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Abstract

Computational lithography is a critical research area for the contin-

ued scaling of semiconductor manufacturing process technology

by enhancing silicon printability via numerical computing meth-

ods. Today’s solutions for these problems are primarily CPU-based

and require many thousands of CPUs running for days to tape

out a modern chip. We seek AI/GPU-assisted solutions for the two

problems, aiming at improving both runtime and quality. Prior

academic research has proposed using machine learning for lithog-

raphy modeling and mask optimization, typically represented as

image-to-image mapping problems, where convolution layer back-

boned UNets and ResNets are applied. However, due to the lack of

domain knowledge integrated into the framework designs, these

solutions have been limited by their application scenarios or perfor-

mance. Our method aims to tackle the limitations of such previous

CNN-based solutions by introducing lithography bias into the neu-

ral network design, yielding a much more efficient model design

and significant performance improvements.
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1 Introduction

Computational lithography is a critical research area for the contin-

ued scaling of semiconductor manufacturing process technology

by enhancing silicon printability via numerical computing methods

[1–3]. Detailed topics include lithography modeling, resolution en-

hancements, optical proximity correction (OPC), and source mask

optimization (SMO). In this paper, we focus on 1) lithographymodel-

ing, which computes the post-lithograph shape on the silicon wafer
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Figure 1: Lithography modeling and mask optimization.

given a mask design; and 2) mask optimization (inverse lithog-

raphy), which optimizes a mask design such that the remaining

pattern on the silicon wafer after the lithography process is as close

as the desired shape. (See Figure 1)

Today’s solutions for these problems are primarily CPU-based

and require many thousands of CPUs running for days to tape

out a modern chip. Limited by both CPU computing capabilities

and legacy optimization algorithms, further QoR improvement

becomes challenging. Developing AI-assisted computational lithog-

raphy solutions will provide market opportunities for GPUs and

avoid reliance on traditional algorithms in design for manufactur-

ing flows, potentially helping to eventually improve yield in future

chip products. Prior academic research has proposed using machine

learning for lithography modeling and mask optimization, typically

represented as image-to-image mapping problems [4–7]. Most solu-

tions have reused existing computer vision-friendly neural network

structures for the problem. Examples include LithoGAN [8], GAN-

OPC [9], and DAMO [10], where convolution layer backboned

UNets [11] and ResNets [12] are applied. The biggest challenge

building AI computational lithography solution is lacking of data.

A massive and well-distributed layout design data is usually hard

to obtain, due to long chip design cycle and/or IP protection [13].

We seek physics-inspired AI solutions for the two problems, aiming

at improving both runtime and quality.

Compensating Data with Physics. Physics-Informed Neural

Networks (PINN) have been recently investigated to solve compli-

cated physical and numerical problems, where there are limited

volume of experimental data [14, 15]. Particularly, [14] introduces

regimes of physical problems and their data availability, as shown

in Figure 2. The nature of computational lithography makes it a

problem with limited data and lots of physics, and that is why

prior machine learning models can only be auxiliary components

in traditional computational lithography solutions. Following the

principles of physics-informed learning, there are three design
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Figure 2: Regimes of physical problems and data availability,

resketched from [15].

methodologies integrating physics into machine learning models:

(1) Observational bias can be directly learned from data or datasets

with underlying physical properties. An example is introducing

shift/rotation invariance through data augmentation. (2) Inductive

bias brings physics into the neural network architecture design that

allows strict constraints in a machine learning system. (3) Learn-

ing bias focuses on specific loss functions and inference flow that

reflects real physical constraints.

CFNO as Lithography Learner. Our method starts with the

operator backbone design called Convolutional Fourier Neural Op-

erator (CFNO), which inherits the advantages of Fourier Neural

Operator (FNO) [16] and resembles the real physics in forward

lithography modeling, adding inductive bias in neural network

architecture designs. CFNO consists of three configurable compo-

nents: (1) an shared FNO across input image tokens, (2) a token-wise

convolution layer that aggregates intra-token dependencies and

(3) a auxiliary convolution path that learns image local details. We

will show later how these components bias the machine learning

model for computational lithography followed by case studies on

lithography modeling and mask optimization.

The remainder of the paper is organized as follows:Section 2

covers the details of the CFNO design; Section 3 presents two case

studies using CFNO for lithography modeling and mask optimiza-

tion; Section 4 concludes the paper with future researches.

2 Convolutional Fourier Neural Operator

In this section, we will show the analogy between FNO and mathe-

matics in optical lithography process and detail the components of

CFNO.

2.1 Analogy Between Lithography and FNO

The Hopkins diffraction model [17] is extensively studied in lit-

erature to represent lithography behavior. For a thin mask image

𝑴 ∈ R𝑁×𝑁 , the light intensity 𝑰 ∈ R𝑁×𝑁 on the photo resist is

given by

𝑰 (𝑚,𝑛) = 𝒔
H
𝑨𝒔, (1)

where 𝑨 ∈ R𝑁
2×𝑁 2

contains the transmission cross-coefficient, H

denotes the conjugate transpose and 𝒔 ∈ R1×𝑁
2
is defined by

𝒔 = 𝑴̃ (𝑝, 𝑞)𝑒 𝑗 (2𝑝𝑚+2𝑞𝑛)𝜋 , (2)

where 𝑴̃ (𝑝, 𝑞) = F(𝑴 (𝑚,𝑛)). To reduce the compute overhead,

a singular value decomposition (SVD) approximation is typically

adopted for lithography modeling. The basic idea is to take the SVD

of the coefficient matrix 𝑨 in the Hopkins model and formulate the

lithography forward process as

𝑰 (𝑚,𝑛) =

𝑁 2∑
𝑘=1

𝛼𝑘 |𝒉𝑘 (𝑚,𝑛) ⊗ 𝑴 (𝑚,𝑛) |2, (3)

where 𝒉𝑘 terms are lithography kernels and 𝛼𝑘 terms are the asso-

ciated eigenvalues. Refer to [17] on the details from Equation (1)

to Equation (3). If we only keep the 𝑙 largest 𝛼𝑘 values for faster

calculation [2, 18], eq. (3) becomes

𝑰 (𝑚,𝑛) =

𝑙∑
𝑘=1

𝛼𝑘 |𝒉𝑘 (𝑚,𝑛) ⊗ 𝑴 (𝑚,𝑛) |2, 𝑙 � 𝑁 2 . (4)

The computing cost can be further reduced if we move to Fourier

space as

𝑰 =

𝑙∑
𝑘=1

𝛼𝑘 |F
−1 (F(𝒉𝑘 ) � F(𝑴)) |2 . (5)

which is normally the equation used for forward simulation.

On the other hand, FNO [16] is an operator proposed to solve

partial differential equations. FNO tries to find a parameterized

mapping between two finite dimension spaces such that the map-

ping is close to the physical behavior. Numerically, FNO is given

by

𝑽𝑡+1 = 𝜎 (F−1 (F(𝑽𝑡 ) ·𝑾R)),𝑾R ∈ C𝐶×𝐶×𝐻×𝑊 , (6)

where 𝑽𝑡 and 𝑽𝑡+1 represent the input and output space, respectively,

𝑾R corresponds to learnable parameters in FNO and 𝜎 (·) is some

activation function.

Interestingly, Equation (6) has four major computing stages that

resemble the aerial image computation in Equation (5), as summa-

rized in Table 1. This hence motivates us to deploy FNO into neural

network design to bias machine learning models.

2.2 CFNO Backbone

Motivated by previous discussion, we propose the operator design

called CFNO [19] that targets at learning layout embeddings for

down stream tasks. The basic architecture of CFNO is depicted in

Figure 3, which shows three configurable components:

• Shared FNO: requires the input image/tensor to be divided

into non-overlapped patches (tokens) and all patches will

go through a shared FNO layer, as defined in Equation (6).

This is the operation we designed to capture the lithogra-

phy behavior in a local region and reduce the overhead of

computing FFT over a large input.

• TokenConv: follows the output of Shared FNO. This is imple-

mented by a convolution layer forcing all entries in a token

to share the same parameter. This allows us to learn intra-

token dependencies that is essential in lithography process

and cannot be captured in shared FNO.

• CNN Local Perception: is a path containing regular convolu-

tion layers. It extracts layout features and aggragetes with

TokenConv outputs.

We introduce the CNN path for two reasons: (1) convolution

layers are talented for understanding image details which have

significant impact on lithography results; (2) FNO plays an role

of global convolution computed in frequency domain, which has
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Table 1: Analogy between lithography simulation and FNO.

Step Lithography Simulation FNO

1 F(𝑴): FFT on rasterized mask F(𝑽𝑡 ): FFT on input space
2 F(𝒉𝑘 ) (·): Linear transformation with lithography kernels 𝑾R (·): Linear channel mixing
3 F−1 (·): Convert back to spatial domain F−1 (·): Convert back to spatial domain
4 𝛼 [·]2: Weighted summation across intensity responses to all lithography kernels 𝜎 : Some activation

FNO

Shared FNO TokenConv

Conv Conv Conv

Input Embedding

1○ 2○

3○ CNN Local Perception

Figure 3: CFNO backbone architecture.

an assumption that the input tokens are periodic. However, the

assumption does not necessarily hold for layout images, and we

need additional layers to compensate the error.

For the token shared FNO, we used the same pipeline as in

Equation (6). Given a layout image 𝒁𝑡 ∈ R
𝐻×𝑊 , we first divide it

into non-overlapped patches, referred as tokens:

𝒁𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝒁𝑡,1,1 𝒁𝑡,1,2 ... 𝒁𝑡,1,𝑛

𝒁𝑡,2,1 𝒁𝑡,2,2 ... 𝒁𝑡,2,𝑛

... ... ... ...

𝒁𝑡,𝑚,1 𝒁𝑡,𝑚,2 ... 𝒁𝑡,𝑚,𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
, (7)

where 𝒁𝑡,𝑖, 𝑗 ∈ R
𝑘×𝑘 ’s are layout tokens, 𝐻 =𝑚𝑘 and𝑊 = 𝑛𝑘 . We

define the shared FNO 𝑓 (·;𝑾1) to get the first level token embed-

ding:

𝑻̃𝑖, 𝑗 = 𝑓 (𝒁𝑡,𝑖, 𝑗 ;𝑾1), 𝑖 = 1, 2, ...,𝑚, 𝑗 = 1, 2, ..., 𝑛, (8)

where𝑾 ∈ C𝑘×𝑘×𝑑 and 𝑑 denotes the lifted channel number. Obvi-

ously, Equation (8) can be finished efficiently through batch pro-

cessing and a smaller 𝑘 indicates a shared FNO with fewer trainable

parameters. However, this token-shared approach scarifies the abil-

ity of global information acquisition for model size.

To tackle this concern, we further introduce the second level

token embedding via a token-wise convolution parametered with

𝑾2 ∈ R
(2𝑠+1)×(2𝑠+1) :

𝑻𝑖, 𝑗 =

𝑠∑
𝑡𝑥=−𝑠

𝑠∑
𝑡𝑦=−𝑠

𝑾2 [𝑖 + 𝑡𝑥 , 𝑗 + 𝑡𝑦] · 𝑻̃𝑖+𝑡𝑥 , 𝑗+𝑡𝑦 , (9)

which finally formulates the layout global embedding:

𝑻 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑻1,1 𝑻1,2 ... 𝑻1,𝑛

𝑻2,1 𝑻2,2 ... 𝑻2,𝑛

... ... ... ...

𝑻𝑚,1 𝑻𝑚,2 ... 𝑻𝑚,𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
. (10)

Equation (9) defines how tokens at different spatial locations are

mixed and hence addresses token boundary inconsistency issue

and long-range dependency requirements. It should be also noted

that both shared FNO and token-wise convolution are configurable

according to different receptive field and model capacity demands.

3 Case Studies

3.1 AI for Lithography Modeling

For the first case study, we investigate the possibility of CFNO

backbone for learning lithography modeling process. Particularly,

we focus on the process of mask to resist image mapping with dual

band optics-inspired neural network (DOINN) [20].

3.1.1 Building DOINN with CFNO Backbone The architecture of

DOINN is depicted in Figure 4, where we adopt a very simple CFNO

instantiation in the network architecture. In the training phase, the

network is designed to take 2𝜇𝑚 × 2𝜇 mask input rasterized with

1𝑛𝑚 pixel size. In the forward lithography modeling task, we set the

number of patches to be one. Therefore, the token-wise convolution

is no longer necessary, yielding two embedding learning path: (1)

global perception (GP) and (2) local perception (LP). The learned

embedding will be feed into stacked convolution/transposed con-

volution layers for resist image reconstruction. It should be noticed

that a downsample pooling is applied as FNO is not designed for

high frequency details. This will also reduce the computing in FNO

significantly.

In the inference phase, we want the model to be efficient in prac-

tical application scenario, where the input mask images could be

with any random sizes. We hence propose the large tile simulation

scheme. This is not trivial due to the existence of Fourier compo-

nents, because if we feed larger tile in the FNO unit, the frequency

coefficients and the trained parameters will mismatch and cause

random artifacts in the generated resist images. Therefore, we pro-

posed the large tile simulation scheme for the local perception path

as shown in Figure 5.

Suppose the DOINN is trained with 𝐻 ×𝑊 mask-contour pairs.

The global perception G : R𝐻×𝑊 → R𝐶×
𝐻
8 ×

𝑊
8 can be expressed as

𝑭gp = G(𝑴 ;𝑾R), (11)

where 𝑭gp ∈ R𝐶×
𝐻
8 ×

𝑊
8 is the feature map output of GP path,

𝑴 ∈ R𝐻×𝑊 denotes the after-pooling mask and 𝑾R are trained

parameters of the Fourier Unit. Let Gs : R
𝑠𝐻×𝑠𝑊 → R𝐶×

𝑠𝐻
8 ×

𝑠𝑊
8 be

the global perception path which processes a mask 𝑴s ∈ R
𝑠𝐻×𝑠𝑊

that is 𝑠× larger than tiles used for training. Then each entry of

output feature map 𝑭s,gp is defined as

𝑭s,gp [:, 𝑖, 𝑗] = Gs (𝑴s;𝑾R) [:, 𝑖, 𝑗]

=G(𝑴s [
𝑚𝐻

2
:
(𝑚 + 2)𝐻

2
,
𝑛𝑊

2
:
(𝑛 + 2)𝑊

2
];𝑾R) [:, 𝑝, 𝑞], (12)
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Optimized 
Fourier Unit

⊕(1) Global Perception

(2) Local Perception

(3) Image Reconstruction
pool, /8

concat

concat

Figure 4: The overall resist image prediction pipeline of the DOINN [20].

Optimized 
Fourier Unit

pool, /8

Full Tile Core

Figure 5: Large tile global perception [20].

where 𝑑
2 ≤ 𝑖 < 𝑠𝐻 − 𝑑

2 ,
𝑑
2 ≤ 𝑗 < 𝑠𝑊 − 𝑑

2 and

𝑚 = �
2(𝑖 − 𝑑

2 )

𝐻
	, 𝑛 = �

2( 𝑗 − 𝑑
2 )

𝑊
	,

𝑝 = ((𝑖 −
𝑑

2
) mod

𝐻

2
) +

𝑑

2
,

𝑞 = (( 𝑗 −
𝑑

2
) mod

𝑊

2
) +

𝑑

2
. (13)

3.1.2 Results To verify the effectiveness of the DOINN model, we

show experiments on academic and industrial designs from 14𝑛𝑚

to 32𝑛𝑚 technology nodes. Statistics of the benchmarks are listed

in Table 2 with total number of mask-resist image pairs. We adopt

mean pixel accuracy and mean intersection over union to measure

the resist image quality.

Definition 1 (Mean Intersection Over Union (mIOU)). Given 𝑘

classes of predicted shapes 𝑃𝑖 and their ground truth𝐺𝑖 , 𝑖 = 1, 2, ..., 𝑘 .

The mIOU is defined as

mIOU(𝑃,𝐺) =
1

𝑘

𝑘∑
𝑖=1

𝑃𝑖 ∩𝐺𝑖

𝑃𝑖 ∪𝐺𝑖
. (14)

Definition 2 (Mean Pixel Accuracy (mPA)). Given 𝑘 classes of

predicted shapes 𝑃𝑖 and their ground truth 𝐺𝑖 , 𝑖 = 1, 2, ..., 𝑘 . The

mPA is defined as

mPA(𝑃,𝐺) =
1

𝑘

𝑘∑
𝑖=1

𝑃𝑖 ∩𝐺𝑖

𝐺𝑖
. (15)

Table 3 lists the performance of DOINN on small mask tiles,

where the (L) and (H) correspond to 2𝑛𝑚 and 1𝑛𝑚 pixel size during

mask rasterization, respectively. Our approach achieves the best

mPA and mIOU compared to two state-of-the-art models.

Table 4 shows the effectiveness of large tile simulation scheme,

which attains DOINN good quality when dealing with large tiles,

while the original model exhibits great performance degradation.

Table 2: Details of the Dataset.

Dataset Train Test Tile Size Litho Engine

ICCAD-2013 4875 10 4𝜇𝑚2 Lithosim [18]
ISPD-2019 10300 11641 4𝜇𝑚2 Calibre [21]

ISPD-2019-LT - 10 64𝜇𝑚2 Calibre [21]
N14 1630 137 4𝜇𝑚2 -

Table 3: Result Comparison with State-of-the-Art.

Benchmark
UNet [11] DAMO-DLS [10] Ours
mPA mIOU mPA mIOU mPA mIOU
(%) (%) (%) (%) (%) (%)

ISPD-2019 (L) 99.40 98.03 99.25 98.11 99.43 98.27
ISPD-2019 (H) 99.08 97.97 - - 99.21 98.45
ICCAD-2013 (L) 97.30 95.38 98.94 96.97 98.98 97.79
ICCAD-2013 (H) 95.16 93.04 - - 99.12 97.77

N14 94.39 91.64 - - 98.68 96.49

Table 4: Large Tile Simulation Scheme.

ISPD-2019-LT mPA (%) mIOU (%)

DOINN 96.30 92.03
DOINN-LT 99.25 98.23

The large tile simulation scheme also successfully cleaned the ran-

dom artifacts caused by frequency mismatching (Figure 6).

3.2 AI for Mask Optimization

In the second study, we focus on the mask optimization problem,

covering the carefully designed CFNO-backboned network and the

litho-guided self training algorithm [19]. Mask optimization (MO)

is a problem to find a proper mask 𝑴 associated with a design

𝒁𝑡 , such that the difference between the resist image 𝒁 after the

forward lithography modeling and the design is minimized. In

literature, there are many evaluation metrics used to estimate the

quality of mask optimization solutions. Well accepted ones are edge-

displacement-error (EPE) violations, mean square error (MSE) and

process variation band (PVB) area. EPE and PVB are depicted in

Figure 7.

Definition 3 (EPE Violation[18]). EPE is measured as the geomet-

ric distance between the target edge and the lithographic contour
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(a) Mask (b) DOINN (c) DOINN-FS

(d) Mask (e) DOINN (f) DOINN-FS

Figure 6: Visualization of large tile simulation. (a)-(c) are

input mask, contour prediction with default DOINN and

contour prediction with large tile simulation scheme. (d)-

(f) are partial zoom-in view at the same location of (a)-(c)

respectively [20].

Design

Resist

PV Band

EPE

Figure 7: Mask quality measurements [19].

printed at the nominal condition. If the EPE measured at a point is

greater than certain tolerance value, we call it an EPE violation.

Definition 4 (MSE). MSE measures the pixel-wise difference be-

tween the design and the resist image as in:

MSE = | |𝒁 − 𝒁𝑡 | |
2
𝐹 . (16)

Definition 5 (PVB Area[18]). This is evaluated by running lithog-

raphy simulation at different corners on the final mask solution.

Once run, a process variation band metric will be defined as the

XOR of all the contours. The total area of the process variation band

is defined as PVB Area.

3.3 CFNO for Mask Optimization

The network architecture for mask optimization is shown in Fig-

ure 8, with three CFNO units with different token size for multi-

scale token embedding plus a stacked convolution path. The em-

bedding of four learning paths will then be aggregated and feed

into a series of convolution and transposed convolution layers to

generate masks. Compared to DOINN (1.3M), such structure comes

with smaller patch size, smaller model size (0.4M) and hence more

efficient computing.

3.4 Litho-Guided Self Training

In some early experiments, we observe that our model can produce

even better masks than the original training data in terms of EPE

Zt

CFNO CFNOCFNO

Design

k = 16

s = 1

k = 32

s = 1

k = 64

s = 1

T 1 T 2 T 3

conv

VGG

conv

VGG

conv

VGG

T 4

3× 3, /2

3× 3, /2

3× 3, /2

3× 3

3× 3

3× 3

dconv

dconv

dconv

VGG

VGG

VGG

concatenate

conv

conv

conv

conv

M

Mask

3× 3, /2

3× 3, /2

3× 3, /2

3× 3

3× 3

3× 3

3× 3

3× 3

3× 3

3× 3

Figure 8: The structure of the CFNO-backboned mask opti-

mizer [19]. conv and dconv represent convolution and trans-

posed convolution layers. VGG denotes a stacked convolution

block as proposed in [22]. 3 × 3 indicates the convolution

kernel size and /2 represents a stride of 2. 𝑘, 𝑠 define the lay-

out token size and the token-wise convolution kernel size,

respectively.

violation and PVB Area. We refer readers to [19] for more detailed

analysis and discussion. Here we directly introduce the litho-guided

self training (LGST) as in Algorithm 1. The first step is to train

the machine learning model with the initial training set (line 1),

where masks are generated from the ILT engine. Following steps

are 𝑇 rounds LGST (lines 2–12). In each LGST round, we perform

model inference on the training set and obtain the model generated

masks (line 4). Both the ML-Mask and ILT-Mask will be fed into

the lithography simulation engine to measure the resist quality

(lines 5–6). Here we use MSE as a example (see definition 4). If the

machine learning generated mask has better resist quality than the

ILT created mask, we will replace it in the training set (lines 7–9).

At the end of 𝑇 rounds LGST, we will retrain the model with latest

training set.
3.5 Results

We evaluate the mask optimization solution on both via and metal

layer designs, where the EPE violation count is significantly re-

duced by our approach compared to two state-of-the-art numerical

719Authorized licensed use limited to: Nvidia Corp. Downloaded on June 06,2023 at 17:05:31 UTC from IEEE Xplore.  Restrictions apply. 



ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Yang et al.

Table 5: Result comparison with state-of-the-art.

Metal
levelsetGPU [1] A2-ILT [23] Ours

MSE EPE # PVB Score MSE EPE # PVB Score MSE EPE # PVB Score

Metal 709293.8 139.6 1020105.9 4778423.6 589664.8 128.8 1147425.6 5233702.4 591714.8 45.6 1126395.6 4733582.4
Via 645658.6 165.2 401970 2433880 624754.8 288.5 491023.9 3406595.6 335335.2 2.7 455712.8 1836351.2

Algorithm 1 Litho-Guided Self Training.

Input: Training dataset {Z𝑡𝑟 , M𝑡𝑟 }, LGST max iteration𝑇 , a random ini-

tialized machine learning mode 𝑓 ( ·;𝒘) and a lithography simulator

𝑙 ( ·) ;

Output: Trained model 𝑓 ( ·;𝒘) and updated training set {Z𝑡𝑟 , M𝑡𝑟 }.

1: 𝒘 ← Train 𝑓 with {Z𝑡𝑟 ,M𝑡𝑟 };

2: for 𝑡 = 1, 2, ...,𝑇 do

3: for each 𝒁
∗
𝑡𝑟,𝑖 ∈ Z𝑡𝑟 do

4: 𝑴̃𝑡𝑟,𝑖 ← 𝑓 (𝒁∗
𝑡𝑟,𝑖 ;𝒘) ;

5: MSE𝑚𝑙 ← 𝑙 (𝑴̃𝑡𝑟,𝑖 ,𝒁
∗
𝑡𝑟,𝑖 ) ;

6: MSE𝑖𝑙𝑡 ← 𝑙 (𝑴𝑡𝑟,𝑖 ,𝒁
∗
𝑡𝑟,𝑖 ) ;

7: if MSE𝑚𝑙 < MSE𝑖𝑙𝑡 then

8: M𝑡𝑟 ← Replace 𝑴𝑡𝑟,𝑖 with 𝑴̃𝑡𝑟,𝑖 ;

9: 𝒘 ← Train 𝑓 with {Z𝑡𝑟 ,M𝑡𝑟 };

(a) Design (b) ILT-Mask (c) ILT-Resist

(d) ML-Mask (e) ML-Resist

Figure 9: Machine learning can do better on mask optimiza-

tion tasks [19]. (a) Part of a design containing via arrays. (b)

Mask generated by the levelset ILT engine. (c) Nominal resist

image from the ILT-Mask. (d)Mask generated by themachine

learning model. (e) Nominal resist image from the ML-Mask.

solutions. Particularly, the results are generated by single inference

without legacy tool finetuning (Table 5).

4 Conclusion

In this paper, we discuss recent advances of machine solution in

computational lithography problems. We argue that these solu-

tions are challenged by lacking in data problem, which can be

addressed by bringing more physics to bias the machine learning

model. Therefore, we propose a physics-inspired backbone struc-

ture called CFNO, which can be plugged into most neural network

designs. We show CFNO can significantly outperform state-of-the-

art literature on two case studies. We hope this paper can motivate

continuous research on physics-inspired machine learning solu-

tions to various design for manufacturability problems.
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