensures the module is ready to add data only when:
¢ New valid data is available (valid_in = 1)
* Previous data has been processed (valid_out = 0)

E. Why For-and-Against Prompting Works
The effectiveness of this approach stems from several cognitive mechanisms:

E.1 Overcoming Confirmation Bias

Standard prompting allows the LLM to follow the path of least resistance. When it sees that signal values match the RTL
implementation, it concludes "working as designed" without questioning the design itself. The forced dual perspective
breaks this pattern.

E.2 Encouraging Critical Thinking

By mandating arguments for both sides, the prompt forces the model to actively search for potential issues even when
the initial impression suggests normalcy. This mirrors how expert engineers debug—they question assumptions and
consider alternative explanations.

E.3 Revealing Hidden Assumptions

The AGAINST arguments often reveal the LLLM’s default assumptions (e.g., "the RTL must be correct"). By making
these explicit, the FOR arguments can then challenge them directly, leading to more thorough analysis.

C. IMPLEMENTATION DETAILS

This section provides detailed implementation insights for the key components of FVDEBUG.

A. Causal Graph Construction and Consolidation

The recursive dependency analysis for constructing G begins at the failing property node and traverses backwards
through the counter-example trace. At each node, the system issues a visualize -why query to JasperGold, which
returns the immediate causal parents. The default trace depth of 20 cycles was empirically determined to capture
most relevant causal chains while maintaining tractability—deeper traces showed diminishing returns in root cause
identification accuracy.

The consolidation phase transforms the initial tree structure into a DAG through node deduplication. Each node is
uniquely identified by the tuple (signal_name, cycle, value). When multiple tree paths converge to the same signal event,
we merge these into a single DAG node while preserving all incoming edges. This consolidation typically reduces node
count in designs with significant reconvergent fanout, substantially improving analysis efficiency.

B. Context Retrieval Architecture
The context retrieval system pre-processes design documentation into searchable chunks before analysis begins. For each
unique signal in G, we generate three types of queries: RTL queries that search for signal definitions and assignments,
specification queries that look for functional descriptions, and cross-reference queries that identify related signals and
modules. The retrieval system maintains a two-level cache—a global cache for design-wide information shared across
all nodes, and a node-specific cache for local context.

The mapping between signals and documentation uses fuzzy matching to handle naming variations. For instance, a
signal valid_out might be documented as "output valid signal” or "valid output flag." The system computes similarity
scores using edit distance and semantic embeddings, accepting matches above a threshold of 0.7.

C. Token-Aware Batch Optimization

The binary search algorithm for determining optimal batch sizes operates within the token budget of 50,000 tokens
per prompt (as configured in our experiments). The search begins by estimating the token count for a single node’s
analysis context, typically consuming 800-1200 tokens. The algorithm then performs binary search between 1 and
min(|remaining nodes|, | 50000/single_node_tokens).

At each iteration, the system constructs a test prompt with the candidate batch size and uses a token counter to
determine exact usage. If the prompt exceeds the budget, the algorithm reduces the upper bound; otherwise, it increases
the lower bound. The search terminates when the bounds converge, typically requiring 4-6 iterations. Our experiments
with batch_size=5 as the target showed that actual achieved batch sizes varied from 3 to 8 depending on node context
complexity.

D. Hypothesis Initialization and Management
The Insight Rover initializes hypotheses from suspicious nodes using a scoring-based selection. FVDEBUG maintains
exactly three active narratives throughout exploration. When the scanner identifies more than three suspicious nodes,
we select the top three based on their suspicion scores, ensuring diverse initial hypotheses by requiring a minimum
score difference of 0.1 between selected nodes.

Each hypothesis maintains a frontier of unexplored nodes, initially populated with all parents and children of the seed
node. The frontier grows as exploration progresses—when a node is analyzed, its neighbors are added to the frontier if
not already explored. To prevent explosive frontier growth in highly connected regions of G, we limit frontier size to 20
nodes, prioritizing those with highest suspicion scores from their initial analysis.

The narrative pool management occurs at each iteration’s end. Hypotheses with confidence below 0.2 after three
iterations are marked as weak but retained for final reporting. If any narrative slot becomes vacant due to convergence,
the system attempts to spawn a new hypothesis from unexplored suspicious nodes, ensuring maximum utilization of the
narrative budget.

E. Intelligent Node Selection for Exploration

The LLM-guided node selection mechanism evaluates frontier nodes based on three criteria: relevance to the current
hypothesis, potential information gain, and structural importance in G. The selection process provides the LLM with
the current narrative state, including accumulated evidence and confidence score, along with a summary of up to 10
frontier nodes showing their signal names, values, and graph-theoretic properties such as in-degree and out-degree.

To ensure comprehensive analysis, the system dynamically adjusts the number of narratives based on the number of
suspicious nodes identified. While configured with insight_rover_max_narratives=3 as a minimum, the implementation
automatically expands to accommodate all suspicious nodes—if 5 nodes are flagged as suspicious, 5 initial narratives
are created. This design choice ensures no potentially critical failure path is overlooked during the initial hypothesis
generation phase.

The system tracks exploration efficiency through a path coverage metric. Across our experiments, the intelligent
selection explored an average of 15-20 nodes per hypothesis, compared to over 100 nodes that would be explored
by breadth-first search to the same depth. This selective exploration maintains comparable root cause identification
accuracy while reducing computational cost.

F. Hypothesis Ranking with LLM Evaluation
The final hypothesis ranking uses a pairwise comparison approach rather than absolute scoring. For n hypotheses,
the system performs O(nlogn) comparisons using a tournament-style evaluation. Each comparison presents two
hypotheses to the LLM along with their evidence chains, asking which better explains the observed failure.

The ranking criteria are weighted as follows: causal sufficiency (0.3), evidence quality (0.25), mechanistic clarity
(0.25), actionability (0.15), and narrative coherence (0.05). The LLLM assigns scores for each criterion, which are
combined using the weighted sum to produce a final ranking score.

G. Fix Generation Strategy Diversification

The ensemble fix generator implements five distinct strategies that vary in their context emphasis. The full context
strategy includes all available information but risks overwhelming the LLM with irrelevant details. The suspicious
focus strategy filters context to only highly suspicious signals (score > 0.7), reducing noise but potentially missing
systemic issues. The narrative focus strategy uses only the top-ranked hypothesis from H, providing strong causal
reasoning but limited coverage. The minimal context strategy extracts just the identified root cause, generating focused
fixes but lacking broader understanding. The best-of strategy reviews outputs from other strategies and selects the most
promising fixes.

Each strategy operates with a retry mechanism, attempting up to twice if initial generation fails validation.

H. Fix Signature Generation and Deduplication

The CreateSignature function generates a unique identifier for each fix by normalizing and hashing the buggy code
and corrected code pair. The normalization process removes all whitespace variations, converts tabs to spaces, and

eliminates comments. It then applies a deterministic ordering to commutative operations (e.g., a & b becomes a &
b regardless of original ordering).
1. Multi-Level Fix Validation

The validation pipeline for generated fixes operates in three stages. First, exact substring matching attempts to locate the
buggy code directly in the RTL codebase R. For the remaining fixes, whitespace normalization handles formatting
variations. Fixes that fail all the validation stages are discarded.

J. Consensus Ranking and Confidence Scoring

The consensus ranking mechanism assigns higher confidence to fixes generated by multiple strategies. For a fix generated
by k strategies out of 5 total, the consensus boost is calculated as min(0.2 - &, 0.6), capping the maximum boost at 0.6
to prevent over-reliance on consensus alone. The final confidence score combines the original confidence from fix
generation and consensus boost.

D. PROMPT DETAILS
This appendix provides the detailed prompts used by FVDEeBUG’s three main components: Graph Scanner, Insight Rover,
and Fix Generator.
A. Graph Scanner Prompts
The Graph Scanner analyzes each node in the causal graph using a structured prompt that enforces balanced evaluation
with mandatory FOR and AGAINST arguments.
B. Insight Rover Prompts
The Insight Rover uses three distinct prompts for hypothesis generation, exploration planning, and node analysis within
narrative context.
C. Fix Generator Prompts
The Fix Generator uses an ensemble approach with multiple prompting strategies. All strategies share a common base
prompt and fix generation instructions.
D. Narrative Ranking Prompts

FVDEeBuUG uses LLM-based ranking at two critical points: ranking competing narratives during exploration and
evaluating hypothesis quality against ground truth during benchmarking.

Graph Scanner Full Prompt Template

#i## SCENARIO
{scenario_description}

##H# GLOBAL CONTEXT AND INSIGHTS
The following high-level insights provide important context about the design:

#it# Design Overview
{design_overview_content}

#i### Specification Requirements
{specification_content}

NODES TO ANALYZE
| node_id | signal | cycle | value |
e e e

{node_table_rows}

SUBGRAPH EDGE LIST
{edge_list}

NODE-SPECIFIC CONTEXT (RTL & SPEC)
###H# CONTEXT 1
{rtl_and_spec_context}

Based on the parent analysis and context, analyze this signal transition.

CRITICAL REQUIREMENT - EXACT RTL REFERENCES:
‘When analyzing any signal behavior or identifying issues, you MUST:

1. Provide exact file:line references from the RTL context
Example: "store_unit.sv:145-147"

2. Quote the specific RTL code that shows the behavior
Example:

“‘verilog

assign valid_out =end_cnt ? 1’bl : 1°b0;

113

3. NEVER make claims without showing the supporting RTL code
4. If RTL context is missing, explicitly state: "RTL context not available for this signal”

MANDATORY BALANCED ANALYSIS APPROACH:
YOU MUST PROVIDE BOTH SECTIONS - NEVER SKIP EITHER ONE:

1. Arguments FOR Being Suspicious (REQUIRED - MINIMUM 2 POINTS):
- Even if the signal seems normal, you MUST identify at least 2 potential concerns
- Consider: timing issues, edge cases, specification mismatches, unusual patterns
- Think critically: What COULD go wrong? What assumptions might be invalid?

2. Arguments AGAINST Being Suspicious (REQUIRED - MINIMUM 2 POINTS):
- Even if the signal seems problematic, you MUST provide at least 2 counterarguments

- Consider: valid design patterns, expected behavior, specification compliance

- Think: Why might this actually be correct behavior?

Figure 4: Graph Scanner prompt template (part 1 of 3).

Graph Scanner Prompt Template (continued)

IMPORTANT: The LLM tends to assume signals are normal. To counteract this bias:

- Be MORE critical in the FOR section - look harder for potential issues

- Challenge assumptions - just because a signal follows RTL doesn’t mean RTL is correct
- Consider specification violations, race conditions, and edge cases

Your analysis should examine:

- RTL Logic Correctness: Does the combinational logic make sense? Are there any logical inversions or operations that seem incorrect?
- Signal Dependencies: Are the boolean operations (AND, OR, NOT) used correctly? Could there be a logic error?
- Specification Alignment: Does the RTL match the intended behavior described in the specification?

- Common RTL Bugs:

* Incorrect polarity (should a signal be inverted?)

* Wrong logical operators (OR vs AND, etc.)

* Missing or extra conditions in assignments

* Circular dependencies or combinational loops

* Reset/initialization issues

- Design Intent: Based on signal names, does the implementation make semantic sense?

- Edge Cases: Could the current logic fail under certain conditions?

IMPORTANT: Prioritize ROOT CAUSES over SYMPTOMS:

- A root cause is the earliest point where incorrect behavior originates

- A symptom is a downstream effect of a root cause

- Only mark signals as highly suspicious (greater than 0.7) if they are likely root causes

- For symptoms, use lower scores (0.3-0.5) and explicitly state which root cause they derive from

Use this scoring rubric for suspicion_score:

0.9-1.0: Direct RTL bug found (e.g., wrong operator, missing condition)
0.7-0.8: Likely logic error (e.g., incorrect state transition)

0.5-0.6: Suspicious pattern that might indicate issue

0.3-0.4: Downstream symptom of another issue

0.0-0.2: Normal behavior or insufficient evidence

##H INSTRUCTIONS
Return a single JSON object where keys are node_id and values follow this schema:

"node_id": {

"is_suspicious": bool,

"is_key_event": bool,

"suspicion_score": float (0.0-1.0),

"importance_score": float (0.0-1.0),

"causal_validity": {"parent_id": bool, ...},

"analysis": "Structured markdown analysis following this EXACT template:

Signal Behavior
[Description of what the signal does and its current value]

RTL Evidence

- File: [filename:line_numbers]
““verilog

[relevant RTL code]

113

Figure 5: Graph Scanner prompt template (part 2 of 3) with JSON response schema.

Graph Scanner Prompt Template (continued)

Arguments FOR Being Suspicious (REQUIRED - MIN 2)
- [First potential issue/concern]
- [Second potential issue/concern]

Arguments AGAINST Being Suspicious (REQUIRED - MIN 2)
- [First reason this might be normal]
- [Second reason this might be normal]

Balanced Conclusion
[Weigh both sides and conclude whether this is suspicious or not]

Root Cause vs Symptom
[If suspicious: Is this a root cause or symptom? If symptom, what’s the root?]

Fix Required

[If issue found: Specific code change needed. If not: ’No fix required’]"
}

}

Figure 6: Graph Scanner prompt template (part 3 of 3).

Insight Rover: Initial Hypothesis Generation Prompt

Given a suspicious node in a hardware failure analysis, generate an initial hypothesis.

Node: {node.signal_name} at cycle {node.cycle}
Value: {node.value}

RTL Context: {context.rtl}

Spec Context: {context.spec}

Prior Analysis From GraphScanner
{prior_analysis_raw}

Generate a hypothesis about what might be wrong. Consider these possibilities:
- RTL bug (incorrect logic, missing conditions, wrong operators)

- Under-constrained inputs (missing assumptions in formal verification)

- Assertion/property issue (the checker itself might be wrong)

- Design intent mismatch (RTL correct but doesn’t match specification)

Generate a hypothesis in JSON format:

"title": "Brief title for the hypothesis",
"hypothesis": "One-line hypothesis about what might be wrong (be specific about the type of issue)",
"initial_insights": ["insight1", "insight2", ...]

}

Figure 7: Insight Rover prompt for generating initial hypotheses from suspicious nodes.

Insight Rover: Exploration Target Selection Prompt

Given a narrative hypothesis and exploration frontier, select the most promising nodes to explore next.

Narrative: {narrative.hypothesis}
Current confidence: {narrative.confidence_score:.2f}
Events found: {len(narrative.events)}

Exploration frontier:

- {node_id1}: {signall} = {valuel}
- {node_id2}: {signal2} = {value2}
- {node_id3}: {signal3} = {value3}
[... up to 10 frontier nodes shown ...]

Select up to 3 nodes that would best help validate or refute this hypothesis.
Return as JSON: {"targets": ["node_id1", "node_id2", ...]}

Figure 8: Insight Rover prompt for selecting which frontier nodes to explore next.

Insight Rover: Node Analysis in Narrative Context

Analyze this node in the context of the narrative hypothesis.

Narrative: {narrative.hypothesis}
Current timeline:

C{cyclel}: {signall} = {valuel }
C{cycle2}: {signal2} = {value2}
[... last 5 events shown ...]

Node to analyze: {node.signal_name} at cycle {node.cycle}
Value: {node.value}
RTL Context: {context.rtl}

Prior Analysis From GraphScanner
{prior_analysis_raw}

IMPORTANT: When providing evidence, directly quote or reference specific facts from the RTL context above.
For example: "The RTL shows "assign ready = valid && !busy’ which indicates..."

Determine:

1. Is this node relevant to the narrative?

2. Does it support or contradict the hypothesis?

3. Is it part of the critical path?

4. Extract specific evidence from the provided context

Return analysis as JSON with fields:

- is_relevant: boolean

- is_critical: boolean

- event_description: string (if relevant)

- importance: float (0-1)

- evidence_strength: float (0-1)

- evidence_for: [list of SPECIFIC facts/quotes from the RTL context that support the hypothesis]

- evidence_against: [list of SPECIFIC facts/quotes from the RTL context that contradict the hypothesis]
- new_insights: [list of analytical insights based on the evidence]

Figure 9: Insight Rover prompt for analyzing nodes within the context of a specific narrative hypothesis.

Fix Generator: Core Instructions

IMPORTANT: Please analyze this formal verification issue carefully and provide your response ONLY in the following JSON format:

{

"category": "RTL Bug" or "Under-Constraint" or "Over-Constraint",

"analysis": "Your detailed analysis of the issue including root cause and evidence",
"fixes": [

{

"buggy_code": "The EXACT problematic code snippet that needs to be fixed
(must be an exact substring from the original code)",

"code": "Your proposed fixed code that should replace the buggy code",
"description": "Explanation of what this fix does and why it addresses the root cause",
"confidence": 0.9, // A value between 0 and 1 indicating your confidence in this fix
"location": {

"module": "Target module name",

"signal": "Target signal name",

"file": "Target file path”,

"line": 42 // Target line number where fix should be applied

}

1

/l Please try to include at least 5 alternative fixes in RANKED ORDER

// The first fix should be your best solution (highest confidence)

// Each additional fix should be an alternative approach with decreasing confidence
{

"buggy_code": "The same EXACT problematic code that needs to be fixed",
"code": "An alternative fixed code that should replace the buggy code",
"description": "Explanation of this alternative approach",

"confidence": 0.8, // Lower confidence than your top solution

"location": { ... }

}

// Continue with more alternative approaches (3-5 total fixes)

]

}

Figure 10: Fix Generator JSON format and basic instructions (part 1 of 2).

Fix Generator: Critical Requirements

CRITICAL REQUIREMENTS:
1. The "buggy_code" field MUST contain EXACT code that exists in the RTL
2. The "code" field must contain ACTUAL CORRECTED RTL CODE - not empty, not placeholders

3. Both fields must contain valid Verilog/SystemVerilog syntax

4. Generate AT LEAST 3-5 different fixes if possible

5. Focus on FUNCTIONAL bugs that affect behavior - NOT style issues

6. Do NOT add testbench/verification signals (like _assert)

7. Do NOT use angle brackets or placeholder text like "TODO", "TBD", etc.

8. Make sure the "buggy_code" is an exact substring that exists in the original code
9. The "line" number should point to the approximate location of the buggy code
WHITESPACE HANDLING:

- IMPORTANT: Pay careful attention to whitespace in the "buggy_code" field

- Use SPACES instead of TABS in your code - avoid using

t characters

- Try to match the whitespace pattern from the original RTL code

- When in doubt, use single spaces between tokens (e.g., "assign signal = value;")

- The validation will try to match with flexible whitespace, but exact matches work best

IMPORTANT NOTES:

- Ensure your analysis thoroughly explains the root cause of the issue

- Provide multiple alternative fixes ranked from highest to lowest confidence
- Each fix should be a complete, working solution - no placeholders

- Consider different types of fixes:

* RTL bug (incorrect logic, missing conditions, wrong operators)

* Under-constrained inputs (missing assumptions in formal verification)

* Assertion/property issue (the checker itself might be wrong)

* Design intent mismatch (RTL correct but doesn’t match specification)

STRICT SPAN RULES:

- Use a SINGLE, MINIMAL SPAN for both fields (one assignment or contiguous lines only)

- Do NOT include case labels, begin/end, or asserts in buggy_code or code

- We perform literal text replacement of buggy_code with code; include only the exact text to replace

Return either a JSON array of fixes or an object with a ’fixes’ array.
Do NOT include any markdown code blocks or additional text outside the JSON.

Figure 11: Fix Generator critical requirements and guidelines (part 2 of 2).

Fix Generator: Strategy-Specific Context Additions

Strategy: full_context

Key Insights from Analysis:
- {insight1}

- {insight2}

[... up to 10 insights ...]

Most Suspicious Signals:

- Signal ’{signal}’ at cycle {cycle}: suspicion score {score:.2f}
Insights: {insightl}; {insight2}

[... up to 5 suspicious signals ...]

Causal Analysis Narratives:
1. {narrativel }

2. {narrative2}

[... up to 3 narratives ...]

Strategy: suspicious_focus

CRITICAL: Focus on these suspicious signals:

- Signal ’{signal}’ (cycle {cycle}): HIGH SUSPICION ({score:.2f})
— {insightl}

— {insight2}

— {insight3}

[... up to 7 suspicious signals with detailed insights ...]

Prioritize fixes for these highly suspicious signals!

Strategy: causal_narratives_focus

Root Cause Narratives (FOCUS ON THESE):

Narrative 1:

{full_narrativel }

Narrative 2:

{full_narrative2}

[... up to 5 narratives ...]

Generate fixes that directly address the root causes identified in these narratives.

Strategy: minimal_context

Critical Issue:

ROOT CAUSE: {root_cause_bug}

Generate 3-5 surgical fixes for this specific issue.

Strategy: bugs_and_suggestions_only

Bugs and Fix Suggestions:

Signal ’{signal}’ bugs:

- (bugl)

- {bug2}

Suggested fixes:

- {suggestionl}

- {suggestion2}

[... up to 5 signals with bugs and suggestions ...]

Figure 12: Examples of strategy-specific context additions for the Fix Generator ensemble approach.

Narrative Ranking: Intrinsic Quality Assessment

You are an expert hardware verification engineer evaluating competing hypotheses for a formal verification failure.

PROBLEM DESCRIPTION:
{problem_description}

Your task is to rank these hypotheses based on their intrinsic qualities that correlate with correctness, WITHOUT knowing the
ground truth.

HYPOTHESES TO EVALUATE:

HYPOTHESIS #1 (ID: {narrative_id1})
{narrative_textl }

HYPOTHESIS #2 (ID: {narrative_id2})
{narrative_text2}
[... additional hypotheses ...]

EVALUATION CRITERIA:
Score each hypothesis on these dimensions (0.0 to 1.0):

1. Sufficiency (0.0-1.0): Does the hypothesis provide a complete explanation of the failure?
- High (0.8-1.0): Fully explains the failure mechanism with clear causal chain

- Medium (0.4-0.7): Partial explanation with some gaps

- Low (0.0-0.3): Incomplete or superficial explanation

2. Evidence (0.0-1.0): Quality and quantity of supporting evidence from the causal analysis

- High (0.8-1.0): Strong evidence with specific signal values, RTL snippets, and clear causal links
- Medium (0.4-0.7): Some evidence but lacks specificity or completeness

- Low (0.0-0.3): Weak or contradictory evidence

3. Mechanistic Insight (0.0-1.0): Clarity of the failure mechanism explanation

- High (0.8-1.0): Clear explanation of HOW the bug manifests in hardware behavior
- Medium (0.4-0.7): Some mechanistic understanding but unclear details

- Low (0.0-0.3): Vague or incorrect understanding of hardware behavior

4. Actionability (0.0-1.0): Does it provide clear guidance on what to fix?
- High (0.8-1.0): Specific fix location and clear correction needed

- Medium (0.4-0.7): General area identified but unclear exact fix

- Low (0.0-0.3): No clear fix guidance

5. Coherence (0.0-1.0): Internal consistency and logical flow
- High (0.8-1.0): Logically consistent with no contradictions

- Medium (0.4-0.7): Mostly consistent with minor issues

- Low (0.0-0.3): Contains contradictions or illogical jumps

IMPORTANT CONSIDERATIONS:

- Favor hypotheses that identify specific RTL bugs over vague constraint issues

- Value concrete evidence (specific signal values, code snippets) over speculation
- Prefer hypotheses with clear causal chains showing propagation of errors

- Penalize hypotheses that blame tools/extraction without strong justification

- Reward specificity about the exact issue and its location

Figure 13: LLM prompt for ranking narratives based on intrinsic quality metrics without ground truth.

Narrative Ranking: Output Format

OUTPUT FORMAT:

Provide your evaluation as a JSON array where each element corresponds to a hypothesis:
[

{

"hypothesis_id": "ID of the hypothesis being evaluated",
"sufficiency": 0.85,

"evidence": 0.90,

"mechanistic_insight": 0.80,

"actionability": 0.75,

"coherence": 0.95,

"overall_score": 0.85, // Average of the five scores

"reasoning": "Brief explanation of why these scores were assigned",
"rank_suggestion": 1 // Your suggested rank (1 = best)

1

{
"hypothesis_id": "ID of the second hypothesis",

"sufficiency": 0.60,

"evidence": 0.55,

"mechanistic_insight": 0.50,

"actionability": 0.45,

"coherence": 0.70,

"overall_score": 0.56,

"reasoning": "Explanation for this hypothesis",
"rank_suggestion": 2

}

]

CRITICAL: Evaluate ALL hypotheses and return them in your suggested rank order (best first).

Figure 14: JSON output format for narrative ranking results.

Ground Truth Evaluation Prompt

You are an expert hardware verification engineer evaluating hypothesis quality for debugging formal verification failures.

PROBLEM DESCRIPTION:
{problem_description}

GOLDEN ANSWER (Ground Truth):
{golden_answer}

HYPOTHESIS TO EVALUATE (Rank #{hypothesis_rank}):
{hypothesis}

ADDITIONAL CONTEXT:
- This hypothesis was ranked #{hypothesis_rank} in a list of hypotheses
- The golden answer above shows the correct root cause identification (could be RTL bug, constraint issue, property issue, etc.)

EVALUATION TASK:
Score this hypothesis on the following dimensions (0.0 to 1.0):

1. Relevance (0.0-1.0): Does it address the actual issue described in the golden answer?

2. Preciseness (0.0-1.0): Is it specific about the root cause? Does it correctly identify the exact issue?

3. Causal_Timeline (0.0-1.0): Does it include a causal timeline or temporal analysis showing how the bug manifests over time? Higher scores
for detailed cycle-by-cycle analysis.

4. Correctness (0.0-1.0): Does it correctly identify the root cause as shown in the golden answer?

SCORING GUIDELINES:

- High relevance (0.8-1.0): Directly mentions the specific issue from the golden answer
- Medium relevance (0.4-0.7): Mentions related issues but not the specific root cause

- Low relevance (0.0-0.3): Vague or mentions unrelated issues

- High preciseness (0.8-1.0): Specifically identifies the exact issue as in the golden answer
- Medium preciseness (0.4-0.7): Mentions the general area of the issue but lacks specifics
- Low preciseness (0.0-0.3): Vague statements without specific identification

- High causal_timeline (0.8-1.0): Includes detailed cycle-by-cycle timeline showing bug progression
- Medium causal_timeline (0.4-0.7): Includes some temporal analysis or partial timeline
- Low causal_timeline (0.0-0.3): No timeline or temporal analysis provided

- High correctness (0.8-1.0): Correctly identifies the root cause as shown in golden answer
- Medium correctness (0.4-0.7): Partially correct but includes incorrect elements
- Low correctness (0.0-0.3): Incorrect or focuses on non-existent issues

Figure 15: Evaluation prompt for comparing hypotheses against ground truth (part 1 of 2).

Ground Truth Evaluation Prompt (continued)

IMPORTANT CONSIDERATIONS:

- Score based on alignment with the golden answer, regardless of whether it’s an RTL bug, constraint issue, or property issue
- Hypotheses that identify a different type of issue than the golden answer should receive lower scores

- Value specificity: hypotheses that identify the exact issue (e.g., specific condition, signal, or constraint) should score higher
- REWARD detailed causal timelines that show the bug’s progression through cycles - this demonstrates thorough analysis

- Do NOT penalize verbosity if it provides valuable temporal analysis or causal chain information

OUTPUT FORMAT:

Provide your evaluation in the following JSON format:

{

"relevance": <float between 0.0 and 1.0>,

"preciseness": <float between 0.0 and 1.0>,

"causal_timeline": <float between 0.0 and 1.0>,

"correctness": <float between 0.0 and 1.0>,

"overall": <float between 0.0 and 1.0 (average of the four scores)>,

"reasoning": "<brief explanation of scores>"

}

Analyze the hypothesis carefully and provide your JSON evaluation:

Figure 16: Evaluation prompt for comparing hypotheses against ground truth (part 2 of 2).

