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Efficient Arithmetic Block Identification with Graph
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Abstract—Arithmetic block identification in gate-level netlists
plays an essential role for various purposes, including mali-
cious logic detection, functional verification, or macro-block
optimization. However, current methods usually suffer from
either low performance or poor scalability. To address the
issue, we come up with a novel framework based on graph
learning and network flow analysis, that extracts desired logic
components from a complete circuit netlist. We design a novel
asynchronous bidirectional graph neural network (ABGNN)
dedicated to representation learning on directed acyclic graphs.
In addition, we develop a convex cost network-flow-based
datapath extraction approach to match the predicted block
inputs with predicted block outputs. Experimental results on
open-source RISC-V CPU designs demonstrate that our pro-
posed solution significantly outperforms several state-of-the-art
arithmetic block identification flows.

I. INTRODUCTION

ARITHMETIC block identification in gate-level netlists
has emerged as an essential procedure for numerous dat-

apath optimization or functional verification methodologies.
For example, in Symbolic Computer Algebra (SCA) based
multiplier verification [2], [3], it is required to detect all the
half adders from the multiplier netlist. Another use case is
discussed by Wei et al. [4], where a detected arithmetic block
can be replaced by more advanced intellectual property (IP)
macros. Moreover, the demand for hardware Trojan detection
has been pointed out in several papers [5]–[7] to ensure circuit
security and authenticity, especially under the globalization of
the semiconductor design and fabrication process. Aside from
the applications mentioned above, there is an additional tech-
nical reason behind the need for such a ‘reverse engineering’
approach: after logic synthesis and technology mapping, most
high-level components (e.g., function declaration, modules,
etc.) are flattened into netlists of Boolean gates, as mentioned
in [8]. Given all the facts stated above, arithmetic block
identification is indeed worth exploring.

Traditional methods for arithmetic block identification are
usually classified as either functional methods [9], [10] or
structural methods [6], [11]–[14]. Structural methods focus
on circuit topology while omitting the circuit functional-
ity [15]. For instance, Li et al. [13] have introduced the shape
hashing technique to generate candidate words by clustering
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Fig. 1 Graph learning enables netlist fuzzy matching.

wires with similar local topology. To be more specific, a k-
hop depth-first search is executed on the graph, starting from
each wire, where the serialization of a wire is constructed
using the wire and cell information on the search path. Some
studies consider a different scenario in which a reference
(golden) library of circuits is provided, reducing the problem
to matching subcircuits with pre-defined pattern circuits.
Rubanov et al. [12] formulate the subcircuit matching prob-
lem as a regularized quadratic assignment problem (QAP)
to simultaneously minimize both graph distance and vertex
label distance, which is solved by a nonlinear version of the
iterative Kaczmarz Method (KM). Structural methods can
usually detect target components efficiently because of the
customized algorithms. However, the heuristic methodology
also indicates their mathematical incompleteness [1]. On the
other hand, functional methods inspects the circuit func-
tionally to look for target arithmetic blocks. Subramanyan
et al. [9] have built a functional approach upon the above
shape hashing method by using cut enumeration. They enu-
merate all 6-feasible cuts and then group equivalent cuts with
permutation-independent Boolean matching. In this way, all
the cuts within the same equivalence class are likely to match
the same function from the given library. The authors [9]
have further proposed to formulate the module matching
problem as an equivalence checking problem, with the help of
Quantified Boolean Formula (QBF). To conclude, functional
methods are accurate and solver-ready, but usually at the cost
of ultra-long runtime [1].

Recent advances in machine learning, especially deep
learning, have offered new ideas for solving recognition
problems. Silva et al.. [16] developed a flow that converts
conjunctive normal form (CNF) clauses into images, which
are later rescaled to the target size and fed into the deep neural
network classifiers. Fayyazi et al.. [17] proposed a special
data structure, termed level-dependent decaying sum (LDDS)
existence vector, to compactly represent circuit topology. The
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existence vector encodes each circuit vertex using all its
neighboring vertices. However, these solutions only work on
small-scale circuits and suffer from poor scalability.

To address the above concerns, we propose a graph
learning-based arithmetic block identification framework, as
illustrated in Fig. 1. The framework can conduct efficient
arithmetic block fuzzy matching. We choose graph neural
networks (GNNs) as the preferable fuzzy matching technique
since a netlist can be naturally converted into a directed
acyclic graph (DAG). Intuitively, GNNs aggregate informa-
tion from neighborhoods to automatically generate proper
embeddings for each node, which are helpful in downstream
tasks. However, most existing popular GNN models, such as
GraphSAGE [18] and GIN [19], are designed to deal with
general graphs or undirected graphs. To say in other words,
they are not well-optimized for DAGs. Meanwhile, several
works have been proposed that explored customized GNN
for DAGs and have achieved state-of-the-art performance
in many DAG tasks, e.g., testing point insertion, neural
architecture exploration, high-level delay prediction [20]–
[25]. Nevertheless, they are not targeted at or well-suited
for arithmetic block identification. Therefore, we further
design a new variant of GNN, asynchronous bidirectional
graph neural network (ABGNN), that is customized for
netlist embedding with excellent performance as well as high
efficiency.

The paper makes the following contributions:
• For the first time, to the best of our knowledge, we

present a graph learning-based framework that performs
efficient fuzzy matching on arithmetic blocks;

• We design a novel GNN architecture customized for
netlist representation learning;

• We analyze several practical challenges and develop a
convex cost network-flow-based approach that matches
the predicted inputs with outputs.

• We conduct experiments on open-source RISC-V CPU
designs synthesized by industrial tools, which confirms
the effectiveness and efficiency of our proposed frame-
work compared with other state-of-the-art macro block
detection solutions.

• We also carried out a comprehensive ablation study to
analyze the effectiveness of the proposed techniques.

II. PRELIMINARY

A. Related Works to DAG Embedding

Recently, there have emerged several works that aim to
develop graph learning models for DAG. DAGNN [20] builds
a multi-layer neural network that produces a representation
for a DAG driven by the partial order. Ma et al. [21] first
applied GNNs to DAGs in Electronic Design Automation
(EDA). It takes a simple strategy to deal with the directional
information, assigning different weights to predecessors and
successors in the aggregation function. D-SAGE [25] treats
the DAGs as heterogeneous graphs and applies separate
aggregators to collect information from the two directions.
Based on this unique architecture, D-SAGE manages to
extract directional information and achieved state-of-the-art

performance in operation delay prediction for FPGA HLS.
However, the previous works do not account for direction
when sampling neighborhoods, resulting in identical search
depth in both directions, which is sub-optimal for arithmetic
block identification since fanin and fanout directions are not
equally important (details in Section IV-C). Besides, they fol-
low a synchronous message passing scheme, which may not
be compatible with netlists. In general, these works explored
GNNs tailored for DAGs, but they are not aimed at or well-
optimized for netlists and arithmetic block identification. This
motivates us to design a GNN architecture customized for
netlists.

B. Problem Definition

The gate-level netlist of an electric circuit consists of a
list of gate-level circuit components (e.g., AND gates) and
their interconnects. Gate-level netlists are generated by logic
synthesis tools, which convert the behavior specification of
a circuit into logic gate implementation. Mathematically, a
gate-level netlist can be naturally represented as a directed
acyclic graph, with vertices representing circuit components
and edges representing wires between them. We say a gate-
level netlist is flattened if only primitive gates are instanced,
while the design hierarchy is unknown. Within a netlist,
arithmetic blocks are the building blocks that perform simple
arithmetic operations, such as integer addition or multiplica-
tion. The input boundary nodes of an arithmetic block are
defined as the gates whose output wire is an input to the
block. Similarly, we can define the output boundary nodes.
In general, our goal is to identify the arithmetic blocks located
in a flattened netlist.

Problem 1 (Arithmetic Block Identification). Given a flat-
tened gate-level netlist, identify the target arithmetic blocks
located in the netlist., e.g., adders, multipliers, etc. To be more
specific, identify the boundary nodes of the target blocks.

III. FLOW OVERVIEW

Before diving into algorithmic details, we first provide a
high-level overview of our proposed arithmetic block identi-
fication flow. Given a design netlist, we begin by converting
it into a directed acyclic graph (DAG). The DAG is fed to
our designed ABGNN (introduced in Section IV) to generate
node embeddings. The node embeddings are further used
to predict arithmetic block boundary (introduced in Sec-
tion IV-A). Then, we run a network flow-based algorithm
(introduced in Section V) to match the predicted input
boundary nodes with the predicted outputs boundary nodes.
We illustrate the overall flow in Fig. 2.

IV. DESIGNING GRAPH NEURAL NETWORK FOR DAGS

Graph neural networks (GNNs) have emerged as a promis-
ing approach for graph analysis. They follow an iterative
neighborhood aggregation scheme to capture the structural in-
formation within nodes’ neighborhoods. GNNs have achieved
state-of-the-art performance on a variety of graph tasks, such
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Fig. 2 Our arithmetic block identification flow.

as node classification, link prediction, and graph classifi-
cation. Nonetheless, it is still critical to customize graph
neural network architecture according to the actual task to
earn the best result. This section discusses how we design
a novel graph neural network architecture dedicated to DAG
representation learning in our arithmetic block IO boundary
prediction task.

A. Machine Learning Target Formulation

We begin with the discussion on target formulation. Essen-
tially, the arithmetic block identification problem is to ‘detect’
instances of objects with target semantics in the graph, which
sounds like a graph version of the object detection task
in computer vision. A very related problem is subgraph
matching, which looks for a subgraph in a large target graph
that is isomorphic to the query graph. Despite the intuitive de-
scriptions, solving such problems is indeed very challenging
for the community due to 1) the NP-complete nature of the
problem and 2) the requirement to consider graph topology,
node features, and/or edge features at once. Although some
techniques have been proposed to tackle subgraph matching,
based on either combinatorial search (e.g., VF2 [26], RI [27])
or neural networks (e.g., GMNN [28], NeuroMatch [29]), we
are not aware of any effective method to directly deal with
the ‘graph detection’ problem.

Given that, we propose to formulate a node classification
problem to circumvent the hard-to-solve graph detection
problem. Specifically, our neural model targets to predict
the boundary of arithmetic blocks, namely, to predict
input/output nodes of target blocks. Another alternative prob-
lem formulation is to predict the region covered by the
arithmetic blocks, which is inferior, as will be demonstrated
in Section VI-E. Note that a wire can be both an input to
one arithmetic block and an output from another arithmetic
block (consider the two consecutive expressions c = a + b
and e = c+d, where c is the output of the first adder and the
input of the second adder). Therefore, we split the boundary
prediction problem into two separate binary classification
tasks, namely input prediction and output prediction. We train

a feed-forward neural network to consume the representation
vectors generated by GNN and carry out the prediction. In
binary classification, we use binary cross entropy as the loss
function:

L = −y log (p)− (1− y) log (1− p), (1)

where y is the ground truth of the prediction, and p is the
prediction of the model.

B. General Graph Neural Network

Before diving into the technical details of our ABGNN
model, we deliver a formal introduction to general graph
neural networks, partly following the notations in GIN [19].
Let G = ⟨V,E⟩ denote a graph, where V = {v1, v2, · · · , vn}
is the vertex set, and E ⊆ V×V is the edge set. Considering a
K-layer GNN, the propagation of the k-th layer is represented
as

a(k)
v = AGGREGATE({h(k−1)

u : u ∈ N(v)}),
h(k)
v = COMBINE(a(k)

v ,h(k−1)
v ),

where h
(k)
v is the representation vector of vertex v after

k iterations, h
(0)
v = xv (xv is the initial node feature of

v), and N(v) denotes the neighbouring nodes of v. Many
GNN variants with different choices of AGGREGATE function
(e.g., mean, sum, etc.) and COMBINE are proposed, which are
crucial to the model performance. The expressive power of
such GNNs is theoretically proved [19] to be upper-bounded
by the Weisfeiler-Lehman graph isomorphism test, which is
achieved when both AGGREGATE and COMBINE are injective
functions over multisets.

C. Bidirectional Graph Neural Network

We first deal with the ‘directed’ property of ‘Directed
Acyclic Graphs’. Each edge in a directed graph is assigned
a two-way direction, which naturally captures various real-
life relations. In our netlist, the edge direction represents
the current flow direction. In other words, it indicates the
execution order of the circuit. Therefore, it is intrinsic to
represent a netlist as a directed graph.

However, most existing GNN models are dedicated to
undirected graphs. One historical reason is due to earlier
spectral GNN models [30]–[32] built upon the analogy to
Convolutional Neural Networks (CNNs). In spectral GNN
models, a graph convolution is defined as the multiplication
of a signal x ∈ RN with a filter gθ = diag(θ) parameterized
by θ ∈ RN in the Fourier domain, namely:

gθ ⋆ x = UgθU
⊤x,

where U is the matrix of eigenvectors of the normalized
graph Laplacian L = IN −D− 1

2AD− 1
2 = UΛU⊤. In this

definition, U⊤x is considered the graph Fourier transform
of x, which relies on the fact that the (real symmetric)
normalized graph Laplacian L admits an eigendecomposition.
Unfortunately, this property does not hold for a directed
graph. One straightforward way is to relax the directed graph
to an undirected graph by symmetrizing its adjacency matrix,
which inevitably results in information loss.
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Fig. 3 Bidirectional information aggregation for the vertex
v. Two separate GNNs are utilized to aggregate information
from the fanin cone (hP

v , in orange) and the fanout cone (hS
v ,

in blue), respectively. The final embedding (hv , in purple) is
given by the combination of the representation vectors from
both directions.

Our designed bidirectional GNN is greatly motivated by
the design of heterogeneous GNNs [33], [34]. As discussed
in the previous work [33], one of the challenges in designing
heterogeneous GNN is ‘how to aggregate feature information
of heterogeneous neighbors by considering the impacts of
different node types’. In arithmetic block identification, the
role of a gate depends on both its fanin and fanout cones.
Therefore, combining information from both directions is
required to generate representative node embeddings. Further-
more, the fanin and fanout cones are not of equal importance
in arithmetic block identification. For instance, the fanin
cone rooted at a node n, which may contain structural
information of a target block, is unquestionably more useful
in determining whether n is an output boundary node. On
the other hand, input boundary detection might be dominated
by fanout information. This puts the demand to decouple
the neighborhood to achieve optimal search depth in both
directions. In particular, information from the two directions
should be collected and aggregated separately, with different
search depths (number of GNN layers). Hereafter, we denote
the transpose graph as G⊤, which contains a directed edge
(u, v) if and only if G contains the reversed edge (v, u).

To encode the edge directions and fully decouple the
bidirectional neighborhood, each vertex only aggregates in-
formation from its predecessors. In other words, information
flows from a node x to a node y only if there is an edge
(x, y). To realize bidirectional information aggregation, we
apply two GNNs, one for G and one for the transpose graph
G⊤, to generate two embedding vectors hP

v and hS
v for each

vertex. Ideally, the two embedding vectors collect information
from the predecessors (i.e., fanin cone) and the successors
(i.e., fanout cone), separately. Thus, the final embedding of
each vertex is given by the combination of both hP

v and hS
v :

hv = COMBINE(hP
v ,h

S
v ) (2)

The placeholder COMBINE can be any common reduction
function such as mean, max, or sum. In our practice, we sim-
ply concatenate the two vectors for the final embedding. We
illustrate the bidirectional information aggregation scheme in
Fig. 3.

D. Asynchronous Graph Neural Network

We move to the ‘Acyclic’ property of ‘Directed Acyclic
Graphs’, which by definition contain no cycles. That is, if
we start from any vertex v, walking through the graph along
the edge directions, we will never come back to v. Although
it sounds irrelevant to GNN design, we now demonstrate
the possibility of improving GNN efficiency by utilizing the
acyclic property.

We begin with an analogy to event-driven logic simu-
lation, using the Chandy-Misra-Bryant (CMB) distributed-
time algorithm [35] as an example. To enable parallel
logic simulation with the CMB algorithm, circuit elements
exchanged timestamped messages, and different elements
consume events simultaneously at distinct simulation times.
Conceptually, each element receives timestamped messages
from its predecessors and consumes the messages at the
earliest timestamp whenever all predecessors are ready. As a
result of consuming the messages, the logic element updates
its own local time and delivers one or more timestamped
messages to its successors [36]. Fig. 4(a) illustrates the event
message scheme assuming a unit delay for each gate. At
timestamp 0, the primary inputs, a, b, and ci are ready, which
triggers the execution of gate p since both its inputs are ready.
After a unit delay, gate p sends out its message, which then
triggers the execution of gate s together with ci. Similarly,
gate s processes its inputs and sends out its output at
timestamp 2. The original CMB algorithm is regarded as ‘an
approach to carry out asynchronous, distributed simulation
on multiprocessor message-passing architectures’ [35].

On the contrary, typical GNNs work in a synchronous way.
In a synchronous message passing scheme, all messages flow
on edges simultaneously in each iteration, such that every
vertex receives messages from its neighbors and updates its
representation in every iteration. The message passing process
in general synchronous GNNs is depicted in Fig. 4(b). We can
see that all the nodes send out messages to their successors
in both iterations 0 and 1, resulting in high computational
costs.

Motivated by the CMB algorithm and the acyclic nature of
the netlist, we propose an asynchronous GNN architecture,
resembling the asynchronous message-passing scheme for
logic simulation. To embed a target vertex v, consider its
fanin cone rooted at v. The message passing process begins
at the cone’s leaf nodes and proceeds through the cone
to v. At each ‘timestamp’, (i.e., each iteration of GNN
message passing), only the vertices that received messages
at the previous timestamp deliver messages to their direct
successors. Fig. 4(c) shows an example to embed node s
using such an asynchronous GNN. In iteration 0, only nodes
a and b send out their messages to p, while in iteration 1,
node p and node ci send out their messages to s. Obviously,
asynchronous GNN executes as efficiently as logic simulation
while being more efficient than synchronous message passing.

Formally, for a target vertex v, the aggregation scheme of
the k-th iteration of a depth-∆ asynchronous GNN can be
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Fig. 4 A comparison between (a) distributed logic simulation, (b) synchronous GNN message passing, and (c) asynchronous
GNN message passing.

described as follows:

a
(k)
{i:D(i,v)=∆−k} = AGGREGATE({h(k−1)

u : u ∈ N(i)}),

h
(k)
{i:D(i,v)=∆−k} = COMBINE(a

(k)
i ,h

(0)
i ),

(3)

where D(i, v) is the distance between vertices i and v in the
graph, and h

(0)
i is the initial feature of vertex i. The boldface

indices highlight the distinction between an asynchronous
GNN and a general synchronous GNN. In other words, in the
k-th iteration of a depth-∆ asynchronous GNN, only those
vertices whose distance to the root v is ∆− k is active and
aggregates information from its predecessors. Then, for each
active node, the aggregated information is combined with its
initial feature to update its own message, which will be sent
to its predecessors in the next iteration. In this way, unlike
synchronous GNNs, messages are passed through each edge
exactly only once (in the embedding of each node), saving a
significant amount of computational effort.

E. Dealing with Data Imbalance

The data imbalance issue refers to the phenomenon that
the class distribution of a data set is biased. Imbalanced
classifications pose a challenge for predictive modeling as
most of the machine learning algorithms used for classi-
fication were designed around the assumption of an equal
number of examples for each class [37]. For example, it is
observed that the model would easily lean towards majority
classes [38], invalidating some standard metrics like accuracy
(since they may cause misinterpretation of data). We refer
readers to [39] for a comprehensive review. In our dataset, the
negative nodes account for over 99% of the total, revealing
a severe imbalance.

Methods to address data imbalance can be divided into
two categories, namely data-level methods and algorithm-
level methods. Data-level methods seek to alter the distri-
bution of the training dataset so that standard algorithms for
balanced data can work well. Algorithm-level methods, on
the other hand, keep the training dataset unchanged while
adjusting the training/inference algorithm. We now introduce
two techniques adopted in our training.

1) Oversampling: Oversampling is one of the most pop-
ular data-level methods used in machine learning. We adopt
the basic version of it, called random minority oversampling,
which supplements the training data with multiple copies
of some of the minority classes [37]. Some more advanced
oversampling methods (e.g., SMOTE [40]) have also been

proposed, which we leave for possible future work. We do
not favor the opposite method, undersampling of the majority
class, because it discards a portion of available data.

2) Cost Sensitive Learning: Cost-sensitive learning [41]
assigns different penalties to different types of misclassifi-
cation errors. Mathematically, if Cij refers to the cost for
predicting class j when the actual class is i, the optimal
prediction for an example x is given by

argmin
i

∑
j

p(j|x)Cij ,

where p(j|x) is the estimated probability of example x being
in class j.

We encode cost-sensitive learning into the loss function by
decoupling the total loss L into two parts, namely the loss
on the positive samples (Lpos) and the loss on the negative
samples (Lneg). Since negative samples predominate, we
assign a penalty weight α (α < 1) to the negative loss,
so that the contribution of negative nodes to the total loss
function is reduced, which compensates for the imbalance
between sample classes. The weighted loss function can be
formulated explicitly as:

L = (Lpos + αLneg)/N, (4)

where N is the total number of samples.

F. Putting It All Together

In previous subsections, we propose two unique GNN ar-
chitectures, namely bidirectional and asynchronous, based on
the directed and acyclic properties of the target graph (DAG),
respectively. As the two structures are orthogonal, they can
be combined in our final GNN architecture, asynchronous
bidirectional graph neural network (ABGNN). We evaluate
the performance of ABGNN in Section VI-E.

V. INPUT-OUTPUT MATCHING

A. Network-flow-based Datapath Extraction

In the previous sections, we deal with the problem of block
boundary detection, that is identifying the boundary nodes of
target arithmetic blocks from a flattened netlist. Particularly, it
predicts the input and output nodes of target blocks. In some
applications, however, this is insufficient, and we need to fur-
ther match the input bits with the corresponding output bits.
In this section, we present a network-flow-based algorithm for
extracting the datapaths within an arithmetic block that match
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(a) Naive maximum flow might fail to handle the challenge of
fake inputs. Here a fake input e1 is involved.
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(b) Compared to naive maximum flow, min-cost flow manages to
deal with fake inputs. The bounding boxes highlight the

comparison between the wrong(dotted shallow orange) paths
and the correct paths (shallow blue). It is obvious that the correct
paths have lower costs and are thus chosen by our min-cost flow.

Fig. 5 Illustration of fake inputs, using a 2-bit ripple carry adder oi = ai + bi as an example. The numbers ‘v/cp, ct’ above
each flow edge give the value of flow going through it, its total capacity, and the cost of sending a unit of flow through it
respectively. The bold edges indicate a flow of value two passing through it while there is a unit flow on the rest colored
edges. The flow paths are denoted by orange or blue colors, where orange represents wrong paths and blue (either dark or
shallow) denotes correct paths. Particularly, there is no actual flow passing through the dotted paths in Fig. 5(b). Input/output
nodes that fail to be matched are marked with orange colors.

the block inputs with outputs. The problem has gained great
attention under the name ‘datapath extraction’, since it is
believed that datapath-aware physical synthesis may achieve
higher performance. Readers are referred to the study [42]
for a survey on datapath extraction approaches and datapath-
driven placement methodologies. For now, we illustrate the
feasibility of the network-flow approach for arithmetic block
IO matching, and leave the other possible solutions for future
work, as it is beyond the main scope of this paper.

Problem 2 (Block Input-output Matching). Given an (un-
ordered) block input set S = {a0, · · · , an−1, b0, · · · , bn−1}
and an (unordered) block output set T = {o0, o1, · · · , om−1}
such that T [m− 1 : 0] = A[n− 1 : 0] ∆ B[n− 1 : 0], where
∆ is an arithmetic operation, e.g., addition, multiplication,
etc. Our task is to identify datapaths from S and T such that
1) all nodes in S and T are covered, and 2) each datapath
starts from ai or bi and ends at oj , where 0 ≤ i, j ≤ n− 1.

Once the datapaths have been extracted, experts can easily
group the input/output nodes, since datapaths within the same
arithmetic block are much closer and more related to one
another than datapaths from different blocks.

Inspired by networkflow-based datapath bit slicing [43],
we formulate the problem as a maximum flow problem. We
add a pseudo source node S∗ and a pseudo sink node T ∗ in
the graph and add edges from S∗ to every node in S, as well
as every node in T to T ∗. The newly added edges from S∗

to nodes in S are assigned unit capacity, while the rest edges
are assigned a capacity of 2 (unit capacity for multipliers).
Then we run a maximum-flow algorithm to find the routes
between S and T . Ideally, since the total input capacity
equals the total output capacity, all the inputs and outputs can
be matched. However, this does not necessarily hold given
fuzzy, imperfect predictions of target block boundaries. In
the following part, we discuss some practical challenges and
propose customized techniques to address them.

Before diving into the technical details, we first introduce

a hypothesis that will be applied to simplify the problem.

Hypothesis 1. Given a true output node oi ∈ S, the closest
wire to oi in the predicted input set are probably aj or bj
that belongs to the same block. This can also be analogous
to true input nodes.

The hypothesis is based on the observation that the total
target block regions occupy only a small portion of the whole
circuit area. As a result, the fake input/output nodes are most
likely not located within the target block regions. For any
fake input wire e outside a target block b, the path from e to
an output of b will first go through an input of b, implying
that the outside fake input is farther to the block output than
some block outputs. The same is true for fake output nodes.

To support the above hypothesis, we conduct some sta-
tistical analysis on our dataset. For each true block output
oi ∈ T , we calculate the distance (the length of the shortest
path) from oi to each predicted input wire. It is found that
Hypothesis 1 holds for 97.6% of the block outputs, which
confirms the universality of the above hypothesis.

B. Dealing with Practical Challenges

1) Fake Inputs/Outputs: Theoretically, we assume that all
the block inputs/outputs are involved in S/T, and there are
no fake inputs/outputs. However, due to the imperfection
of GNN prediction, some true input/output nodes may be
missed and some fake nodes may be included. We refer to
the above challenge as ‘fake inputs/outputs’. Fig. 5 gives
some examples, where a fake input e1 is involved in Fig. 5(a).
Under this situation, the path from the fake input e1 to o0
may occupy a unit of capacity on edge (o0, T∗), causing a
missing true input a0 as well as a false datapath e1 → o0.

To alleviate the potential performance degradation caused
by fake inputs/outputs, we propose replacing the naive Max-
imum Flow algorithm with the Minimum Cost Flow algo-
rithm. This is based on Hypothesis 1, which indicates that
the wrong datapaths are longer than the correct datapaths. So
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a0a0
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c0c0

c1c1
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(a) Min-cost flow without convex cost plan fails to handle the
challenge of shared inputs.

a0a0

b0b0 p0p0
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t0t0
c0c0

c1c1

o0o0
S* T*

d0d0
g′ 0g′ 0

p′ 0p′ 0 t′ 0t′ 0
c′ 1c′ 1

c′ 0c′ 0 o′ 0o′ 0

1/1, 5

1/1, 1

1/1, 1

1/1, 1

2/2, 1 2/2, 1

2/2, 12/2, 1

1/1, 1

1/1, 1

1/1, 1

1/1, 1

(b) The correct solution (min-cost) given by our convex cost
scheme.

Fig. 6 The condition of shared inputs. For simplicity, we use two 1-bit ripple carry adders o0 = a0 + b0 and o
′

0 = a0 + d0 as
an example. It can be seen that the input bit a0 is matched to two different outputs o0 and o

′

0. To distinguish between edges
of different costs, we marked edges with larger cost with dotted lines (note that the meaning represented by ‘dotted’ here
differs from that in Fig. 5(b)). The flow paths are colored orange or blue, with blue denoting correct (target) paths and orange
denoting wrong paths. Input/output nodes that fail to be matched are marked with orange colors.

CabCab

P2P2

xabxabP1P1
x1x1 x2x2 x3x3

Fig. 7 A typical piecewise linear convex function.

by assigning each edge with unit weight, our new algorithm
prefers the correct datapaths (which are shorter) over the false
ones for a lower cost. For instance, in the above example
shown in Fig. 5(b), the false datapath e1 → o0 will not be
picked since it is longer than the correct datapath a0 → o0.

2) Shared Inputs: Another practical challenge is that
sometimes the same inputs may be shared by multiple
target blocks. In this scenario, a shared block input requires
increased capacity to match multiple block outputs. A naive
solution is to assign a larger capacity to each input edge.
However, this might cause capacity preemption, as illustrated
in Fig. 6(a), where a0 is the matched input to both o0 and o

′

0.
In the case of Fig. 6(a), a0 and b0 are of the same distance
from o0, indicating that the two datapaths a0 → o0 and
b0 → o0 are of the same cost and indistinguishable for o0.
Since b0 is assigned with a larger capacity, the capacity on
edge (o0, T

∗) might be only occupied by a flow of value two
from b0. Similarly, there might be a flow of value two from
d0, leaving no capacity balance a0. From the above example,
we can see that extra capacity may lead to over-allocation of
flow on one datapath that preempts another.

To address this issue, a larger flow should be allowed
to pass through each input node while keeping the flow
paths from the same input node separable. Based on this, we
propose introducing a convex cost scheme. The cost on edge
(a, b) in the convex cost scheme is formulated as a piecewise
linear convex function, which is no longer a constant value
but varies with the flow value passing through. Let Ce

ab(xab)

1, w12w12
 Ce

ab(xab) =
0, xab = 0
w1, xab = 1
w1 + w2, xab = 2

Ce
ab(xab) =

0, xab = 0
w1, xab = 1
w1 + w2, xab = 2

1, w11w11

1, w21w21
1, w22w22 

capacity weight
w1 = w11 + w12w1 = w11 + w12
w2 = w21 + w22w2 = w21 + w22

2, 1
a a

b b

split t1t1

t2t2

Fig. 8 An example of the split operation with n = 2.

denote the cost of sending xab units of flow along edge (a, b),
a typical piecewise linear convex cost function is illustrated
in Fig. 7. Here the keyword ‘convex’ means that any line
connecting two points (e.g., the dotted orange line connecting
points P1 and P2 in Fig. 7) lay above the function. Formally,
the cost function can be written as follows:

Ce
ab(xab) =



c0 + k1 × xab, x0 ≤ xab < x1

c0 + k1 × x1 + k2 × (xab − x1), x1 ≤ xab < x2

· · · , · · ·

c0 +

n−1∑
i=1

ki × (xi − xi−1)

+ kn × (xab − xn−1)

, xn−1 ≤ xab ≤ xn

(5)
We follow a standard way [44] to realize the Convex

Cost Scheme. To begin, a split operation S(n,w1 · · ·wn)
on edge (a, b) is composed of two steps: (1) remove edge
(a, b) and add n internal vertices t1, t2 · · · tn and (2) for each
internal vertex ti, add two edges (a, ti) and (ti, b) with a
unit capacity to connect a and b, whose total cost is wi.
The above operation S(k,w1 · · ·wn) enables piecewise cost
function since the split paths (a → ti → b) will be filled
up in the order of cost to achieve lowest total cost. Suppose
w0 = 0 and ∀i > 0, wi ≥ wi−1, the cost function can be
written as follows:

Ce
ab(xab) =

xab∑
i=0

wi (6)

Fig. 8 gives an example to illustrate the above procedure.
We apply the Convex Cost Scheme to all the edges that

connect to any input node. Specifically, for any input node
ai ∈ S, we apply S(n,wi

1 · · ·wi
n) to each in edge of a and

S(n,wo
1 · · ·wo

n) to each out edge of a. In this way, any target
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datapath ai → oi is divided into multiple paths with varying
costs and thus different priorities.

Fig. 6(b) gives an example to illustrate the effectiveness of
our algorithm. For simplicity, here we set n = 2, w1 = 1,
w2 = 5. The dotted edges are of larger cost. Similarly, let
Cp

ab(xab) denote the minimum cost of sending xab units of
flow from a to b. For the output edges (o0, T

∗) and (o
′

0, T
∗),

there are three ways to fill up their capacities: 1) Cp
b0o0

(2)
+ Cp

a0o
′
0

(1) + Cp

d0o
′
0

(1); 2) Cp
b0o0

(1) + Cp
a0o0(1) + Cp

d0o
′
0

(2),
and 3) Cp

b0o0
(1) + Cp

a0o0(1) + Cp

a0o
′
0

(1) + Cp

d0o
′
0

(1). It can
be easily calculated that the minimum cost of the first and
second solutions is 24 while the minimum cost of the third
solution is 20. Then it is obvious that the third solution, which
is also the correct solution, will be chosen. In practice, we
set n = 2, w1 = 1, w2 = 6.

C. Discussion of Limitations

Although the proposed algorithm can handle several practi-
cal challenges, it is not complete. One of the main limitations
is that it may perform badly when Hypothesis 1 does not
hold. Given a target output oj , suppose there is a fake input
wire e ∈ S that e is the same or less distant from oj than
the matched input ai. In this case, our min-cost flow may
choose the incorrect datapath e → oj for a lower cost.

To make up for the above drawback, we propose running
another naive maximum flow, the result of which is combined
with that of the convex min-cost flow to form a final solution.
However, this might lead to a higher false positive rate
since more datapaths are extracted. Therefore, we propose
the following filtering strategies:

1) Remove intermediate datapaths. In general, an ex-
tracted datapath is contained within a single arithmetic
block. However, the inputs of a block B1 might be
matched to the outputs of another block B2 at times.
These datapaths are likely to include some additional
inputs/outputs, such as B1 outputs or B2 inputs. Based
on the observation, we remove datapaths containing
multiple inputs or outputs.

2) Filter overlong datapaths. We remove datapaths whose
length exceeds a pre-defined threshold based on the fact
that fake datapaths are likely to be longer than correct
ones. In practice, we set the threshold for adders to 10
and multipliers to 15.

VI. EXPERIMENTS

A. Setup

Our arithmetic block detection framework is implemented
using DGL [45] and PyTorch [46]. The input-output matching
algorithms are developed upon networkx [47]. We also refer
to the EPFL logic synthesis libraries [48] when we reimple-
ment the baseline methods. We train and evaluate the models
on a Linux machine with 1 GeForce RTX 2080 Ti GPU,
32 Intel Xeon CPUs at 2.20 GHz, and 32 GB memory. For
fairness, we run each experiment 5 times and take the average
performance. And for all the baseline models, we tune them
and select the optimal hyper-parameters for each task.

TABLE I Statistics of the dataset.

Architecture BOOM ROCKET

#gates #wires #gates #wires

Adder

Kogge-Stone 139005 361962 24540 57726
Cond-sum 138358 360455 24737 57708

Brent-Kung 139526 366280 24340 58124
Hybrid 141319 369622 25491 60287

Sklansky 141093 369774 25208 59567
Ling 143903 378354 26179 62864

Accumulator

Radix8 Booth 140567 368155 24978 59132
AND-based 139375 362124 24613 57891

Mux-Based Booth 141518 369869 25732 60456
NAND-based 139120 360374 24638 57594

B. Dataset

The dataset we use comes from open-source RISC-V CPU
designs [49], including Rocket [50], a 5-stage in-order scalar
core, and Berkeley Out-of-Order (BOOM) Core [50], an out-
of-order superscalar RV64G core. We use BOOM as the
training set and leave Rocket as the testing set. The netlists are
synthesized with Synopsys Design Compiler using the SAED
32/28nm Digital Standard Cell Library. For each circuit,
different designs are generated by DC through synthesizing
with various design constraints. Since the design compiler
will corrupt the design hierarchy by default to optimize
circuit performance (i.e., across boundaries), labeling the
boundary of blocks becomes difficult. We propose first using
the commands ‘set compile ultra ungroup dw false’ and
‘compile ultra − no autoungroup’ to turn off the auto-
matic ungrouping. This step generates a hierarchical netlist
‘hier-netlist.v’, where the boundary information of the target
arithmetic blocks is preserved. The command ‘ungroup -
all -flatten’ is then used to flatten the netlist and perform
cross-module optimization, resulting in the final flatten netlist
‘netlist.v’. Since the wire nomination keeps the same in ‘hier-
netlist.v’ and ‘netlist.v’, we can label the flattened netlist with
the help of the hierarchical one. It is worth noting that the
above options are not required in the inference phase since
prediction can be conducted without boundary information,
as long as we have other ways to evaluate the prediction
results, e.g., manually checked by experts.

We list the details about the generated netlists in TA-
BLE I. In general, we evaluate the methods on two types
of arithmetic blocks: adder and multiply accumulator. The
Boolean functions of the two block types are s = a+ b and
s = a ∗ b + c, respectively. Compared to adders, multiply
accumulators that combine addition and multiplication are
more complicated. The inputs of an accumulator s = a∗b+c
can be divided into two groups: 1) addition inputs, e.g., c,
which we define as input-1, and 2) multiplication inputs,
e.g., a and b, defined as input-2. Since the local structure
of the two input types differs, we separate input-1 prediction
from input-2 prediction.

C. Baselines

Some representative literature works [4], [14], [17] that
cover functional methods, structural methods, and machine
learning-driven methods are implemented as the baseline
methods for comparison. In the functional approach [14],
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TABLE II Performance comparison on adder boundary detection. The case ‘Mixed’ refers to a design with mixed adder
architectures. We emphasize the best results with boldface and the second-best results with blue color. Hit rate is used for
evaluation, which is defined as the number of correctly predicted (input/output) boundary nodes over the total number of target
(input/output) boundary nodes.

Case TETC’13 [14] DATE’15 [4] DATE’19 [17] Ours

Input Output Runtime(s) Input Output Runtime (s) Input Output Runtime (s) Input Output Runtime (s)

Cond-sum 0.825 0.598 305.6 0.770 0.787 13.4 0.808 0.744 13.0 0.949 0.866 10.9
Brent Kung 0.826 0.672 256.7 0.554 0.493 12.6 0.875 0.820 11.6 0.950 0.954 10.2

Hybrid 0.815 0.389 459.8 0.179 0.042 14.1 0.820 0.699 15.1 0.947 0.957 12.0
Kogge-Stone 0.823 0.648 436.7 0.755 0.783 14.3 0.763 0.810 13.2 0.944 0.961 11.0

Ling 0.803 0.456 262.5 0.249 0.022 14.8 0.874 0.653 16.3 0.954 0.944 13.2
Sklansky 0.823 0.626 376.5 0.484 0.483 13.3 0.864 0.845 14.1 0.960 0.938 11.9

Mixed 0.819 0.497 359.8 0.522 0.485 13.6 0.785 0.777 12.9 0.940 0.928 11.1

Average 0.819 0.555 350.7 0.502 0.442 13.7 0.827 0.763 13.8 0.949 0.934 11.4

TABLE III Performance comparison on multiply accumulator boundary detection. Hit rate is used for evaluation.

Case TETC’13 [14] DATE’19 [17] Ours

Input1 Input2 Output Runtime (s) Input1 Input2 Output Runtime (s) Input1 Input2 Output Runtime (s)

Radix8 Booth 0.836 0.671 0.698 340.6 0.776 0.562 0.681 13.3 0.986 0.956 0.973 12.1
AND-based 0.831 0.720 0.432 359.3 0.781 0.673 0.690 12.5 0.986 0.965 0.970 11.3

Mux-Based Booth 0.825 0.636 0.664 461.8 0.775 0.584 0.699 14.1 0.982 0.965 0.974 12.4
NAND-based 0.857 0.738 0.371 359.8 0.772 0.621 0.862 12.9 0.986 0.776 0.969 11.5

Mixed 0.833 0.712 0.508 345.1 0.774 0.603 0.737 13.0 0.981 0.945 0.971 11.7
Average 0.836 0.695 0.535 373.3 0.776 0.609 0.734 13.2 0.984 0.921 0.971 11.8

all cuts are enumerated and grouped into permutation-
independent equivalence classes. Candidate words are then
aggregated within each class based on signal propagation or
common support signal. The authors further propose a candi-
date word propagation procedure to form new words. An opti-
mistic estimation of the algorithm’s performance upper bound
is made by simply including all the potential words, without
considering the results of symbolic simulation or equivalence
checking. Wei et al. [4] conducted structural identification by
constructing xor-forests based on the connection hierarchy.
To be more specific, they use cut enumeration to identify
all xor-trees, and then build thexor-forests by identifying
carry-out signals. These xor-forests are possible instances of
adders. Fayyazi et al. [17] proposed to learn a special vector,
level-dependent decaying sum (LDDS) existence vector (EV),
to represent circuit topology. The proposed EV counts the
number of gate types within the local neighborhood with
distance-based penalty weights. For the sake of fairness, the
oversampling technique is also applied during training.

D. Evaluation of Boundary Detection

Performance comparison on arithmetic block boundary
detection is first made between our method and all baseline
approaches [4], [14], [17]. Since the structural approach [14]
is customized for adders, it was not applied to identify multi-
ply accumulators. From Tables II and III, it can be concluded
that our proposed method greatly outperforms prior works,
achieving over 90% average hit rate in all the boundary
detection tasks. The other machine learning approach [17]
achieves the second-best performance in the case of adder
detection, which confirms the excellent adaptability of deep
learning methods. The method by Subramanyan et al. [14] are
able to cover lots of words composed of replicated functional

bitslices, and therefore achieves an acceptable hit rate, at
the cost of much higher runtime. The approach by Wei et
al. [4] is stable for the more regular architectures (Cond-sum,
Kogge-Stone), but does not perform well given complicated
or highly optimized structures (Hybrid, Ling), resulting in
unsatisfactory average hit rate.

E. Ablation Study on ABGNN

We conducted comprehensive experiments to evaluate our
proposed graph neural network architecture and demonstrate
its outstanding capability in DAG representation learning. The
models were trained for 100 epochs, taking around 2 hours.

Bidirectional Depths Selection. The depth of a Graph
Neural Network model indicates the number of search hops.
Larger search hops result in a broader search scope, allowing
more structural information to be aggregated, which may ben-
efit the recognition. On the other hand, the increased search
scope is more likely to involve interference information and
might suffer from the over-smoothing issue. Furthermore,
the neighboring information from the two directions may
not be of equal importance. For example, let node n be an
input wire of block B; the fanout cone rooted at n, which
contains the structural information of B, is unquestionably
more useful in determining whether n is an input node.
Therefore, it is natural to specify different network depths
for the two directions, depending on the specific task. We
carefully select proper fanin depth and fanout depth after
comparing the performance of models with different depths.
In practice, we set the (fanin depth, fanout depth) as (1, 4)
for adder input prediction, (3, 0) for adder output, (2, 4) for
accumulator input-1, (0, 5) for accumulator input-2, and (4,3)
for accumulator output prediction.
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TABLE IV Performance comparison between different GNN models on adder input boundary detection.

Case GIN [19] GAT [51] GraphSage [18] D-SAGE [25] ABGNN (Ours)

Recall F1-score Recall F1-score Recall F1-score Recall F1-score Recall F1-score

Cond-sum 0.875 0.890 0.882 0.885 0.935 0.931 0.940 0.935 0.949 0.951
Brent Kung 0.809 0.873 0.906 0.910 0.915 0.915 0.943 0.937 0.950 0.964

Hybrid 0.930 0.937 0.903 0.890 0.930 0.928 0.940 0.942 0.947 0.949
Kogge-Stone 0.925 0.917 0.918 0.887 0.940 0.920 0.951 0.931 0.944 0.954

Ling 0.930 0.925 0.915 0.881 0.950 0.941 0.940 0.942 0.954 0.963
Sklansky 0.935 0.938 0.901 0.895 0.928 0.930 0.947 0.932 0.960 0.955

Mixed 0.865 0.882 0.872 0.883 0.886 0.909 0.915 0.903 0.940 0.928

Average 0.896 0.908 0.899 0.890 0.926 0.921 0.940 0.932 0.949 0.952

TABLE V Performance comparison between different GNN models on adder output boundary detection.

Case GIN [19] GAT [51] GraphSage [18] D-SAGE [25] ABGNN (Ours)

Recall F1-score Recall F1-score Recall F1-score Recall F1-score Recall F1-score

Cond-sum 0.835 0.863 0.785 0.798 0.863 0.880 0.888 0.905 0.866 0.905
Brent-Kung 0.906 0.921 0.845 0.870 0.925 0.923 0.947 0.948 0.953 0.950

Hybrid 0.911 0.875 0.940 0.897 0.93 0.912 0.912 0.927 0.955 0.939
Kogge-Stone 0.941 0.915 0.878 0.889 0.945 0.942 0.963 0.952 0.965 0.955

Ling 0.916 0.912 0.935 0.909 0.912 0.911 0.895 0.905 0.945 0.948
Sklansky 0.898 0.894 0.865 0.855 0.932 0.919 0.879 0.912 0.938 0.943

Mixed 0.859 0.878 0.835 0.844 0.880 0.854 0.906 0.887 0.917 0.921

Average 0.895 0.894 0.869 0.866 0.913 0.905 0.913 0.920 0.934 0.937

TABLE VI Performance comparison between different GNN models on multiply accumulator input-1 boundary detection.

Case GIN [19] GAT [51] GraphSage [18] D-SAGE [25] ABGNN (Ours)

Recall F1-score Recall F1-score Recall F1-score Recall F1-score Recall F1-score

adix8 Booth 0.966 0.951 0.957 0.937 0.975 0.962 0.981 0.967 0.986 0.975
AND-based 0.971 0.949 0.980 0.966 0.980 0.962 0.981 0.967 0.986 0.975

Mux-Based Booth 0.962 0.944 0.957 0.953 0.971 0.951 0.949 0.951 0.982 0.973
NAND-based 0.966 0.955 0.975 0.966 0.971 0.957 0.981 0.967 0.986 0.954

Mixed 0.963 0.948 0.966 0.955 0.974 0.959 0.967 0.960 0.981 0.964
Average 0.966 0.949 0.967 0.955 0.974 0.958 0.972 0.962 0.984 0.968

TABLE VII Performance comparison between different GNN models on multiply accumulator input-2 boundary detection.

Case GIN [19] GAT [51] GraphSage [18] D-SAGE [25] ABGNN (Ours)

Recall F1-score Recall F1-score Recall F1-score Recall F1-score Recall F1-score

Radix8 Booth 0.781 0.836 0.526 0.656 0.829 0.809 0.772 0.807 0.956 0.965
AND-based 0.868 0.855 0.816 0.825 0.873 0.834 0.873 0.847 0.965 0.878

Mux-Based Booth 0.864 0.851 0.820 0.791 0.882 0.839 0.895 0.838 0.965 0.967
NAND-based 0.539 0.676 0.785 0.817 0.623 0.676 0.592 0.687 0.776 0.818

Mixed 0.832 0.844 0.805 0.811 0.832 0.825 0.853 0.819 0.945 0.922
Average 0.777 0.812 0.750 0.780 0.808 0.797 0.797 0.800 0.921 0.910

TABLE VIII Performance comparison between different GNN models on multiply accumulator output boundary detection.

Case GIN [19] GAT [51] GraphSage [18] D-SAGE [25] ABGNN (Ours)

Recall F1-score Recall F1-score Recall F1-score Recall F1-score Recall F1-score

Radix8 Booth 0.961 0.940 0.969 0.961 0.721 0.789 0.952 0.965 0.973 0.982
AND-based 0.952 0.932 0.952 0.952 0.956 0.916 0.961 0.969 0.970 0.981

Mux-Based Booth 0.965 0.940 0.952 0.950 0.956 0.911 0.991 0.985 0.974 0.975
NAND-based 0.956 0.924 0.974 0.961 0.712 0.762 0.948 0.962 0.969 0.980

Mixed 0.958 0.935 0.961 0.954 0.855 0.837 0.967 0.968 0.971 0.979
Average 0.958 0.934 0.962 0.956 0.840 0.843 0.964 0.970 0.971 0.979
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TABLE IX Ablation Study of ABGNN. BGNN refers to a
synchronous bi-directional model, and AGNN refers to an
asynchronous uni-directional model.

Task Model Recall F1-score Runtime (ms)
Region ABGNN 0.733 0.705 143.8

Input
ABGNN 0.951 0.943 171.5
BGNN 0.941 0.939 214.4
AGNN 0.929 0.92 156.3

Output
ABGNN 0.952 0.958 110.6
BGNN 0.948 0.952 139.4
AGNN 0.878 0.845 75.2

Comparison with State-of-the-Art GNNs. To fully
demonstrate the effectiveness of our proposed techniques,
our ABGNN is compared with several state-of-the-art Graph
Neural Networks, including GAT [51], GIN [19], Graph-
SAGE [18], and D-SAGE [25] on the Rocket dataset. As
listed in Tables IV to VIII, ABGNN shows its superiority
on DAG representation learning with a higher average recall
and F1 score than the baseline methods. Among all the
baselines, D-SAGE is the most similar to ours, which also
considers bidirectional information combination. However,
the identical search depth for both directions (fanin/fanout)
in D-SAGE leads to performance degradation. As previously
stated, information from the two directions plays different
roles in the boundary identification tasks, implying distinct
optimal search depth for fanin and fanout. Consequently,
the completely-separate bidirectional information collection
in our model fits the scenario better, resulting in superior per-
formance. Furthermore, the decoupling operation reduces the
neighborhood scale significantly so that the over-smoothing
issue is alleviated. As a result, it allows deeper models
and thus better performance. Particularly, ABGNN greatly
outperforms other models by more than 10% on the task of
accumulator input-2 boundary prediction. The performance
gain benefits from the deeper architecture of ABGNN. Since
the scale of a single-direction neighborhood is much smaller
than that of a full neighborhood, ABGNN suffers less from
the over-smoothing issue and allows for larger search depth.
As a result, ABGNN shows its superiority in complex cases
that requires a deeper view. To sum up, our proposed ABGNN
is shown to be superior to state-of-the-art GNNs on netlist
representation learning.

Ablation Studies. In the following part, we conduct some
ablation studies to demonstrate the efficacy of the proposed
techniques. Due to limited space, we only show the av-
erage performance on the two types of arithmetic blocks.
We first make a comparison between the asynchronous and
synchronous message passing scheme to find out its effect.
A synchronous model (BGNN) is built by replacing the
message passing scheme in ABGNN with a synchronous
one while remaining the model architecture. To be fair, we
leave the other hyper-parameters the same, e.g., the number
of layers. The results are listed in TABLE IX. It can be seen
that the asynchronous scheme reduces the model’s inference
time by 20.0% and 20.7% for input and output boundary
identification, respectively, with no performance degradation.

We also conducted experiments to demonstrate the ef-

fects of bidirectional information aggregation, as listed in
TABLE IX. A unidirectional model (AGNN) is built with
no fanout layers for output boundary detection and no fanin
layers for input identification. It is found that bidirectional
information aggregation improves recall by 7.4% and F1-
score by 11.3% for the output task, while for the input task,
the improvement is 2.2% and 2.3%, respectively. The results
indicate that information from a single direction is insufficient
in the boundary prediction problem. Therefore, combining
representations learned from both directions is necessary.

Furthermore, we compare the two different problem formu-
lations mentioned in Section IV-A, namely region detection
and boundary detection. It is worth noting that we adopt the
latter one in our final solution. For region detection, the idea
is to assign a positive label to all the nodes within the target
arithmetic block (including I/O nodes). TABLE IX shows the
performance of ABGNN in the two tasks. As can be seen,
ABGNN performs far better in boundary detection than in
region detection. The result indicates that internal nodes are
not as distinct as boundary nodes.

F. Evaluation of Input-output Matching
In this part, we conducted experiments to measure the

performance of our proposed convex cost network-flow-based
input-output matching approach. For accumulators, we run
two separate flows f1 and f2 to match input-1 nodes and
input-2 nodes with the output nodes, respectively. Since the
input-1 nodes serve as operands for addition, f1 resembles
adder input-output matching. On the other hand, f2 is close
to multiplier input-output matching. Due to limited space, we
only discuss the results of the matching for input-2 because
it deserves more attention.

In the following part, two metrics are used for evaluation:
1) Hit Rate (HR): the most important metric defined as the
proportion of matched true input/output nodes to total target
input/output nodes. 2) False Positive Rate (FPR): a metric that
depicts the proportion of fake input/output nodes involved in
the results, defined as the number of fake input/output nodes
divided by the total number of matched input/output nodes.

We compare the performance of our convex cost network-
flow-based algorithm with the naive maximum-flow-based
one proposed in the previous work [1]. All the algorithms
have been combined with the filtering techniques proposed
in Section V-C to reduce the false-positive rate. The results
are listed in Tables X and XI. It can be seen that our newly
proposed approach outperforms the previous approach. On
average, it achieves a hit rate gain of 2.1%–4.7% at the
cost of 0.0%–1.4% increase in false positive rate. Overall,
our proposed algorithm only misses 3.8% inputs and 0.4%
outputs while involving less than 5% fake nodes. On the other
hand, the performance is degraded for accumulators. We can
see a miss rate of 0.5% for inputs and 4.9% for outputs,
as well as around 10% fake nodes. More specifically, both
methods perform badly in the case of NAND-based multiply
accumulators. Combined with the results from TABLE VII,
we speculate that the degradation might be caused by lost
input/output nodes due to the fuzzy prediction of GNN mod-
els. We also conducted experiments to evaluate the efficacy
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TABLE X Performance comparison on adder input-output matching. HR and FPR are hit rate and false positive rate, respectively.

Case
Input Output

Naive max-flow Min-cost-flow (ours) Naive max-flow Min-cost-flow (ours)

HR FPR HR FPR HR FPR HR FPR

Brent Kung 0.939 0.020 0.950 0.018 0.912 0.021 0.954 0.019
Kogge-Stone 0.916 0.025 0.942 0.023 0.896 0.027 0.957 0.027

Cond-sum 0.769 0.071 0.784 0.098 0.813 0.052 0.866 0.051
Ling 0.924 0.016 0.948 0.016 0.901 0.017 0.941 0.015

Hybrid 0.889 0.051 0.914 0.049 0.883 0.046 0.954 0.042
Sklansky 0.917 0.046 0.950 0.051 0.936 0.043 0.938 0.050

Mixed 0.878 0.042 0.892 0.056 0.857 0.035 0.912 0.031
Average 0.890 0.039 0.911 0.044 0.885 0.034 0.932 0.034

TABLE XI Performance comparison on multiply accumulator input-output matching (input-2 with output).

Case
Input-2 Output

Naive max-flow Min-cost-flow (ours) Naive max-flow Min-cost-flow (ours)

HR FPR HR FPR HR FPR HR FPR

Radix8 Booth 0.930 0.009 0.955 0.018 0.934 0.009 0.965 0.013
AND-based 0.882 0.152 0.943 0.192 0.865 0.150 0.913 0.194

Mux-Based Booth 0.947 0.014 0.964 0.018 0.961 0.027 0.973 0.022
NAND-based 0.774 0.124 0.775 0.128 0.777 0.136 0.803 0.168

Mixed 0.914 0.027 0.944 0.035 0.938 0.042 0.958 0.037
Average 0.889 0.065 0.916 0.078 0.895 0.073 0.922 0.087

GIN GAT GraphSage DSAGE
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0.86

0.88

0.9
max-flow

min-cost-flow

(a) Adder HR
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max-flow
min-cost-flow

(b) Adder FPR

GIN GAT GraphSage DSAGE

0.75
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0.85

(c) Accumulator HR

GIN GAT GraphSage DSAGE

0.08

0.10

(d) Accumulator FPR

Fig. 9 Performance comparison on input-output matching
algorithms when combined with baseline GNN models. Here
we take the average performance on inputs and outputs.

of our approach combined with the baseline models. As can
be seen from Fig. 9, our matching algorithm outperforms
the previous maximum-flow-based method in all the cases.
Specifically, our approach achieves an average hit rate gain
of 2.2% for adders and 3.0% for multiply accumulators, at
the cost of less than 0.5% increase in false positive rate.
The results fully demonstrate the efficacy of our proposed
algorithm and its superiority over the previous work.

VII. CONCLUSION

Identifying arithmetic blocks is a vital procedure for var-
ious tasks like malicious logic detection and logic opti-
mization. In this work, we propose a graph learning-based

arithmetic block identification framework that efficiently rec-
ognizes the boundary of arithmetic blocks. To boost the per-
formance of the whole framework, we propose a specialized
graph neural network architecture for netlist representation
learning, which outperforms existing dominantly used GNNs.
We further develop a convex cost network-flow approach to
match the input and output wires predicted by the GNN
models. Experimental results have confirmed the superior our
framework: compared with state-of-the-art structural, func-
tional, and machine learning-based block mapping schemes,
our framework achieves the highest sensitivity with the fastest
runtime in adder and multiply accumulator identification from
an open-source RISC-V CPU design (the Rocket core). More-
over, our proposed input-output matching algorithm handles
several practical challenges and outperforms previous works.
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