
FourCastNet 3: A geometric approach to probabilistic
machine-learning weather forecast at scale

Boris Bonev1,*, Thorsten Kurth1,*, Ankur Mahesh2,3, Mauro Bisson1, Jean Kossaifi1, Karthik
Kashinath1, Anima Anandkumar4, William D. Collins2,3, Michael S. Pritchard1, and Alexander Keller1

1NVIDIA Corporation, Santa Clara, CA 95051, United States
2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

3University of California, Berkeley, CA 94720, United States
4California Institute of Technology, Pasadena, CA 91125, United States

Abstract
FourCastNet 3 advances global weather modeling by implementing a scalable, geometric machine
learning approach to probabilistic ensemble forecasting. The approach is designed to respect
spherical geometry and accurately model the spatially correlated probabilistic nature of the problem,
resulting in stable spectra and realistic dynamics across multiple scales. FourCastNet 3 achieves
forecasting accuracy that exceeds that of the best conventional ensemble forecast IFS-ENS and that is
competitive with the performance of the diffusion-based GenCast, at a fraction of the computational
cost. Specifically, it generates forecasts at a speed 8 times faster than GenCast and 60 times
faster than IFS-ENS. In contrast to other ML approaches, FourCastNet 3 demonstrates excellent
probabilistic calibration and retains realistic spectra, even at extended lead times of up to 60 days.
All of these advances are realized using a purely convolutional neural network architecture tailored
for spherical geometry. Scalable and efficient large-scale training on up to 1024 GPUs is enabled by a
novel training paradigm for combined model- and data-parallelism, inspired by domain decomposition
methods in classical numerical models. Additionally, FourCastNet 3 enables rapid inference on a
single GPU, producing a 90-day global forecast at 0.25°, 6-hourly resolution in under 20 seconds.
Its computational efficiency, probabilistic medium-range skill, spectral fidelity and rollout stability
at subseasonal timescales make FourCastNet 3 a promising candidate to enhance meteorological
forecasting and early warning systems using large ensemble forecasts.

1 Introduction

Numerical weather prediction (NWP) is central to modern meteorology, underpinning our ability to
accurately understand and forecast atmospheric phenomena [1]. Advances in mathematical modeling,
computational power, and data assimilation have made NWP essential for weather forecasting, hazard
mitigation, energy management, and climate studies.
Traditional NWP models, however, are computationally intensive, limiting their ability to deliver
rapid, large-scale probabilistic forecasts. Recently, machine learning (ML) approaches have surpassed
traditional NWP in forecast skill and speed, enabling rapid generation of large ensembles and opening
new possibilities for weather and climate prediction [2–6]. These advances support improved sampling
of rare events and longer-range forecasts [7–9]. Despite these benefits, ML models face challenges:
they may struggle with out-of-distribution events, physical consistency, and long-term stability [10, 11].
Furthermore, commonly used evaluation metrics fail to fully capture the accuracy with which these
models approximate the underlying dynamical systems [12]. Hybrid models that combine ML and
traditional NWP offer partial solutions [13], but suffer from the same computational bottlenecks due
to the Courant-Friedrichs-Lewy (CFL) condition, making them expensive to evaluate, especially at high
resolution. Additionally, deterministic ML models often exhibit excessive smoothing, which are closer to
ensemble averages, lacking the fidelity of traditional deterministic forecasts [14–16].
Recently, probabilistic approaches have aimed to address the latter problem [6, 17–19]. GenCast [6],
the state-of-the-art probabilistic ML model, has proven that a denoising diffusion model approach [20]
is effective at modeling the probabilistic nature of atmospheric phenomena. However, this comes at a
significant cost overhead during inference, due to the iterative nature of denoising. Lang et al. [19] use
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Figure 1: Schematic of the FourCastNet 3 model. The model predicts the state of the atmosphere
at the next timestep, given the state at the previous timestep. Auxiliary variables such as the cosine
zenith angle are computed from analytical expressions for each timestep and appended to the input. A
hidden Markov model is obtained by conditioning FCN3 on a stochastic latent variable whose temporal
dynamics are governed by a diffusion process on the sphere. The model itself is formed by an encoder,
a decoder and 8 neural operator blocks. Each of these operations can be grouped into local, global and
pointwise operations and therefore be formulated on arbitrary grids and resolutions, making FourCastNet
3 discretization independent. Green boxes illustrate learnable operations.

a scoring rule based objective function instead [21], with the implied computational benefits over the
diffusion approach. While effectively addressing blurring, both approaches lead to build-up of small-scale
noise, requiring an ad-hoc truncation strategy in the latter case to suppress it. This build-up can be a
precursor to blow-up in NWP models [22] and attaining stable spectra remains a key challenge.
Most of today’s leading ML weather models repurpose mature architectures such as transformers and
graph- neural-networks that were fundamentally developed for other scientific ML tasks [23, 24]. This
pragmatic approach enables competitive medium-range skill, as demonstrated by numerous models,
with little to disambiguate between them [14]. As going beyond medium-range forecasts requires
additional properties beyond medium-range skill, bespoke geometric approaches offer a simple and elegant
alternative. These methods are faithful to the underlying geometry, its topology and the symmetries of
the underlying physics. However, bespoke methods come with significant engineering challenges, requiring
custom implementations and engineering frameworks to achieve the necessary scale of model training that
is in turn needed to achieve competitive skill [25].

FourCastNet 3 We introduce FourCastNet 3 (FCN3), a skillful, probabilistic ML weather forecasting
system built as a hidden Markov model based on spherical signal processing primitives and a probabilistic
loss function in the spectral domain. Our method is purely convolutional, leveraging both local and global
spherical convolution kernels to better model the physical processes at various scales involved in weather
phenomena, while respecting spherical geometry and its inherent symmetries, enabling realistic ensemble
members.
FCN3 is trained end-to-end as an ensemble forecasting model, at scale. This approach retains the large
speed-ups offered by ML models, facilitating one-step generation of ensemble members, making it both
computationally efficient and accurate. To enable training of a large FCN3 model, on a large hourly
dataset with multiple ensemble members, and multiple timesteps, we develop a hybrid machine learning
paradigm for simultaneous model- and data-parallelism, inspired by traditional NWP methods. The
computational domain is decomposed to simultaneously distribute both the model and the data during
training. This is combined with distributed batch- and ensemble-parallelism, resulting in extremely
efficient and scalable training, which enabled seamlessly scaling training to over 1000 GPUs.
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FCN3 outperforms the integrated forecasting system’s ensemble method (IFS-ENS) [26], the golden
standard for traditional NWP methods, and nearly matches the medium-range forecast skill of
GenCast [6], the leading probabilistic ML weather model, at double the temporal resolution. A single
forecast of 15 days is computed in 60 seconds on a single NVIDIA H100 GPU - a speedup of 8x over
GenCast and 60x over IFS-ENS. Simultaneously, it offers the key benefit of retaining stable predictions
and accurate spectra well into the subseasonal range with lead times of up to 60 days. This key
achievement mitigates the issue of blurring and addresses the issue of build-up of small-scale noise. The
probabilistic skill, stability, spectral fidelity and low inference cost make FCN3 an interesting model
with the potential of generating large ensembles with potential applications spanning medium-range to
subseasonal forecasting.

2 Probabilistic forecasts with hidden Markov models

FourCastNet 3 (FCN3) is formulated as a probabilistic model to address the chaotic nature of atmospheric
phenomena. Given the current atmospheric state un on a 0.25◦ grid at a time tn, it predicts the state
un+1 = Fθ(un, tn, zn) at the next time step tn+1, 6 hours into the future. Stochasticity is introduced
through a hidden Markov model approach, where the model takes an extra conditioning input zn - a
random noise vector drawn from a number of spherical diffusion processes with different length- and
timescales [27]. Figure 1 depicts this setup, and a detailed description is found in Appendix A.
The parameters θ of the model Fθ are optimized with the aim of accurately approximating atmospheric
processes and matching the observed spatio-temporal distributions of physical variables. FCN3 uses an
end-to-end ensemble training approach, minimizing a composite probabilistic loss function (48) based
on the continuously ranked probability score (CRPS) (47). This objective compares the predictive
ensemble of marginals to ground-truth observations. Although training with the CRPS objective has been
shown to produce models with high predictive skill, these models have not generated ensemble members
with physically accurate spectra that correctly capture spatial correlations [13, 17, 19]. Although the
scalar-valued Continuous Ranked Probability Score (CRPS) (40) is a proper scoring rule – meaning it is
uniquely minimized when the predictive distribution matches the target distribution – this property does
not extend to summary scores that aggregate individual CRPS values across marginals, as is commonly
done when forecasting spatial or multivariate variables. This is particularly problematic for multi-variate
spatial processes, where the CRPS can be minimized in a point-wise manner by an unphysical ensemble.
To address this issue, we combine the spatial, point-wise CRPS loss term with a loss term in the spectral
domain. A similar approach using a low-pass filtered spectral loss term has previously been adopted
by Kochkov et al. [13], but failed to accurately capture the high-frequency behavior of the underlying
processes. Our approach weights spectral coefficients according to their multiplicity and enforces a good
match of the their distributions across all wavelengths. A detailed discussion of the objective function
and its motivation are provided in Appendix E.1.

3 Spherical neural operator architecture

Although a combined spectral and spatial probabilistic loss function encourages the learned operator to
be accurately represented across scales, the concrete parameterization is equally important in determining
the space of learnable operators and therefore their properties. As such, we choose a geometric approach
grounded in signal processing principles and symmetry considerations:
FCN3 is a spherical neural operator architecture and relies heavily on local and global spherical group
convolutions. More precisely, global convolution filters are parameterized in the spectral domain by
leveraging the convolution theorem on the sphere and the associated spherical harmonic transform (SHT)
[10]. This approach resembles classical pseudo-spectral methods such as IFS, which compute the PDE
operator in the spectral domain. Additionally, we employ spherical group convolutions1 with learnable,
locally supported kernels. This is implemented using the framework for discrete-continuous (DISCO)
convolutions on the sphere [28, 29], which formulate the convolution in the continuous domain and
approximate the integral with a quadrature rule. This formulation enables anisotropic filters that are
better suited to approximate atmospheric phenomena such as adiabatic flow confined to vertically tilted
isentropes with characteristic morphology, or blocked flow around topographic features. The localized
convolutional approach also resembles finite differencing - another building block encountered in most
classical NWP models.
Building on these convolutional principles, the overall FCN3 architecture is organized into three main
components: an encoder, a processor composed of several spherical neural operator blocks, and a decoder
(see Figure 1). These blocks adopt the structure of the popular ConvNeXt architecture [30], which

1Group convolutions are convolutions formulated w.r.t. a symmetry group. For the two-dimensional sphere,
this is the rotation group of three-dimensional rotations SO(3).
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Figure 2: Illustration of model- and data-parallelism for training of FourCastNet 3. In the given
example, the input data is spatially distributed across four ranks (green boxes) by splitting it across
the latitude. This reduces the memory footprint of the input, prediction and activations within the
network. The training data is read in a sharded fashion from the distributed file system, simultaneously
lowering the required I/O per rank. This domain-decomposition requires the model and it’s weights to
be distributed; spherical harmonic transforms and discrete-continuous convolutions are distributed and
split across the four ranks. In addition to the spatial model-parallelism, data-parallelism is utilized to
distribute individual ensemble members and batch samples (grey boxes). Finally, the ensemble loss for a
single sample is computed by taking the entire ensemble information across ensemble parallel ranks and
spatial parallel ranks. On top of this, batch parallelism is utilized (not illustrated in this figure).

contain a convolution, a GeLU activation function [31], a point-wise multi-layer perceptron (MLP) and
a skip connection. We deliberately omit layer normalization, motivated by the importance of absolute
magnitudes in physical processes. The convolution filters are either parameterized in the spectral domain
or as approximately spherically equivariant local convolutions [10, 29]. In the latter case, we choose
smooth localized filter functions, parameterized by linear combinations of Morlet wavelets on a disk.
Through experimentation, we find that a ratio of four local blocks to one global block yields the best
forecast skill. The encoder layer is comprised of a single local spherical convolutions and down-samples
the 721 × 1440 input/output signals to a latent representation on a 360 × 720 Gaussian grid with an
embedding dimension of 641. The decoder uses a combination of bilinear spherical interpolation and local
spherical convolution to up-sample the latent signals to the native resolution while mitigating aliasing
errors. Both encoder and decoder encode do not perform any channel mixing and instead encode input
signals separately, to avoid the mixing of signals with vastly different spectral properties. Finally, water
channels are passed through a smooth, spline-based output activation function which constrains them to
positive values, while reducing the amount of high-frequency noise introduced through the non-linearity.
In contrast to most ML weather models which predict tendencies, i.e. the difference between the prediction
and the input, FCN3 predicts the next state directly. Empirically, we find that this approach works better
in avoiding the build-up of high-frequency artifacts. Moreover, predicting tendencies may be interpreted as
restricting the model to Euler time-stepping, which may adversely affect the space of learnable operators
[19]. A detailed account of signal-processing considerations on the sphere and our filter parameterizations
is provided in Appendix B. Furthermore, architectural choices and hyperparameters are discussed in detail
in Appendix C.
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4 Scalable training through hybrid parallelism

Training models with large internal representations such as FCN3 requires more memory than what is
available on a single GPU for their forward and backward passes. This memory requirement is further
exacerbated by autoregressive rollouts, where multiple forward and backward passes need to be fit into
GPU memory. These considerations limit the size of the model to the memory available per GPU, and thus
set the maximum scale for most models. While some models such as GraphCast use gradient checkpoint
to enable the memory-intensive training [4], this comes with the significant downside of trading memory
for compute, increasing already long iteration times further in training.
By distributing models across multiple GPUs, model parallelism offers an alternative path for practitioners
to reduce the memory requirements and train much bigger models. This approach greatly improved the
fidelity and performance of modern ML models [32–34] and is the foundation of the success of current large
language models (LLM) such as ChatGPT 4 [35], Llama 3 [36], and others. Neural networks generally
scale well with available data and oftentimes, training larger models comes with an increase in skill, as
long as more training data is available [25]. This creates a unique challenge for scientific ML methods,
where the training data is often high-dimensional, in comparison to language modeling or computer vision
tasks. In the case of FCN3, a typical sample at 0.25◦ resolution consists of 721× 1440 floating points per
variable, and multiple tens of variables are normally used for skillful predictions. This renders ML driven
weather prediction considerably more data-intensive than many other ML tasks.
Model parallelism is inspired by classical numerical methods, where not only the model and weights
are split across ranks, but also the data which the model processes. Model parallelism is typically
achieved through feature-space parallelism, i.e. by splitting the feature maps across multiple GPU. This
approach is heavily used in modern distributed LLMs, alongside other parallelism paradigms such as
pipeline- and traditional batch-parallelism. To enable the training of FCN3, we implement spatial model
parallelism (also referred to as domain parallelism), where both the model and data are split across
ranks by employing a spatial domain decomposition. This approach is inspired by traditional distributed
scientific computing applications and requires the implementation of distributed variants of all spatial
algorithms (see Figure 2). Besides these two approaches as well as traditional batch parallelism, another
approach is to split members of the same forecasting ensemble across multiple GPU. This variant of data
parallelism is highly efficient because different ensemble members are computationally independent until
the loss computation, which usually requires some communication across the ensemble group of GPUs.
The training of FCN3 requires spatial model parallelism via domain decomposition as well as ensemble
and batch parallelism. We will refer to the former as model and the latter two as data parallelism. We
have implemented all of these features in Makani, a framework for large-scale distributed training of ML
based weather models. For a more detailed description of parallelization features, cf. section G.
This paradigm enables us to train large principled models by scaling training to thousands of GPUs and
more. FCN3 is trained on historic atmospheric ERA5 reanalysis data ranging from 1980 to 2016. ERA5
is a multi-decadal, self-consistent record and represents our best understanding of Earth’s atmospheric
system [37]. Training is split into stages, thereby forming a curriculum training approach. The initial
pre-training phase focuses on the models 6-hourly prediction skill, by utilizing all hourly samples from
the ERA5 training dataset, constructing 6 hour lead time input-target-pairs that start at each discrete
UTC hour. The model is trained for 208,320 gradient descent steps on this dataset with a batch size
of 16 and an ensemble size of 16. This initial training stage was carried out on 1024 NVIDIA H100 on
the NVIDIA Eos Supercomputer for a total of 78 hours. In the second pre-training phase, the model is
trained on 6-hourly initial conditions using 4 autoregressive rollout steps. This is performed for 5,040
steps while lowering the learning rate every 840 steps. The second pre-training stage took 15 hours
on 512 NVIDIA A100 GPUs to complete and was carried out on the NERSC Perlmutter system. The
final is fine-tuned on 6-hourly samples ranging from 2012 to 2016 to account for potential drifts in the
distribution and improve performance on data that lie in the near- to medium-term future. This final
stage is carried out on 256 NVIDIA H100 GPUs on the Eos system and took 8 hours to complete. As a
single model instance does not fit on a 80Gb VRAM GPU, we leverage the previously described spatial
parallelism, splitting the data and the model. This ranges from a 4-fold split in pretraining to a 16-fold
split during finetuning, due to the increased memory requirements from autoregressive training. Details
of the training methodology and setup are outlined in Appendix E.

5 Results

Key performance scores of FCN3 such as continuously ranked probability score (CRPS) and
ensemble-mean RMSE are averaged over 12-hourly initial conditions in the out-of-sample year 2020 and
reported in Figure 3. FCN3 beats the gold-standard physics-based NWP model IFS-ENS by a margin
that is virtually indistinguishable from GenCast, the state-of-the-art data-driven weather model. Our
approach enables direct, one-step generation of ensemble members and can generate a single 15-day
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Figure 3: Probabilistic skill of FourCastNet 3 relative to the ERA5 ground truth. Continuously ranked
probabilistic scores (lower is better), ensemble mean RMSE (lower is better), spread-skill ratios (closer
to one is better) and rank-histograms (more uniform is better) are reported from top to bottom. The
scores are computed over 12-hourly initial conditions ranging from 2020-01-01 00:00:00 UTC to 2020-12-31
23:59:00 UTC.

forecast at a temporal resolution of 6 hours and a spatial resolution of 0.25◦ in a matter of 64 seconds on
a single NVIDIA H100 GPU. In comparison, a 15-day forecast of GenCast takes 8 minutes on a Cloud
TPU v5 instance (at half the temporal resolution) [6], and an IFS forecast takes about one hour on 96
AMD Epyc Rome CPUs (at 9km operational resolution) [38]. Barring the differences in hardware and
resolution, this constitutes a speed-up of ∼8x over GenCast and a speed-up of ∼60x over IFS-ENS.
Crucially, the 50-member FCN3 ensemble forecast is well-calibrated with spread-skill ratios approaching
1, indicating interchangeability between observations and ensemble members in the forecast. This is
confirmed via rank-histograms, which report the frequencies of the ordinal ranks of the observation within
the predictive ensemble. The temporal evolution of the rank histograms closely mirrors the spread-skill
ratios, indicating a slightly over-dispersive ensemble at short lead times of up to 24 hours, which then
becomes under-dispersive and then gradually relaxes to a flat rank-histogram. These results are especially
encouraging, given that the evaluated 50 member ensemble is larger than the 16 ensemble members used
in training, indicating that even larger ensembles are justifiable to test during inference.
It is important to investigate case studies, since scores such as ensemble-mean RMSE and CRPS are
incomplete metrics that alone do not provide a comprehensive view of a probabilistic weather forecast.
For example, the CRPS score only evaluates the accuracy of the predictive distribution point-wise and
does not take tempo-spatial correlations into account. As such, a perfect forecast from the ground-truth
distribution, which is scrambled by shuffling the ensemble members at each point will result in unphysical
predictions yet still retain the optimal CRPS score. Similarly, RMSE scores can be easily improved by
blurring forecasts, rendering them useless for all practical purposes. A key challenge in data-driven
weather models is to reproduce the physical fidelity of traditional NWP models and reduce possible
spurious correlations that stem from the data-driven approach.
Figure 4 examines a case study showing wind intensities at 850hPa and geopotential height at 500hPa of a
FCN3 forecast initialized on 2020-02-11 at 00:00:00 UTC, 48 hours before the extra-tropical storm Dennis
made its landfall over Ireland and the British Isles. The close-up plots in Figure 4 indicate that FCN3
is capable of faithfully simulating this event, reproducing both realistic wind intensities and appropriate
co-variation of flow with the pressure field. This is confirmed in the angular power spectral density (PSD)
of the 500hPa geopotential height, reported in the bottom row. FCN3 retains perfectly the correct slopes
in the power spectra, a desirable property towards better ML weather models with high physical fidelity.
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Figure 4: FourCastNet 3 prediction of storm Dennis initialized on 2020-02-11 at 00:00:00 UTC. The
plot depicts wind-speeds at a pressure level of 850hPa and isohypses (height contours) of the 500hPa
geopotential height. FCN3 accurately predicts the storm and its landfall 5 days in advance, with different
ensemble members depicting different scenarios. FCN3 skillfully predicts global weather phenomena at
a spatial resolution of 0.25◦ and a temporal resolution of 6 hours. FCN3 exhibits exceptionally accurate
and stable spectra even after extended rollouts of 30 days (720 hours) and more.

Even at long lead times of 30 days, we observe no apparent degradation of the angular power spectra
and predictions retain their effective resolution, remaining sharp even at long lead times.
The spectral fidelity of FCN3 is also observed in Figure 5, which depicts power spectral densities averaged
over the entire evaluation year of 2020 and the respective relative error w.r.t. the angular power spectrum
of the ERA5 ground truth. Even at high wavenumbers, we observe that the relative error remains bounded
with deviations ranging from −0.2 to 0.2.
We postulate that the spectral properties are a result of our careful architectural design choices, which
reflect geometrical and signal-processing principles, and the combined CRPS loss function which enforces
the correct local and global distribution, thus encouraging the model to learn the correct spatial
correlations. Competing, deterministic ML weather models typically display a decay of high-frequency
information, which appears as blurring. Even the CRPS-trained hybrid weather model NeuralGCM shows
significant blurring in high-frequency modes. Moreover, newer, probabilistic ML weather models such
as GenCast [6] and AIFS-CRPS [19] cannot faithfully retain the correct spectral signatures and show a
build-up of high-frequency modes, as illustrated in Figure 4. In traditional NWP models, such build-ups
can be a precursor to an imminent blow-up [22]. As such, this constitutes a major milestone towards
physically faithful data-driven, probabilistic weather models, which can be efficiently evaluated even at
longer lead times.
Additional evaluation of FCN3, angular and zonal power spectral densities, alongside physical consistency
tests, are provided in Appendix F. The detailed evaluation confirms that FCN3 is a probabilistically
skillful, computationally efficient global weather model, with unprecedented spectral fidelity and a high
degree of physical realism. Forecasts remain stable well into the subseasonal range of 60 days, thus paving
the way toward subseasonal forecasts and large ensembles at these lead times.

6 Conclusions

We present FourCastNet 3 (FCN3), a novel probabilistic weather forecasting model that leverages
spherical signal processing and a hidden-Markov ensemble formulation, trained end-to-end with a

7



FourCastNet 3

Figure 5: Comparison of angular power spectral densities of a single FourCastNet 3 ensemble member at
a lead time of 360 hours to the ERA5 ground truth. Power spectral densities are averaged over 12-hourly
initial conditions ranging from 2020-01-01 00:00:00 UTC to 2020-12-31 23:59:00 UTC.

probabilistic objective in both spectral and spatial domains. FCN3 achieves skillful and computationally
efficient forecasts, outperforming traditional numerical weather prediction (NWP) methods and matching
the performance of state-of-the-art diffusion models at a fraction of the computational cost. This is
accomplished using a purely convolutional architecture based on spherical group convolutions, in contrast
to the prevailing transformer-based approaches. Notably, FCN3 generates physically realistic spectra
across all wavelengths up to the cutoff in the training data, avoiding the overly smooth or spurious
high-frequency artifacts that challenge other machine learning models. This fidelity enables stable,
sharp forecasts even at extended lead times of up to 60 days, positioning FCN3 as a promising tool
for subseasonal prediction with large ensembles.
FCN3 introduces major computational and practical improvements that make large-scale, high-resolution
ensemble forecasting more accessible than ever. Its massively parallel training workflows, model and
ensemble parallelism, and low inference cost enable rapid, efficient production of large ensemble forecasts.
In-situ diagnostics and scoring can be performed during model execution, eliminating the need to store
terabytes of data and removing storage and I/O bottlenecks that have historically limited ensemble
analysis. All key components, including training and inference code, are fully open-source, providing the
research community with transparent, reproducible tools for both operational and experimental weather
prediction.
As an ensemble model, FCN3 enables detailed exploration of multiple plausible future weather scenarios
from a single initialization, making it a powerful tool for studying atmospheric dynamics, predictability,
and the statistics of low-probability, high-impact events. Looking ahead, we plan to extend FCN3
to include precipitation as a diagnostic output and to integrate data assimilation uncertainty, further
broadening its applicability and impact. Together, these innovations position FCN3 as a robust, efficient,
and extensible foundation for next-generation probabilistic weather forecasting and atmospheric science
research.

Data and materials availability

FourCastNet 3’s training code is available in Makani, a training framework used for scale training of
ML weather models to 1000s of GPUs. It is openly available at https://github.com/NVIDIA/makani
under the Apache License 2.0. The ERA5 training data is openly available at https://cds.climate.
copernicus.eu/datasets/reanalysis-era5-single-levels. Finally, torch-harmonics, our library
for machine-learning and differentiable signal processing on the sphere, is openly available at https:
//github.com/NVIDIA/torch-harmonics under the BSD-3-Clause license.
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A Problem statement

A.1 Deterministic forecasting

We aim to predict the dynamics of Earth’s atmosphere using a machine learning (ML) model trained on
available data. The state of the atmosphere is represented as a vector-valued function u(x, t) over the
sphere, where x ∈ S2 and time t ∈ [0,∞). The dynamics are modeled as a discrete dynamical system:

un+1 = Fθ(un, tn), (1)
where the current state un := u(x, tn) at the time tn is mapped to the next state un+1 at the time tn+1
by the learned operator Fθ which approximates the unknown, true operator F ∗.2

The unknown parameter vector θ is obtained by minimizing a suitable objective function Ldet(·, ·), which
measures the discrepancy between the ground-truth solution u∗

n+1 = F ∗(un, tn) and the prediction of the
learned mapping Fθ(un, tn):

θ∗ = argmin
θ

∑
n

Ldet
(
Fθ(un, tn), u∗

n+1
)
. (2)

The loss is summed over the dataset {u∗
n}N

n=0, which consists of ground-truth observations of the state
vector of the dynamical system at various times.

A.2 Probabilistic forecasting

The limitation of deterministic modeling lies in the objective (2), where the model is trained to minimize
the error in a single deterministic prediction. While this approach may work well for purely deterministic
processes with a sufficiently powerful model Fθ, it falls short when the underlying map F ∗ is inherently
uncertain. In such cases, the model tends to learn a blurry estimator which minimizes the expected value
of (2) [7, 8, 16].
To address this issue, we aim to estimate the conditional probability distribution p(un+1|un, tn) rather
than predicting a single sample un+1 given un. While this distribution could be directly modeled
using a network pθ(un+1|un, tn), this approach introduces the additional complexity of sampling from a
complicated predictive distribution.
Generative models offer a more practical alternative by approximating the sampling process directly,
which is often easier to optimize. Our goal is to implement a generative model Fθ(un, zn, tn), which takes
the current state un, time tn, and a suitable latent noise variable zn to generate a single sample

un+1 = Fθ(un, zn, tn). (3)
The optimal mapping

F ∗(un, zn, tn) ∼ p(u∗
n+1|un, tn), (4)

produces a random variable distributed according to the ground-truth conditional probability density
function p(u∗

n+1|un, tn) for an appropriate choice of the distribution of the latent variable zn. By sampling
this probabilistic function Nens times with different noise realizations zn,e, we generate an ensemble
of predictions {un+1,e|e = 1, 2, . . . , Nens}, which approximately models the conditional distribution
p(un+1|un).
There exist many approaches to train generative models of the form (4), such as diffusion models,
consistency models or generative adversarial networks [20, 39, 40]. We take a direct approach and
minimize a scoring function Lens, which assesses the quality of the ensemble forecast directly. As such,
the score is computed from the predictive ensemble un+1,e = Fθ(un, zn,e, tn) and the single ground truth
solution u∗

n+1 that occurred, and then summed over the training data:

θ∗ = argmin
θ

∑
n

Lens

(
{Fθ(un, zn,e, tn)}Nens

e=1 , u
∗
n+1

)
. (5)

In the ideal case, the ground truth trajectory is interchangeable with the individual ensemble members
ue, which should be reflected in a minimization of Lens. The specific choice of Lens is discussed further
in Appendix D and Appendix E.1.

B Signal processing on the sphere

On a high level, Fθ acts as a map between functions defined over the sphere. To this end, we employ
techniques from signal processing on the sphere to transform spherical signals to other spherical signals.
This chapter outlines the main building blocks employed in the FourCastNet 3 architecture, as well as
the evaluation and analysis of its outputs.

2To simplify the discussion, we do not disambiguate between spatially discretized un and its semi-continuous
counterpart un(x).
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B.1 Grids and quadrature rules on the sphere

Our networks process real-valued input signals defined on the unit sphere, u : S2 → Rn with coordinates

x(ϑ, φ) =

[sinϑ cosφ
sinϑ sinφ

cosϑ

]
, (6)

defined by the colatitude ϑ ∈ [0, π] and longitude φ ∈ [0, 2π). Processing these signals on a computer
requires discretizing them through a sampling scheme. While there are various sampling theorems on the
sphere [41, 42], we will restrict our discussion to sampling schemes motivated by quadrature rules. Many
of the operations discussed in this chapter require evaluating integrals of the form∫

S2
u(x) dµ(x) =

∫ 2π

0

∫ π

0
u(x(ϑ, φ)) sinϑ dϑ dφ, (7)

where u ∈ L1(S2) is an integrable function on the sphere and µ(x) denotes the Haar measure on the
sphere. We approximate this integral using a quadrature rule∫

S2
u(x) dµ(x) ≈

ngrid∑
i=1

u(xi) ωi, (8)

which is characterized by a choice of grid points {xi}
ngrid
i=1 and corresponding quadrature weights {ωi}

ngrid
i=1 .

In the context of our model, we are concerned with two types of spherical grids: equiangular (lat/lon-)
grids and the Gaussian grids. Both can be formed as a tensor product

{x(ϑ, φ)| ∀ϑ ∈ {ϑi}, φ ∈ {φj}} (9)

of one-dimensional grids for the latitude {ϑj} and longitude {φk}, respectively. In particular, the
equiangular grid uses equally spaced grid points in both longitude and latitude, such that

ϑi = πi/nlat for i = 0, 1, . . . , nlat − 1, (10a)
φj = 2πj/nlon for j = 0, 1, . . . , nlon − 1, (10b)

where nlat and nlon denote the number of grid points in latitude and longitude. The quadrature weights
for the combined spherical grid are

ωij = sinϑi ∆ϑi ∆φj = 2π2

nlatnlon
sinϑi, (11)

which approximately sums to 4π, the area of the unit sphere. These weights correspond to trapezoidal
quadrature weights in spherical coordinates 3.
The Gaussian grids on the sphere replace the latitude grid in (10) with a set of Gauss-Legendre nodes
{ϑi}nlat

i such that cosϑi is the i-th root of the Legendre polynomial Pnlat , i.e.

Pnlat(cosϑi) = 0. (12)

The usage of Gauss-Legendre nodes in the cosϑ domains enables the exact integration of (7), for
polynomial integrands in cosϑ and a polynomial degree up to degree 2nlat − 1 [43]. This is particularly
useful for the exact integration of spherical harmonics, where the latitude-dependent part is a polynomial
in cosϑ.
An example of both grids is illustrated in Figure 6 for nlat = 9 and nlon = 16.

B.2 Convolutions on the sphere

Convolutions are attractive in machine learning, as they can encode linear operators that are invariant
under translations. To generalize this to the sphere, we formulate the convolution in terms of linear
operations invariant with respect to rotations R in the three-dimensional rotation group SO(3). That is,
we rely on the (continuous) convolution extended to Lie groups and quotient spaces of Lie Groups, known
as group convolution (see e.g. Ocampo et al. [28], Driscoll and Healy [41], Cohen and Welling [44]). On
the sphere, for two functions u, k ∈ L2(S2), and a rotation R ∈ SO(3), we define the convolution

(u ⋆ k)(R) =
∫

S2
u(x) k(R−1x) dµ(x), (13)

3It is possible to obtain higher order accurate quadrature weights for the same lat/lon-grid, in the form of
Clenshaw-Curtis quadrature weights [? ]. To keep results compatible with other models, we use the simpler
quadrature formula (11)

17



FourCastNet 3

Figure 6: Illustration of the equiangular (lat/lon-) grid in blue and a Gaussian grid in red. Both grids
nlat = 9 and nlon = 16.

where dµ(x) is the invariant Haar measure on S2. In other words, the output is obtained by (passively
left-)rotating the filter function k using a rotation R = Z(α)Y (β)Z(γ), which may be parametrized by
the Euler angles α, β, γ and rotations Z and Y around the z- and y- axes and then taking the S2 inner
product to obtain the value for this rotation. As such, the output is a function over SO(3), despite the
inputs being functions defined on S2

To obtain a convolution that yields signals on the sphere, we may use the fact that S2 is isomorphic to
the quotient SO(3)/SO(2) ≃ S2. As such, we can derive the S2 convolution by restricting the rotation
R to R ∈ SO(3)/SO(2), or in other words, assuming that γ = 0. For a given point x ∈ S2 and its
associated rotation Rx ∈ SO(3)/SO(2), we obtain the spherical convolution

(u⃝⋆ k)(x) =
∫

S2
u(x′) k(R−1

x x′) dµ(x′), (14)

which yields an output in L2(S2).
With the continuous convolution defined, we can derive discretized approximations of (14) which can be
evaluated on a computer. In particular, we have two distinct variations; one using the spectral theorem
on the sphere and using spherical harmonic transforms and one using a direct discretization of (14).

B.3 Spherical harmonic transforms

On the sphere, the Fourier transform is generalized by the spherical harmonic transform (SHT)

ûm
ℓ =

∫
S2
u(x) Y m

ℓ (x) dµ(x) =
∫ 2π

0

∫ π

0
u(ϑ, φ) Y m

ℓ (ϑ, φ) sinϑdϑ dφ (15)

and its inverse
u(ϑ, φ) =

∑
ℓ∈N

∑
|m|≤l

ûm
ℓ Y

m
ℓ (ϑ, φ), (16)

which decompose the Hilbert-space L2(S2) into subspaces that are invariant under certain rotations
R ∈ SO(3)/SO(2). These subspaces are spanned by the spherical harmonics

Y m
ℓ (ϑ, φ) = (−1)mcm

ℓ P
m
ℓ (cosϑ)eimφ = P̂m

ℓ (cosϑ)eimφ, (17a)

cm
ℓ :=

√
2ℓ+ 1

4π
(ℓ−m)!
(ℓ+m)!

, (17b)

where Pm
ℓ (cosϑ) are the associated Legendre polynomials. The normalization factor cm

ℓ normalizes the
spherical harmonics w.r.t. the L2(S2) inner product, s.t.∫

S2
Y m

ℓ (x) Y m′
ℓ′ (x) dµ(x) = δℓℓ′δmm′ . (18)

An efficient algorithm to compute the SHT is presented by Schaeffer [45], which exploits the tensor-product
structure of the spherical harmonics to decompose the integral in Equation (15) into a projection into
the Fourier basis and a projection onto the associated Legendre polynomials. This can be achieved using
a Fast Fourier Transform (FFT) along longitudes and a matrix-vector-multiplication along latitudes,
resulting in O(n2

latnlon lognlon) floating-point operations to evaluate the SHT.
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B.4 Convolution theorem and spectral convolutions

The convolution theorem connects the spherical harmonic transform (15) to the spherical convolution
(14) for axisymmetric filters k(ϑ) ∈ L2(S2). For a given l ≥ 0, |m| ≤ l, the spherical harmonic transform
of the convolution f̂ ⃝⋆ k is then given by

(û⃝⋆ k)m
ℓ =

∫
S2

(u⃝⋆ k)(x) Y m
ℓ (x) dµ(x)

= ûm
ℓ k̂0

ℓ , (19)

i.e. as a product of the spherical harmonic transforms ûm
ℓ and k̂m

ℓ of u and k, respectively. The restriction
to axisymmetric filters k is rooted in the fact that the 2-sphere is not a group; thus, orientable filters
have ambiguous rotations when they are rotated on the sphere [28].
The spherical convolution theorem forms the core building block of spherical Fourier neural operators
(SFNO) [10], as filters are parametrized in the spectral domain according to (19). A randomly initialized
spectral filter is illustrated in Figure 7a. For a detailed treatment of the convolution theorem on the
sphere, we refer the reader to Driscoll and Healy [41], Cobb et al. [46].

(a) spectral convolution filter (b) local convolution filter

Figure 7: Depiction of random filters k(x) resulting from the filter parametrization. The spectral filter
on the left is parameterized as a linear combination of globally supported spherical harmonics, whereas
the local filter on the right is parameterized as a linear combination of locally supported, potentially
anisotropic basis functions.

B.5 Discrete-continuous convolutions

The spectral parametrization of a convolution (19) conveniently encodes spherical convolutions with
smooth, globally supported convolution kernels. Moreover, the nature of the spectral convolution requires
the kernel to be isotropic, i.e. to be radially symmetric, which results in the filters depending on the
spherical harmonic degree l but not on m.
In many applications, however, we would like to encode a locally supported convolution kernel, which
results in a non-local filter in spectral space. This is particularly relevant for hyperbolic PDEs4, where
the solution operator is known to be locally supported [48]. Moreover, anisotropic filters are particularly
desirable for the weather system, where the dynamics play out with multiple preferential asymmetries,
such as a greater tendency for zonal vs. meridional flows, adiabatic flow confined to vertically tilted
isentropes with characteristic morphology, and blocked flow around topographic features.
To address this, Ocampo et al. [28] propose a direct discretization of the convolution (14), where the
rotation of filters is carried out analytically in the continuous domain and the integral is approximated
with numerical integration. This yields the discrete-continuous (DISCO) convolution

(u⃝⋆ k)(x) =
∫

S2
u(x) k(R−1

x x′) dµ(x′)

≈
nlatnlon∑

j=1
k(R−1

x xj)u(xj)ωj , (20)

4Atmospheric dynamics are commonly modeled and studied by the shallow water equations on a rotating
sphere, which is a hyperbolic PDE system [47].
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for a suitable quadrature rule with grid points xj ∈ S2 and associated quadrature weights ωj . By analogy,
we can also define the transposed discrete-continuous convolution

(u⃝⋆ † k)(x) =
∫

S2
k(R−1

x′ x)u(x′) dµ(x′)

≈
nlatnlon∑

j=1
k(R−1

xj x)u(xj)ωj , (21)

where the integral is taken over all possible rotations Rx′ . This is analogous to transposed convolutions,
typically found in computer-vision architectures such as U-Nets [49].
For a discrete set of output locations Rxi

∈ S2, Equation (20) becomes a straight-forward matrix-vector
multiplication

nlatnlon∑
j=1

k(R−1
i xj)u(xj)ωj =

nlatnlon∑
j=1

Kij u(xj)ωj (22)

with Kij := k(R−1
i xj). In the case where k(x) is compactly supported, Kij is a sparse matrix with the

number of non-zero entries per row depending on the resolution of the grid xj and the support of k.
The resulting matrix-vector multiplication has linear asymptotic time complexity, as it can be performed
using O(nlatnlon) floating-point operations.
To obtain a learnable filter, k is parametrized as a linear combination

k(x) =
nbasis∑
b=1

wb k̃b(x) (23)

of basis functions k̃b(x) and learnable weights wb. In practice, we use learnable tensors to merge the
features of u and basis functions in the same step, which is similar to a regular convolution in R2 that
mixes features and neighborhood information for each grid point.

B.5.1 Filter basis parameterization

While many basis functions can be chosen, we implement a filter-basis inspired by Morlet-like wavelet

k̃ℓm(ϑ′, φ) = h(ϑ)e(iπℓ ϑ′ sin φ)e(iπm ϑ′ cos φ) (24a)

h(ϑ′) = cos2
(π

2
ϑ′

)
(24b)

defined on the compact disk ϑ′ = ϑ/ϑcutoff ∈ [0, 1], φ ∈ [0, 2π), centered at the North Pole. The basis
functions are constructed by multiplying the Hann windowing function h to Fourier basis functions of
degrees ℓ and m, along the axes spanned by ϑ′ sinφ and ϑ′ cosφ. The choice of the Hann windowing
function h(ϑ′) [50] ensures that smooth, compactly supported filters are learned while keeping the
convolution tensor Kij sparse. Figure 8 depicts various basis functions for varying choices of ℓ and
m.

(a) ℓ = 0, m = 0 (b) ℓ = 0, m = 1 (c) ℓ = 0, m = 2 (d) ℓ = 2, m = 1 (e) ℓ = 2, m = 2

Figure 8: Illustration of the Morlet-type wavelet filter basis, used to represent localized filters on the
sphere. The basis functions are centered at the North Pole, and the dotted line represents the cutoff
radius ϑcutoff.

B.6 Interpolation of spherical signals

A simple way of resampling functions on the sphere is given by the SHT, i.e. by converting a signal to
its spectral representation, then evaluating on any grid using the inverse SHT. This process is alias-free,
as the power spectrum is appropriately truncated to only contain modes lower than the maximum mode
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representable on either input or output grid. The disadvantage of this approach is that it can lead to
ringing effects (Gibbs phenomenon) due to the sharp cutoff in the frequency domain.
An alternative is bilinear interpolation in longitude and latitude, which can be used to switch between
grids and resolutions. Given a function u defined on the input grid ϑi, φi, we find the interpolated output
u′ at position ϑi ≤ ϑ ≤ ϑi+1, φi ≤ φ ≤ φi+1 by computing

u′(ϑ, φ) =(1− wϑ) (1− wφ) u(ϑi, φj) + wϑ (1− wφ) u(ϑi+1, φj)
+ (1− wϑ) wφ u(ϑi, φj+1) + wϑ wφ u(ϑi+1, φj+1), (25)

with the interpolation weights wϑ = ϑ−ϑi

ϑi+1−ϑi
and wφ = φ−φj

φj+1−φj
.

To account for the topology of the sphere, some extra care has to be applied at the boundaries of the grid.
For the longitudinal interpolation, we pick φj+1 = φ0 if φ > φnlon−1, thus accounting for the periodicity
in the longitudinal direction. For grids that do not include the poles, we first extend the grid to the
poles, defining ϑ−1 = 0, ϑnlat = π. The function at the poles is set to the weighted mean of the closest
latitude-ring

u(ϑ−1, φ) = 1
2π

nlon∑
j=0

∆φj u(ϑ0, φj) (26a)

u(ϑnlat , φ) = 1
2π

nlon∑
j=0

∆φj u(ϑnlat−1, φj), (26b)

where the weight ∆φj = 2π/nlon denotes the longitudinal quadrature weight of each grid point. By
extending the solution to the poles, we can use the bilinear interpolation (25) as well for points that lie
between the last latitude ring near the pole and the pole itself.

B.7 Spherical diffusion process

As a source of randomness in our models, we require a stochastic process on the sphere, which accurately
captures spatio-temporal correlations. To achieve this, we make use of the diffusion process described in
Palmer et al. [27]. This Gaussian process is parameterized in the spectral domain according to

zn = z(x, tn) = ϕ z(x, tn−1) +
∑
ℓ∈N

∑
|m|≤ℓ

σℓ ηℓ Y
m

ℓ (x). (27)

The source of randomness is the random variable ηℓ ∼ N (0, 1) and follows a standard Gaussian
distribution while σℓ and ϕ determine the variance of individual spatial and temporal length-scales,
parameterized according to

ϕ = e−λ, (28a)

σℓ = F0 e
− kT

2 ℓ(ℓ+1), (28b)

F0 = σ

√
2π (1− ϕ2)∑

ℓ>0(2ℓ+ 1) e−kT ℓ(ℓ+1) . (28c)

The variance of the process is determined by σ, whereas λ and kT determine temporal and spatial
length-scales respectively.

B.8 Implementation in PyTorch

The integration of the aforementioned algorithms and methodologies into modern deep-learning pipelines
requires efficient and differentiable GPU implementations with interfaces to deep-learning frameworks
such as PyTorch [51]. We develop torch-harmonics, a library for differentiable signal processing
on the sphere, publicly available under the BSD-3 clause license at https://github.com/NVIDIA/
torch-harmonics. torch-harmonics offers differentiable implementations of spherical harmonic
transforms, vector spherical harmonic transforms, convolutions and other algorithms discussed in this
chapter. To enable efficient execution and training on GPUs, these operations are implemented as
efficient CUDA kernels supporting distributed computation. For details regarding their distributed
implementations, we refer the reader to Appendix G.

C FourCastNet 3 architecture

FourCastNet 3 is designed with the following guiding principles: spherical geometry is respected
throughout the entire network to obtain a model that treats signals as functions on the sphere,
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Table 1: Input and output variables to FourCastNet 3. A detailed overview of the dataset is provided in
Appendix E.4, and variable designations are specified in Table 4.

Variable Type Channels Input Output
Atmospheric variables z---, t---, u---, v--- and q--- at 13

atmospheric levels ✓ ✓
Surface variables u10m, v10m, u100m, v100m, t2m, msl, tcwv ✓ ✓
Auxiliary variables land-sea mask land, land-sea mask sea,

orography, solar cosine zenith angle ✓
Noise variables 8 noise variables with different length scales ✓

mirroring physical operators and respecting symmetry principles. Moreover, all operations are
discretization-agnostic which makes it a neural operator that can be evaluated and re-trained at arbitrary
resolutions/discretizations, similar to traditional numerical models. Finally, all the chosen components
can be distributed with reasonable communication overheads to facilitate efficient distributed training
and inference of large models.
The resulting architecture is a spherical neural operator (SNO), and based on previous works on
spherical Fourier neural operators (SFNO) [10] and localized neural operators presented in [29]. As such,
FourCastNet 3 contains three main building blocks: pointwise operations parametrized by multi-layer
perceptrons (MLPs), global spherical convolutions parametrized by the spectral convolution theorem (19)
and local spherical convolutions parametrized by the discrete-continuous convolution (20). Together, we
expect these elements to facilitate processing of a full spectrum of multiscale atmospheric dynamical
signals ranging from planetary waves to local orographic flows and fronts. The following sections outline
the architecture in detail.

C.1 Inputs and outputs

FCN3 maps the current weather state un, containing both atmospheric and surface variables to the next
output state un+1. In addition to these prognostic variables, the model is conditioned with auxiliary
variables an, which are either static variables or easily computed from a prior state. These auxiliary
variables include land-sea-masks, orography and the cosine of the zenith angle of the sun. Finally, to
obtain a probabilistic map, a source of randomness is passed to the model in the form of noise variables
zn. These noise variables are sampled from 8 spherical diffusion processes according to Appendix B.7
with different length- and time-scales.
The model then predicts the next weather state un+1 based on the inputs, whereas the auxiliary and
random variables can be easily updated by the processes which define them. All the input and output
data are defined on the equiangular grid at a resolution of 721 × 1440 which corresponds to an angular
resolution of 0.25◦. Table 1 provides an overview of inputs and outputs and Appendix E.4 with variable
names specified in Table 4.

C.2 Macro architecture

Figure 1 depicts an overview of the FCN3 architecture and its main building blocks. FCN3 is loosely
based on the SFNO architecture [10] and the Fourier Neural Operator (FNO) [52], which employ an
encoder/decoder pair and a number of operator blocks in the latent state. This is a common approach
also encountered in vision architectures and other ML models for atmospheric sciences [2, 4, 30, 53].
In FCN3, the encoder resamples the input fields from a 721× 1440 latitude-longitude grid to an internal,
360 × 720 Gaussian grid. Unlike popular transformer approaches [53, 54], we maintain a spherical
representation of the state throughout the architecture. The spherical representation is passed through
a series of spherical neural operator blocks, which can be either global or local spherical neural operator
blocks, based on either spectral convolutions [10] or discrete-continuous convolutions [28, 29]. Auxiliary
channels and noise channels serve as conditioning input to all processor blocks and are passed in separately.
The resulting final internal state is then passed through a decoder, which resamples it back to the
input/output grid. The final step is a point-wise output transformation, which assures that output
values of water channels lie in a physically plausible range.

C.3 Encoder

The atmospheric variables in the dataset are highly varied in the sense that different variables often have
different spatial statistics. It is therefore not desirable to mix channel information in the encoder/decoder,
as this would unnecessarily complicate the reconstruction task, by entangling spatial and channel
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correlations. To avoid mixing unrelated channel information, we follow an approach similar to [3], using
separate encoder/decoder pairs for different variables.
More concretely, FCN3 uses three separate encoders: one for atmospheric variables, one for surface
variables and one for auxiliary and noise variables. Each of these encoders uses a single discrete-continuous
convolution to resample the 721× 1440 input fields from their equiangular representation to an internal,
down-sampled Gaussian grid, determined by a scale factor.
To further avoid mixing channel information, grouped convolutions are used to encode each channel
separately. For the atmospheric levels, the same encoder is re-used for each pressure level, and the
convolution is furthermore separated into 5 groups, such that each of the 5 atmospheric channels (z---,
t---, u---, v--- and q---) is encoded individually. This is also repeated for the surface and auxiliary
channel encoders, where each channel is encoded using a distinct set of filters. This type of encoding
is advantageous as the physical signals encountered in atmospheric applications are highly uncorrelated.
Figure 9a depicts the structure of the encoder and the resulting internal state vector.

(a) FCN3 encoder

(b) FCN3 decoder

Figure 9: FourCastNet 3 encoder and decoder. Atmospheric, surface and auxiliary channels are all
encoded individually, and the encoder is shared across pressure levels. This ensures that uncorrelated
channels with distinct spectral signatures are not prematurely mixed. The resulting latent representation
is grouped in terms of atmospheric levels and surface channels and consists of 641 channels at a resolution
of 360×720 on the Gaussian grid. The decoder mirrors the design of the encoder, with an added bilinear
spherical resampling step to avoid aliasing effects.

Figure 10: Illustration of a single processor block. Green blocks indicate convolutions which take spatial
information into account, whereas orange and blue blocks are pointwise functions in space. Orange
blocks are linear layers that mix channel information, whereas blue channels act on individual entries.
The structure is an adaptation of the ConvNeXt block for spherical signals.

C.4 Decoder

The decoder mirrors the encoder in its design and uses two distinct decoders for atmospheric variables and
surface variables, respectively. Like the encoder, the decoder avoids channel-mixing by using grouped
convolutions such that each channel is decoded separately from the corresponding channel group in
the latent representation. As in the encoder, the atmospheric encoder is reused for each pressure-level.
Unlike the encoder, however, the decoder first up-samples the signal to the Gaussian output grid with a
721×1440 resolution using bilinear interpolation. This is to avoid a transposed convolution for upsampling
and the associated uneven overlaps, which lead to checker boarding artifacts, as previously described in
Appendix B.6. Although upsampling can also be achieved using SHT upsampling - without filling in extra
spectral information - our approach allows adding in high-frequency content, facilitating processing of the
entire spectrum. Figure 9b provides an overview of the structure of the decoder. The hyperparameters
for both encoder and decoder, as well as resulting embedding dimensions, are listed in Table 2.
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Table 2: Overview of FourCastNet 3 model hyperparameters. The encoder and decoder parameters
determine the embedding space and its dimensions.

Encoder / decoder
Input/Output grid 721× 1440 Lat/Lon grid
Internal grid 360× 720 Gaussian grid

Atmospheric 13 levels × 5 variables
Surface variables 7 variablesInput/output channels
Auxiliary + noise 4 + 8 variables
Atmospheric 13 levels × 45 channels
Surface 56 channels
Auxiliary 36 channelsEmbedding dimensions
Total: 677 channels

Processor blocks
Spectral convolution 2 blocksSpherical neural operator blocks Local convolution 8 blocks

MLPs Hidden dimension 1282 channels
Total parameter count: 710’867’670 parameters

C.5 Neural operator blocks

The processor is made up of a sequence of neural operator blocks, which are essentially continuous-domain
convolutional layers. We adapt the popular ConvNeXt architecture [30] to spherical signals, which yields
the structure illustrated in Figure 10. The processor blocks receive the latent representation of the
atmospheric state, and conditioning variables as input. The former is either the output of the encoder or
the output of the previous layer, whereas the conditioning variables remain the same for every block, as
they encode conditioning information (see Figure 1).
Both inputs are concatenated and passed through a spherical convolution. Depending on whether the
processor block is global or local, the convolution can either be parametrized as a global convolution using
the spectral parametrization (19) or as a local convolution (20) using discrete-continuous convolutions.
As such, the processor block resembles either a SFNO block [10] or a local integral neural operator block
[29], depending on the chosen convolution. We alternate between local and global blocks, where for each
global block we use 4 local blocks, as we find this to yield the best performance.
The convolution is followed by a dense two-layer MLP, which is applied to each grid-point on the data.
Each of the output channels is then scaled by a learnable parameter [55] and added to the residual path
within the network.
In contrast to ConvNext we deliberately omit layer normalization since we expect the absolute scale of
inputs and outputs to be of importance for the task of predicting signals of physical systems. In practice,
we observe that this leads to improved stability of the training process if the network is initialized carefully.

C.6 Initialization

Due to the omission of normalization layers, extra care needs to be taken with the initialization of the
model. While normalization layers can somewhat counteract a bad initialization, a network without
normalization layers is prone to fall into bad local minima during training.
To initialize FourCastNet 3 properly, we follow the idea proposed by He et al. [56] to keep the uncentered
variance constant for each layer. To this end, we initialize MLPs using He initialization and adapt this
initialization strategy for the spherical convolution layers. This is sufficient to keep the magnitudes
constant unless the architecture contains skip connections. Figure 11 depicts the mean and variance of
intermediate activations for 8 different instantiations of FCN3. Both mean and variance remain controlled
throughout the layers due to our initialization scheme.

C.7 Residual prediction and high-frequency artifacts

Residual prediction, where the model predicts un+1 − un rather than un+1 directly, has proven to be
advantageous in ML-based weather prediction [2, 4, 53, 57]. This type of prediction is equivalent to
a large skip connection that bypasses the model, and often leads to better training dynamics early on
[57]. Through experimentation however, we find this design choice to be less stable in long autoregressive
rollouts. This can be attributed to two factors: Firstly, the structure of residual prediction fundamentally
limits the model to update rules which resemble explicit Euler time steps. A second observation is that
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Figure 11: Mean and variance of activations for 8 randomly initialized instances of FourCastNet 3 and
random inputs. Due to our initialization scheme and the usage of LayerSkip, the activations remain
bounded despite the lack of normalization layers.

the residual path enables artifacts in the prediction to be passed on and amplified in autoregressive
rollouts.
A possible solution for the latter is to apply a low-pass filter on the skip connection. However, this choice
requires an ad-hoc cutoff frequency to be chosen and only suppresses high-frequency artifacts. Instead,
we choose to omit the large skip connection altogether and rely on the internal skip connections within
the operator blocks to modify the solution gradually. As such, the network is modifying the current state
gradually, allowing it to filter high-frequency artifacts in autoregressive rollouts.

C.8 Output transformations

Some of the predicted channels represent a quantity of water (specific humidity q--- and total column
water vapor tcwv). As negative values are non-physical, we pass these channels through an output
transformation that has a positive codomain. A simple transformation maps all negative values to zero,
while keeping positive values untouched, which corresponds to applying a ReLU activation. However,
non-linear transformations are known to introduce unwanted high-frequency content [58], and the
discontinuity of the ReLU activation in its derivative further amplifies this effect. To alleviate this
effect, we use the once continuously differentiable spline function

softclamp(u) =


0, for u ≤ 0
u2, for 0 < u ≤ 1

2
u− 1

4 for 1
2 < u

(29)

to smoothly clamp the water channels to the physical range [0,∞).

D Evaluation metrics

We define evaluation metrics to measure the performance of trained models. For deterministic models,
the prediction u is compared to the ground-truth observation u∗. In the probabilistic setting, an ensemble
of predictions {ue}Nens

e=1 is compared to a single, ground-truth observation.
To simplify the discussion, we define metrics for scalar valued variables at a single grid point on the
sphere and at a single point in time. The extension to vector-valued functions uc(x), u∗

c(x) on the sphere
is achieved by taking the average over the channels c, and spatially, over the sphere :

1
Nchannels

Nchannels∑
c=1

1
4π

∫
S2

Metric(uc(x), u∗
c(x)) dµ(x). (30)

Evaluating the metrics therefore requires computation of integrals over the sphere, which are of the form
(7). To do so, quadrature formulae as outlined in Appendix B.1 are used.

D.1 Deterministic scores

For a single prediction u, a straight-forward deterministic metric can be defined by using the Lp distance
of functions defined on the sphere. For p = 2, we obtain the root-mean-square error (RMSE), defined by

RMSE(u, u∗) := 1
4π

(∫
S2
|u− u∗|2 dµ(x)

) 1
2

. (31)
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Similarly, we can set p = 1 to obtain the L1 error, or mean absolute error (MAE):

MAE(u, u∗) := 1
4π

∫
S2
|u− u∗| dµ(x). (32)

Another popular metric for deterministic forecasts is the anomaly correlation coefficient (ACC) defined
as

ACC(u, u∗) :=
∫

S2(u− Eclim[u∗])(u∗ − Eclim[u∗]) dµ(x)√∫
S2(u− Eclim[u∗])2 dµ(x)

∫
S2(u∗ − Eclim[u∗])2 dµ(x)

, (33)

where Eclim[·] denotes a climatological average computed from ground-truth historical data.

D.2 Ensemble skill

In conjunction with our deterministic scores, we wish to evaluate the skill of our probabilistic forecasts.
For any deterministic metric, we can derive a simple ensemble metric, by replacing the prediction u with
the ensemble mean

Eens[ue] := 1
Nens

Nens∑
e=1

ue. (34)

A simple such metric is the ensemble skill or ensemble mean RMSE, which is simply the L2-error/RMSE
of the ensemble mean:

Skill[ue] := RMSE[Eens[ue], u∗] =

√
1

4π

∫
S2

(Eens[ue]− u∗)2 dµ. (35)

D.3 Spread/skill ratio

We remark that the integrand in Equation (35) takes on a similar form to the ensemble variance

Varens[ue] := 1
Nens − 1

Nens∑
e=1

(ue − Eens[ue])2. (36)

Indeed, given an ideal ensemble, we cannot distinguish the ground truth trajectory u∗ from any one of
the Nens ensemble members {ue} with e = 1, 2, . . . , Nens. Given this assumption of interchangeability,
we expect the ensemble variance (36) and the squared ensemble skill to be equal on average, where one
ensemble member is left out to compute the ensemble mean [59].
As such, we expect the ensemble RMSE to grow at the same rate as the ensemble spread, implying

Skill ≈
√
Nens + 1
Nens

Spread, (37)

where the spread is defined as

Spread :=

√√√√ 1
4π

∫
S2

1
Nens − 1

Nens∑
e

(ue − Eens[ue])2 dµ. (38)

Equation (37) then gives rise to the spread-skill ratio (SSR), defined as

SSR :=
√
Nens + 1
Nens

Spread
Skill

, (39)

which measures how well this assumption of interchangeability is satisfied.

D.4 Continuously ranked probability score

The ensemble skill, while valuable for assessing ensemble forecast performance, exclusively focuses on the
ensemble mean Eens[ue] and does not indicate how accurately the ensemble estimates the ground-truth
probability density. To address this limitation, we employ the continuously ranked probability score
CRPS, which is a proper scoring function. Its expectation is minimized only when the ensemble
members ue are sampled from the same distribution as the ground-truth observation u∗, providing a
more comprehensive evaluation of the ensemble’s probabilistic accuracy [60].
For a real-valued observable u, the continuously ranked probability score

CRPS(F, u∗) :=
∫
R
(F (u)− 1(u∗ ≤ u))2du, (40)
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compares the predictive cumulative density function (CDF) F (u) to a single, ground-truth observation
u∗, and its CDF, given by the indicator function 1(u∗ ≤ u). 5 Intuitively, CRPS measures how well the
observation is centered within the predictive CDF. For an ensemble forecast {ue}Nens

e=1 , the integrand in
(40) can be computed numerically, by inserting the approximate CDF

Fens(u) = 1
Nens

Nens∑
e=1

1(ue ≤ u), (41)

which yields

CRPS(Fens, u
∗) =

∫
R
(Fens(u)− 1(u∗ ≤ u))2du

=
∫ u∗

−∞
Fens(u)2du+

∫ ∞

u∗
(Fens(u)− 1)2du. (42)

For a single member ensemble u1, this reduces to the point-wise absolute error∫
R
[1(u1 ≤ u)− 1(u∗ ≤ u)]2du = |u1 − u∗|. (43)

Assuming that the ensemble members ue are sorted in ascending order, the ensemble CRPS (42) can be
rewritten as

CRPS(Fens, u
∗) =

e∗∑
e=1

2e− 1
N2

ens
(u∗ − ue) +

Nens∑
e=e∗+1

2Nens + 1− 2e
N2

ens
(ue − u∗), (44)

where the observation u∗ falls between the members e∗ and e∗ + 1. This can be evaluated in
O(Nens logNens) time by sorting the ensemble and finding the rank of u∗ within the sorted ensemble.
The score can then be averaged according to (30) to compute a summary score.
Gneiting and Raftery [21] show that the CRPS (40) can be alternatively formulated as

CRPS(Fens, u
∗) = EF [|U − u∗|]− 1

2
EF [|U − U ′|], (45)

where U,U ′ are both independently drawn forecasts distributed according to F . This formulation reveals
the contribution of both ensemble mean and ensemble spread to the CRPS. Moreover, it lends itself to
the alternative numerical formulation

CRPS(Fens, u
∗) = 1

Nens

Nens∑
e=1
|ue − u∗| − 1

2N2
ens

Nens∑
e=1

Nens∑
i=1
|ue − ui| (46)

which may be evaluated equally efficiently as (44) by pre-sorting the ensemble members. While the
formulations (42) and (46) are equivalent, they are both biased in the estimation of the ensemble spread.
This can be avoided by using the fair CRPS

fCRPS(Fens, u
∗) = 1

Nens

Nens∑
e=1
|ue − u∗| − 1

2Nens(Nens − 1)

Nens∑
e=1

Nens∑
i=1
|ue − ui|, (47)

which is unbiased in its estimation of the ensemble spread with respect to the number of ensemble
members [61]. A detailed discussion of how CRPS is computed in a distributed, ensemble-parallel setup,
can be found in Appendix G.2.4.

E Training Methodology

FourCastNet 3 is trained on historical best estimates of the observed state of Earth’s atmosphere from the
ECMWF’s Earth Reanalysis 5 (ERA5) dataset. In the following, we outline the training methodology.
The choice of objective function for training the architecture is outlined in Appendix E.1. Training
consists of two stages, an initial pre-training stage and a fine-tuning stage, outlined in Appendix E.2 and
Appendix E.3, respectively. Finally, Appendix E.4 outlines details regarding the training data and its
usage.

5Some authors define CRPS with the opposite sign so that it is maximized rather than minimized with a more
accurate prediction.
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E.1 Objective function

To train FourCastNet 3, we use the objective function

Lens[{ue}, u∗] =
Ntimes∑
n=1

Nchannel∑
c=1

wcw∆t,cwn (Lspatial + λspectralLspectral) , (48)

which composes a spatially averaged, point-wise CRPS loss term Lspatial and a spectral CRPS loss term
Lspectral. This combined loss is averaged over the channels c = 1, 2, . . . , Nchannel with a channel weight
wc, that is defined according to Table 4. Furthermore, to account for the varying time scales of different
variables, an additional temporal weight factor w∆t,c is used. w∆t,c is defined as the inverse of the spatial
and climatological standard deviation of 1-hourly differences of each channel:

w∆t,c = 1
Eclim [Espatial[uc(x, tn+1)− uc(x, tn)]]

. (49)

This approach to channel-weighting was originally reported in [4] and carefully balances how much
individual predicted variables contribute to the overall loss function. In the case of autoregressive training,
the loss is further averaged over lead times t1, t2, . . . with the corresponding weight wn.
The individual loss terms are based on the ensemble CRPS (42) to achieve a probabilistic model. The
spatial loss term is implemented as

Lspatial[{ue}, u∗] = 1
4π

∫
S2

CRPS[{ue(x, tn)}, u∗(x, tn)] dµ(x), (50)

and averages the point-wise CRPS over space. The spatial average is implemented using a quadrature
rule as outlined in Appendix B.1.
The analytically evaluated CRPS (42) is uniquely minimized if the forecast ensemble members ue are
drawn from the same distribution, as the ground truth observation u∗. However, this is not the case for
summary scores such as Equation (50). This can be demonstrated by considering an ensemble drawn
from the ground-truth distribution and then randomly shuffling its members at each spatial point. As a
result, individual members will become implausible, while the summary score remains unchanged with
the CRPS remaining the same at each point. This issue is mainly due to the CRPS not observing the
full, high-dimensional CDFs but rather a marginal CDF at the given location, variable and lead-time.
We address this issue by adding a spectral loss term

Lspectral[{ue}, u∗] =
nlat/2∑

ℓ=1

∑
|m|≤ℓ

CRPS[{ûm
ℓ (tn)}, u∗(x, tn)], (51)

which accounts for spatial correlations by computing the CRPS of each spectral coefficient. A similar
approach was also suggested by Kochkov et al. [13], who additionally apply a low-pass filter to account
for the lower predictability of higher frequencies. As the probabilistic nature is already accounted for by
the CRPS loss term, we opt to directly optimize the spectral CRPS across all frequencies and variables,
to match the distribution of the ground truth solution equally across all angular modes.
We remark that the fair version of CRPS (47) is unbiased in its estimation of the spread term, and can
therefore be problematic as a training objective. For a two-member ensemble, we observe that if u1 is
equal to the ground-truth u∗, the fair CRPS (47) becomes exactly 0, irrespective of the value of u2. As a
consequence, u2 can become unbounded. This has also been observed by Lang et al. [19], who proposed
to use a mixture of biased CRPS (46) and the fair CRPS (47) for training. In practice, we find that the
fair CRPS occasionally leads to instabilities only during the early stages of training. As such, we make
use of the CRPS objective in the initial stages with a large ensemble size to minimize the underestimation
of the spread, and later switch to the fair version with a smaller ensemble.

E.2 Pre-training

The initial training phase emphasizes general model performance and is carried out in two distinct stages:
In the first stage, the model is trained to achieve the best single step loss on the hourly version of the
ERA5 dataset ranging from 1979 to 2016, which amounts to a total of 332,800 samples. At this stage,
we use the biased CRPS loss function (48), as we find the fair CRPS results in occasional instabilities
during training at this stage. This can be explained by its ambiguity property, which can lead to an
unbounded spread [19]. To compensate for the bias in the biased CRPS training objective, we use 16
ensemble members for training. In conjunction with a batch size of 16, and a spatial model-parallelism of
4 GPUs, this amounts to a total of 1024 NVIDIA H100 GPUs for the initial training. This pre-training
stage took 78 hours with an average step time of 1.34 seconds on the NVIDIA Eos Supercomputer.
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Table 3: Overview of the training regime. Initial pre-training is conducted using a large batch size
and a high learning rate (LR), emphasizing good performance on short lead times. In fine-tuning, the
focus is shifted towards achieving a better approximation for autoregressive rollouts. To this end, batch
size is traded for higher model-parallelism to enable more autoregressive steps and suppress buildup of
autoregressive errors.

pre-training fine-tuning
stage 1 stage 2

Training dataset 1-hourly, 1980-2016,
332,800 samples

6-hourly, 1980-2016,
55,460 samples

6-hourly, 2012-2016,
5840 samples

Objective function nodal + spectral CRPS nodal + spectral fCRPS
Gradient descent steps 208,320 5,040 4,380
Optimizer ADAM [62]
Learning rate scheduler constant halve every 840 steps halve every 1,095 steps
Initial learning rate 5 · 10−4 4 · 10−4 4 · 10−6

Rollout steps 1 4 8
Batch size 16 32 4
Ensemble size 16 2 4
Model parallelism lat=2, lon=2 lat=2, lon=4 lat=4, lon=4
Number of GPUs 1024 512 256

The second pre-training stage emphasizes autoregressive performance on the 6-hourly initial conditions
at UTC times 00:00, 06:00, 12:00, 18:00. To this end, the model is optimized using four autoregressive
steps on the 6-hourly subset of the same dataset, which amounts to 55,400 samples. To accommodate for
the increased memory requirement, the model and the data are split spatially across 8 ranks.6 For this
second stage, we switch to the fair version of our CRPS objective and 2 ensemble members at a batch size
of 32. This training stage was carried out on 512 NVIDIA A100 GPUs on the National Energy Research
Scientific Computing Center’s Perlmutter Supercomputer and took 15 hours to complete.

E.3 Fine-tuning

Once pre-training is concluded, the model is fine-tuned using 8 autoregressive steps on the last 5 years
2012-2016 of the 6-hourly dataset. The degree of model-parallelism is once more increased to 16 ranks
to accommodate the increased memory footprint of the autoregression. Finally, we find it beneficial to
enable noise-centering for this last stage of training. To this end, odd ensemble members use the same
noise vector as the even ensemble members but are multiplied by −1. We find that this choice increases
performance both in fine-tuning and inference later on. Fine-tuning took 8 hours on 256 NVIDIA H100
GPUs on NVIDIA’s Eos Supercomputer.
All model training was carried out using automatic mixed precision in the bf16 format and using the
ADAM optimizer [62]. Key training parameters for all training stages are summarized in Table 3.

E.4 Training data

FourCastNet 3 is trained on the ERA5 dataset, which is a multi-decade, hourly estimate of the Earth’s
atmospheric state [37]. It is the result of an elaborate data-assimilation and reanalysis process which
combines modern numerical weather forecasting methods with historical records of observational data
to produce an accurate estimate of the ocean-atmosphere system [63]. As such, ERA5 spans multiple
decades while retaining consistent and unchanging dynamics from a single, modern numerical model.
This contrasts with operational analysis datasets, which undergo periodic updates due to advancements in
numerical methods, computational techniques, and our understanding of geophysical processes. Moreover,
raw observations of the Earth’s ocean-atmosphere system are sparsely distributed in time and space
and vary in quality. Reanalysis datasets like ERA5 assimilate various data sources, considering the
uncertainty estimates of respective sources. This approach provides a consistent representation of the
Earth’s atmospheric history, making it an ideal target for approximating planetary atmospheric dynamics
using machine learning models [2, 4, 9, 10, 53, 64, 65].
For the purpose of training FCN3, we use a subset of 72 variables from the original dataset, listed in
Table 4. This includes seven surface-level variables and five atmospheric variables at 13 pressure levels.
Despite training a 6-hourly model, we use data sampled at an hourly rate between 1980 and 2018 to
maximize the size of the dataset, boosting the generalization capabilities of our model. The data is
represented on the default 721 × 1440 latitude-longitude grid, which amounts to a spatial resolution of
roughly 0.25◦. This amounts to a total of 39.5TB of data.

6Further detail on the simultaneous model- and data-parallelism are provided in Appendix G.
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Table 4: Atmospheric and surface variables predicted by our model. Detailed specifications of each
variable can be accessed at https://apps.ecmwf.int/codes/grib/param-db. The weighting factor of
each variable is specified by wc.

Channel Description ECMWF ID Normalization wc

Surface variables
10u 10 meter u-wind component 165 z-score 0.1
10v 10 meter v-wind component 166 z-score 0.1
100u 100 meter u-wind component 228246 z-score 0.1
100v 100 meter v-wind component 228247 z-score 0.1
t2m 2 meter temperature 167 z-score 1.0
msl Mean sea level pressure 151 z-score 0.1
tcwv Total column vertically-integrated water vapor 137 min/max 0.1

Atmospheric variables at pressure level p indicated by --- in hPa
z--- Geopotential 129 z-score p · 10−3

t--- Temperature 130 z-score p · 10−3

u--- u component of the wind 131 z-score p · 10−3

v--- v component of the wind 132 z-score p · 10−3

q--- Specific humidity 133 min/max p · 10−3

To train the model, the dataset is split into three parts: the training dataset, spanning 1980 to 2016,
the test data spanning 2017 and the out-of-sample validation dataset 2018-2021. The latter is used
for validation purposes only, and all the reported metrics are computed on the validation dataset
2020. For the purpose of training, the data is either z-score or min-max normalized. In particular,
min-max normalization is chosen for the water-channels (q--- and tcwv), which is required for the
output normalization (see Appendix C.8) to work. The normalization constants, i.e. standard deviation,
bias, minimum and maximum are spatially averaged over the sphere and then averaged over the entire
training dataset. To preserve the direction of wind channels (u--- and v---), we assume them to have
zero mean and normalize with the standard deviation of the total wind velocity magnitude.

F Results

We discuss the performance of the results FourCastNet 3 model. Appendix F.1 describes the
scoring methodology. The main probabilistic characteristics of FCN3 are presented in Appendices F.2
and F.3. Appendix F.4 discusses the deterministic performance of a single ensemble member. Finally,
Appendices F.5 to F.7 are concerned with the physical realism and stability of individual ensemble
members of FCN3.

F.1 Scoring methodology

We score FourCastNet 3 using the procedure outlined in WeatherBench 2 (WB2) [14]. However, several
limitations in its implementation hinder its scalability for evaluating large ensemble predictions. To
address these issues, we develop an alternative implementation in an online fashion, which minimizes
I/O operations. Our scoring scripts and inference codes are publicly available at https://github.com/
NVIDIA/makani. This approach is more compatible with the low-cost inference characteristic of ML
models and the architecture of tightly coupled high-performance computing (HPC) systems. For details
regarding the distributed online inference implementation, we refer the reader to Appendix G.5.
Following the evaluation protocol outlined in WB2 [14], we evaluate the skill of FCN3 on 12-hourly
initial conditions on the out-of-sample year 2020, starting from 2020-01-01 00:00:00 UTC and ending at
2020-12-31 12:00:00 UTC. Some predictions at the end of the year spill into 2021. For these, data from
2021 is used to compute the metrics.
Unless specified otherwise, the evaluation is performed on a 50 member ensemble and compared to
the IFS ensemble of equal size. We remark that the IFS-ENS and GenCast baselines are taken from
WB2, which performs scoring against the ARCO-ERA5 dataset (available at https://github.com/
google-research/arco-era5). This ARCO-ERA5 dataset differs slightly from the official ERA5 dataset,
which may therefore result in slight discrepancies when scoring against it. The computation of metrics
is adapted to match the evaluation of WB2. This includes the use of the unbiased formulations of the
CRPS (47) and SSR (39) for all reported results. Moreover, spatial integration is performed using the
trapezoidal quadrature rule as outlined in WB2.
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Figure 12: Continuously ranked probability scores (CRPS) averaged over initial conditions at 00:00:00
UTC and 12:00:00 UTC ranging from 2020-01-01 to 2020-12-31. Lower scores indicate better skill.

Figure 13: Ensemble-mean root mean squared errors (RMSE), averaged over initial conditions at 00:00:00
UTC and 12:00:00 UTC ranging from 2020-01-01 to 2020-12-31. Lower scores indicate better skill.
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Figure 14: Ensemble-mean anomaly correlation coefficient (ACC), averaged over initial conditions at
00:00:00 UTC and 12:00:00 UTC ranging from 2020-01-01 to 2020-12-31. Higher scores indicate better
skill.

F.2 Probabilistic scores

We evaluate the probabilistic skill of FourCastNet 3 as outlined in WB2. Figure 12 and Figure 13 depict
the resulting, averaged CRPS and ensemble-mean RMSE scores. FourCastNet 3 achieves competitive
skill on the 16 variables contained in the scoring protocol, outperforming ECMWF’s gold-standard NWP
ensemble forecasting system IFS-ENS, with a computational cost 60x lower than that of IFS-ENS. Even
though FCN3 is a 6-hourly model trained with data up to 2016, its performance is competitive with
GenCast [6], the state-of-the-art diffusion model, which is a 12-hourly model trained with data up to
2019. On 15 out of the 16 channels in the scoring protocol, FCN3 matches and even slightly outperforms
Gencast’s forecasts at short lead times. A notable exception is 2 meter temperature t2m, where we observe
better performance with GenCast. The slightly better rollout skill of GenCast may be attributable to
its larger 12-hour timestep. This reduces the number of model evaluations and thus the accumulation of
autoregressive. More importantly, it also limits training to inputs and targets from the 00:00 and 12:00
UTC data assimilation windows, when ERA5 fields are typically most accurate [4].
The performance of FCN3 is achieved at a fraction of the computational cost of GenCast. At double the
temporal resolution, a single 15-day FCN3 rollout is computed in 64 seconds on a single NVIDIA H100,
an 8x speed-up over the 8 minutes required to generate a 15-day GenCast forecast on a Google TPU v5
instance [6]. These speed-ups over competing methods not only enable faster forecasts, but also larger
ensemble forecasts with more accurate estimation of tail events [8]. Similarly, better ensemble-mean
RMSE scores can be achieved with larger ensemble forecasts.
Finally, Figure 14 depicts the anomaly correlation coefficients (ACC) (33) for the ensemble mean
predictions of the 50-member FCN3 ensemble. The ACC is a normalized measure of how well
the anomalies within the predictions are spatially correlated with the anomalies in the ground-truth
observations (see Appendix D.1). As such, ACC scores of 1 represent a perfect prediction, whereas scores
of 0.0 indicate a prediction of similar quality to the climatology. ACC scores above 0.55 are generally
considered as skillful. We observe that the FCN 3 ensemble outperforms IFS-ENS once again
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Figure 15: Spread-skill ratios (SSR), averaged over initial conditions at 00:00:00 UTC and 12:00:00 UTC
in the range from 2020-01-01 to 2020-12-31. Spread-skill ratios close to 1 are desirable, as they indicate
good calibration and therefore interchangeability of observations and predictions.

F.3 Ensemble calibration

The aforementioned scores provide a quantitative measure of the predictive accuracy of the FCN3
ensemble. However, they do not evaluate the calibration of the ensemble predictions. The spread-skill
ratio (39) quantifies the agreement between the ensemble spread and the error relative to the ground-truth
observation. Under the assumption of interchangeability we expect this ratio to be 1 on average. Figure 15
shows the mean SSR over the inference period in 2020. The FCN3 ensemble attains SSR values near 1,
which indicates good calibration. Similar to the classical IFS ensemble, FCN3 is initially overdispersive.
For lead times between 24 and 200 hours, FCN3 becomes underdispersive and gradually converges towards
a spread-skill ratio of 1. The initial underdispersion relative to the IFS ensemble may be attributed to
the absence of initial condition uncertainty in FCN3. Introducing initial condition perturbations, such as
bred-vectors [7], could potentially improve FCN3’s dispersion characteristics. Finally, FCN3 and GenCast
display distinct dispersion behaviors, with GenCast being predominantly overdispersive. This difference
likely arises from the distinct training objectives of the two models.
Besides the spread-skill ratio, rank histograms are an essential tool for assessing the calibration of ensemble
forecasting systems [66]. An ideally calibrated ensemble is expected to result in a uniform distribution
of the observation’s rank within the ensemble.7 Figure 16 depicts the rank histogram of the ERA5
ground truth observation within the 50-member FCN3 ensemble. The histograms are spatially and
temporally averaged with the correct weighting to account for the spherical geometry. We observe that
the initial predictions at 6 hours tend to be over-dispersive, leading to a concave rank distribution. At
lead times of 24 hours and more, this trend is reversed, and we observe the rank distribution indicating
an underdispersive ensemble with a concave rank histogram. This trend then gradually flattens out,
approaching the ideal, uniform distribution. We note, that there appears to be a slight bias in the
temperature and geopotential predictions predictions, indicated by a slight asymmetry in the respective
rank histograms.
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Figure 16: Rank histograms of the ERA5 ground truth within the 50-member FourCastNet 3 ensemble at
different lead times. The rank histograms are spatially and temporally averaged for daily initial conditions
at 00:00:00 UTC and 12:00:00 UTC ranging from 2020-01-01 to 2020-12-31. The dashed line depicts the
optimal uniform distribution at a value of 1/51.

F.4 Deterministic scores

While FCN3 operates as an ensemble forecasting system, a single ensemble member can generate
deterministic forecasts by fixing the random seeds (and consequently the latent noise variables). This
approach yields significantly sharper outputs than traditional ML-based weather forecasts, which can be
attributed to the probabilistic loss formulation. Given this enhanced sharpness, FCN3s deterministic
forecasts are more appropriately benchmarked against conventional deterministic numerical weather
prediction (NWP) models, as both models share critical attributes: Preservation of physically plausible
energy spectra and stability across integration periods. These advantages, however, incur a skill penalty
at extended lead times due to inherent predictability limits of atmospheric phenomena, which benefits
blurry predictions.
Figure 17 and Figure 18 depict the RMSE and ACC scores of a single member FourCastNet 3 forecast
relative to the ERA5 ground. Once again, we observe that even a single, deterministic FCN3 forecast
outperforms the classical single-member prediction provided by the IFS ensemble.

F.5 Individual predictions

As the CRPS objective measures a distance between the marginal CDF of the ensemble at a given point
for a given channel, it is reasonable to question whether the ML models trained using this objective
function result in realistic ensemble members with the correct spatio-temporal behavior.
We inspect a single ensemble member FCN3 forecast initialized 2018-01-01 at 00:00:00 UTC. Figure 19,
Figure 20 and Figure 21 at lead times of 6 hours, 360 hours (15 days) and 1440 hours (60 days), respectively.
Even at these extended lead times, we remark that predictions remain incredibly realistic w.r.t. visual
inspection with no observable blurring. This stands in contrast to prior, deterministically trained ML
models. Moreover, the stability of the model is remarkable, especially considering that these lead times
are well within the subseasonal range. Most autoregressive ML weather models tend to become unstable
at these lead times as errors and spurious artifacts build up [11].

7Hamill [66] provide a useful guide to understanding and interpreting rank histograms.
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Figure 17: Root mean squared errors (RMSE) of a single ensemble member, averaged over initial
conditions at 00:00:00 UTC and 12:00:00 UTC ranging from 2020-01-01 to 2020-12-31. Lower scores
indicate better skill.

F.6 Bias

The rank histograms depicted in Figure 16 already hint at a bias in temperature channels predicted by
FCN3. To better understand the distribution of this bias b(x, t) over space and lead times, we computed
the expected error

b(x, tn) = Eti,e[ue(x, ti + tn)− u∗(x, ti + tn)], (52)
averaged over initial times ti and forecast members e. Figure 22 depicts this bias averaged over the
12-hourly initial conditions in 2020 for a single FCN3 ensemble member at lead times up to 15 days. As
expected, we observe a slight cold-bias in t850 and a tendency towards lower 500hPa geopotential in the
equatorial region. However, overall biases are distributed fairly uniformly.

F.7 Spectral properties

While the visual realism and the stability of the method are encouraging, we wish to quantify the degree
of physical realism of FCN3 predictions. The spherical signals encountered in atmospheric physics often
show a distinct spectral signature, with a characteristic slope resulting from an energy cascade [67]. For
individual predictions to be physically consistent, we expect them to obey the same spectral properties.
It is therefore useful to analyze the angular power spectral density

PSD[u](ℓ) =
∑

|m|≤ℓ

|ûm
ℓ |2, (53)

given in terms of the squared absolute values of the spherical harmonic coefficients ûm
ℓ corresponding to

u. Similarly, we may also compute the zonal power spectral density, which is simply the power-spectrum
at a fixed latitude. As such, it is computed by taking the Fourier-transform in the zonal (longitudinal)
direction and normalized by the circumference of the latitude.

zonalPSD[u](θ,m) = 2π sin θ
∣∣∣∣∫ 2π

0
u(θ, φ)e−imφ dφ

∣∣∣∣2

. (54)

Figure 23 depicts the angular power spectral density of four FCN3 forecast members initialized at
2018-01-01 00:00:00 UTC. We observe that the individual forecast members (in green) faithfully reproduce
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Figure 18: Single member anomaly correlation coefficient (ACC), averaged over initial conditions at
00:00:00 UTC and 12:00:00 UTC ranging from 2020-01-01 to 2020-12-31. Lower scores indicate better
skill.

the power spectra of the ground-truth ERA 5 data. This includes the spectral cutoff which results from
the re-analysis being conducted on the T639 grid, which contains spectral coefficients up to degree l = 639.
It is remarkable that spectra are accurate even for extended lead times of 1440 hours, which correspond
to 60 days and 240 autoregressive steps. This is well into the subseasonal range, where autoregressive
stability and physical faithfulness are imperative to obtain skillful forecasts.
Figure 24 further illustrates the advantages of our probabilistic approach. It plots the average
zonal power spectral density over 6-hourly initial conditions in 2020 at the 60°latitude ring on the
Northern Hemisphere. Once again, we observe that a single FourCastNet 3 ensemble member correctly
approximates the ground truth zonal PSD up to the cutoff frequency at this latitude. The plot also
depicts zonal spectra of GraphCast [4] and NeuralGCM [13], two popular ML weather models based.
While GraphCast is a deterministic ML model, NeuralGCM is a probabilistically trained hybrid model
between a General Circulation model and an ML model. In contrast to FCN3, both of these models
exhibit progressive blurring, which results in forecasts resembling an ensemble forecast. This tends to be
favorable for good RMSE scores, however it is unrealistic in terms of power spectral density.

G Scaling FourCastNet 3

Training of large ML weather models quickly becomes performance limited by I/O and memory capacity
and bandwidth as well as compute performance. Increasing distributed memory parallelism has repeatedly
proven to be an effective method for achieving competitive performance in ML models. It is therefore
crucial to keep these considerations in mind when designing ML models and training infrastructure. In
the case of ML weather models and the broader scientific ML domain, these considerations are different
from other areas of machine-learning research. For instance, model inputs, as well as activations are
typically high-dimensional signals, which drastically increases the IO load and memory requirements. As
such, popular distribution strategies such as FSDP [68] and or channel parallelism do not translate well
into the scientific ML domain.
To address this problem, we have developed Makani, an open-source library for massively parallel
large-scale training of ML weather models, featuring a novel model-parallelism paradigm, which splits
both the model and the training data across ranks, using domain decomposition. This is inspired from
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Figure 19: Depiction of a single 6-hour forecast initialized at 2018-01-01 00:00:00 UTC compared to the
ground truth data, as well as the difference between the two.
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Figure 20: Depiction of a single 6-hour forecast initialized at 2018-01-01 00:00:00 UTC compared to the
ground truth data, as well as the difference between the two.
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Figure 21: Depiction of a single 60-day forecast initialized at 2018-01-01 00:00:00 UTC compared to the
ground truth data, as well as the difference between the two.
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Figure 22: Bias of a single FourCastNet 3 ensemble member relative to the ERA5 ground truth averaged
over initial conditions at 00:00:00 UTC and 12:00:00 UTC ranging from 2020-01-01 to 2020-12-31.

40



FourCastNet 3

Figure 23: Angular power spectral density of FCN3 forecasts at lead times of 6, 360 and 1440 hours,
averaged over daily initial conditions at 00:00:00 UTC and 12:00:00 UTC over the year 2020.

In the following section, we describe this new model-parallelism as well as other aspects of scaling and
distributing FourCastNet 3 training.

G.1 Simultaneous model-, data- and ensemble-parallelism

To enable the training of large machine-learning weather models at scale, Makani supports multiple forms
of parallelism. To achieve this, Makani creates a hierarchy of orthogonal communicator groups illustrated
in Figure 25.
Additional structure is added by grouping those into data-parallel and model-parallel groups. The former
are comprised of batch and ensemble communicators and the latter of azimuth (longitude) polar (latitude)
communicators.8 Makani supports a parallelization mode called matmul, which basically splits matrix
multiplications in two-layer MLPs in a fork-join distributed manner by using row-wise and column-wise
matrix decompositions. Since most of our feature matrices are tiny, this feature is not used in this work,
but transformer architectures with large MLP dimensions can benefit from it.

8Note that model-parallelism in this work is recently sometimes referred to ad tensor-parallelism in the
community because model-parallelism can also incorporate pipeline-parallelism, which is currently not supported
by Makani.
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Figure 24: Zonal power spectral density of ML weather forecasts at the 60°latitude ring at lead times of
6, 120 and 240 hours, averaged over 6-hourly initial conditions in 2020.

Figure 25: Communicator hierarchy used in training and inference. To enable multiple forms of
parallelism, GPUs are grouped into distinct communicator groups, with each GPU assigned a unique
rank within each group. Communication for parallel operations occurs only among GPUs within the
same group. The matmul communicator group, shown greyed out, is supported by Makani but not
utilized in this work.
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Orthogonality in the case of communicators means that every rank in a leaf group is a member of exactly
one communicator of that group. Additionally, all ranks k for all communicators in a group A, are
combined into another communicator. The rank ID for ranks in that communicator is derived from the
communicator ID of the group A. For example, the rank k from communicator i in a group A will be
assigned rank i in the new communicator. The union of all those communicators then forms a group A⊥,
which is orthogonal to A.
This hierarchy can be displayed as a tree and can be constructed in a top-down fashion, starting at the
root node, commonly called the world group. This group consists of all ranks of the whole run. This
group is then subdivided into 2 or more groups on the same level, where all groups on each level are
orthogonal in the sense as described above.
Nodes on the same level of the abstract communicator tree do not have a canonical order and can in
theory be ordered arbitrarily. Order only matters once the abstract construct is mapped to physical
network communication hardware underneath. This hardware usually exhibits a hierarchy in terms of
latency and bandwidth. Intra-node communication on the machines we are running on usually happens
through the NVLink 3, supported by NVSwitch, a high bandwidth, low latency interconnect, while
internode communication is routed through the lower bandwidth Infiniband interconnects. Groups of 32
nodes are called leaf groups and can communicate with a single hop over a single switch. Then 32 of
these leaf groups are connected to a spine switch each, which in turn is connected to the core group of
switches. Due to communication congestion and link sharing, latency and bandwidth drop significantly
with every additional hop in the network topology. The mapping of our communicator graph Figure 25
to the underlying network topology needs to reflect that.
It turns out, that all-to-all communications (i.e. distributed data transpositions) are more highly
affected by multi hop communication than, for example, all-reduce operations. The reason is that
the latter can be accelerated by in-network computation technologies such as SHARP and further by
algorithmic tricks, whereas the former can no. Therefore, it is advised to map communicators which
predominantly perform all-to-all communications to lower level components and spread the all-reduce
type communications over higher levels. To that end, we sort our leaf nodes such that all model parallel
computation is as close together in the hardware as possible, spread out across a single or a few nodes
at best. Ensemble parallelism plays a special role, as we will see below: it actually does benefit from
all-to-all communications, but we nevertheless map this to a higher level than any of the model parallel
communications. This is because most of the ensemble parallel computations are embarrassingly parallel
in nature, and just a single all-to-all communication call is performed at the end of each step to compute
the CRPS score. Therefore, it is possible to treat that parallel dimension as not performance critical in
terms of communication.

G.2 Model-parallelism through domain decomposition

The algorithms for model-parallelism employed by Makani are closely related to techniques applied
to traditional numerical simulations in high-performance computing over the last 3 to 4 decades.
The communication primitives underlying these algorithms are usually highly optimized and tuned
for high-performance computer systems with high bandwidth, low latency interconnects. Since these
infrastructures are what we are targeting with Makani, it is reasonable to make use of these developments.

Figure 26: Illustration of domain decomposition within Makani for an azimuth group of 4 and a polar
group of 2. The signal is split into 8 subdomains by subdividing the sphere into two parts along the polar
(latitudinal) axis and into four parts along the azimuthal (longitudinal) axis.

The primary mode of model-parallelization is through domain decomposition. Since neural networks
perform many element-wise computations (multiplications, additions, activation functions, point-wise
MLPs, etc.), these operations are embarrassingly parallel in this setup. Below we explain how we have
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implemented the more complicated distributed operations which require communication. We decompose
all directions as evenly as possible, but since the data was re-gridded from a Gaussian grid, some grid
dimensions are not evenly divisible in some cases. Makani supports this situation by keeping track of all
the split shapes of all tensors and ensuring that during all-gather and all-to-all operations, the correct
shapes are used. We never truncate or interpolate data to enable even splits because such a procedure
inherently causes loss of information. During down-sampling operations, we use optimal dimension sizes
derived from spherical signal processing, usually leading to down-sampled sizes which are also not evenly
divisible.
Note that for reasons of disambiguation, we will denote the spatial dims of our signal tensors with H
and W respectively. This is common in computer vision applications, and it is also easier to abbreviate
than latitude and longitude with a single letter. However, despite this nomenclature, keep in mind
that we treat all data as spherical, multiplying the corresponding spherical quadrature weights ω before
computing spatial sums. The values of those weights are dependent on the grid the tensor is defined on.

G.2.1 Notation

In this section, we denote dimension sizes by capital letters, such as B,C,E,H,W for batch size, number
of channels/variables, number of ensemble members, latitudes and longitudes respectively. If we refer to
the local dimension sizes, we add a loc suffix to the corresponding dimension. For example, Hloc = H/nH,
where nH is the corresponding communicator size, i.e. the number of ranks in latitude direction. The
only exception is batch size B. We never need to distinguish between B and Bloc, thus B will always be
the rank-local batch size.

G.2.2 Distributed spherical Harmonic transforms

We recall from Appendix B.3 that the computation of SHTs can be decomposed into a one-dimensional
Fourier transform along the azimuthal dimension and a matrix multiplication in the polar dimension
to perform the Legendre transformation. To perform this on domain-decomposed data, we use global
transpositions (all-to-all) to change the data decomposition temporarily by splitting the feature dimension
and collecting the corresponding spatial dimension at the same time. Then, the respective transform
(Fourier for longitude or Legendre for latitude) is applied locally but concurrently on all ranks. The data is
then transformed back to mimic the previous decomposition. This method is called pencil decomposition
and commonly used for operations such as distributed Fourier transforms in high-performance computing.
The pseudocode for this procedure is shown in Algorithm 1.

Algorithm 1 Distributed Spherical Harmonics Transform (Forward)
procedure Forward(x, mmax) ▷ x: tensor, shape B× C× Hloc× Wloc ▷ mmax: integer, number of
modes to keep

xt← distributed transpose(x, dims = (1, 3)) ▷ xt: tensor, shape B× Cloc× Hloc× W
xf ← 2π · FFT 1D R2C(xt,dims = 3) ▷ Apply local FFT in longitudinal direction
xf ← xf [, : mmax] ▷ Mode truncation to maximum wave-number, if requested
xt← distributed transpose(xf, dims = (3, 1)) ▷ xt: tensor, shape B× C× Hloc× mmaxloc
x← distributed transpose(xt,dims = (1, 2)) ▷ x: tensor, shape B× Cloc× H× mmaxloc
xcbclm ←

∑
k Lmlkxbckm· ▷ Legendre-Gauss quadrature via tensor contraction ▷ L: tensor, shape

mmaxloc× lmax× H
x← distributed transpose(xc,dims = (2, 1)) ▷ x: tensor, shape B× C× lmaxloc× mmaxloc
return x

Here, B denotes the batch size, C the number of channels (or variables/features), H the height (latitude
dimension) and W the width (longitude dimension). The spectral mode sizes are denoted by lmax and
mmax. Since we are performing a real to complex transform, the number of accessible modes in spectral
space is usually cut in half and the degrees of freedom are propagated into the phases of the now complex
output tensor. For equiangular grids for example, mmax = W/2 but when mode truncation is used, it
could be smaller. The suffix loc denotes that the corresponding axis was split across ranks, and only the
rank-local part of the tensor is stored along this direction. The tensor L contains pre-computed Legendre
coefficients multiplied with the corresponding quadrature weights ωh which are mainly dependent on
latitude (but not on longitude, for the grids we are considering in this work). Generally, the quadrature
weights could be kept separately, but in order to minimize the number of mathematical operations, we
fold those weights into the Legendre coefficient tensor L.
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G.2.3 Distributed DISCO convolutions

The DISCO convolution is mathematically formulated as a product of a sparse matrix denoted by ψ (the
convolution tensor encoding the basis functions) with a dense matrix f (the input tensor, cf. [28]) for all
possible shifts in longitude:

f̂ [b, c, k, h, w] =
nlon−1∑
w′=0

nlat−1∑
h′=0

ψ[k, h, h′, w′] f [b, c, h′, w′ + w], (55)

where b is the batch size, k the number of kernel basis functions, c the number of channels and h,w, h′, w′

are longitude and latitudes for output and input respectively.
Note that ψ does not depend on the output longitude, but instead the dense input tensor is shifted by
output longitude. Because of this shift, it is more efficient to actually gather all longitude components on
a single rank so that the sum over w′ can be performed on each rank. Since there is no channel dependence
on ψ, we can apply the same trick as we apply in the case of the spherical harmonics transform before: we
transpose the data globally so that afterwards, channels are distributed across ranks and the longitudes
are all local. We then compute Equation (55) per rank, followed by a reduce-scatter over the latitude
dimension. This last part finalizes the sum over h′ and also splits the output tensor in latitude-dimension.
Finally, we transpose the data so that channels are rank-local and output longitudes are distributed in
longitude-dimension. The weight contraction is performed per rank in an embarrassingly parallel fashion,
since this is only over the rank-local K and C dimensions.

Algorithm 2 Distributed DISCO (Forward)
procedure Forward(x, psi) ▷ x: tensor, shape B× C× Hloc× Wloc

▷ psi: sparse tensor, shape K× Hloc out× Hloc× W
xt← distributed transpose(x, dims = (1, 3)) ▷ xt: tensor, shape B× Cloc× Hloc× W
xc← contract(ψ, xt) ▷ xc: tensor, shape B× Cloc× K× H out× W out
xr ← reduce scatter(xc,dim = 2) ▷ xr: tensor, shape B× Cloc× K× Hloc out× W out
x← distributed transpose(xr,dims = (3, 1))▷ x: tensor, shape B× C× K× Hloc out× Wloc out
return x

Here, contract computes (55) and is performed by an optimized CUDA kernel we have implemented.
For the backward pass, we also implemented a CUDA kernel for the contraction part, while the rest of
the calculations are handled by PyTorch’s autograd functionality [51].

G.2.4 Distributed evaluation of CRPS loss

In this work, we are using the spread-skill (46) and CDF definition (42) of CRPS. The distributed
implementation can be unified for these two cases, for which only the rank-local kernels differ. Both
kernels rely on sorting the data across the ensemble dimension, either in order to compute a rank score
or a CDF of the data. This score is computed per input sample, channel and grid point. Therefore, we
transpose the data globally so that the ensemble dimension becomes local, and the (flattened) spatial
dimension of size nlat·nlon is subdivided further. Note that one could also split the channel dimension as
we did for the distributed spherical harmonics transform or DISCO. However, since we aim at supporting
a large degree of ensemble parallelism where the number of ensemble members is much bigger than the
number of channels, subdividing the spatial domain further is a better option to ensure scalability. The
algorithm for the distributed computation of the CRPS score is described below:

Algorithm 3 Distributed CRPS (Forward)
procedure Forward(f , o) ▷ f : forecast tensor, shape B× Eloc× C× Hloc× Wloc

▷ o: observation tensor, shape B× C× Hloc× Wloc
ff ← f.reshape(B,Eloc, C, Sloc)
ft← distributed transpose(ff, dims = (1, 4)) ▷ ft: tensor, shape B× E× C× SlocE
of ← f.reshape(B,C, Sloc)
ot← scatter(of, dim = 2) ▷ ot: tensor, shape B× C× SlocE
sl← crps kernel(ft, ot) ▷ s: tensor, shape B× C
s← all reduce(sl) ▷ Reduction over latitude, longitude and ensemble direction
return s

where Sloc = Hloc ∗Wloc and SlocE = Sloc/nE with nE being the size of the ensemble communicator
direction. The function crps kernel is the rank-local implementation of the skill-spread or CDF kernel
variant. The final score is then averaged over the batch and channel dimension, where weights can be
applied to the latter average.
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G.3 Model weight sharding and distributed weight gradients

The algorithms above describe how to compute distributed forward (and, via PyTorch autograd, also
backward) passes, but in order to perform a full weight update step, one also has to compute the weight
gradients. Traditional data parallelism implemented via PyTorch DistributedDataParallel (DDP)
paradigm, averages all gradients along the batch communication dimension, specified by a process group
passed to the corresponding DDP constructor. For most applications, this is sufficient. Makani supports
changing tensor parallelism inside the model, such that some layers can be spatial parallel, but others
are instead feature parallel. In this case, some weights are shared across model parallel communication
dimensions and in some case they are not. The weight gradient reduction has to be performed over all
gradients for weights that are shared across ranks, a case which cannot fully be captured by the simplistic
DDP wrapper. However, PyTorch allows users to customize the gradient reduction step by registering
a communication hook. This hook is executed after the backward pass completes and can be used to
implement arbitrary communication patterns for the weight gradients.
On the hook level, the user can only query weight and gradient tensor information, there is no insight into
what layer that tensor originated from. To this end, we need to add some additional information to the
weight tensors in order to allow proper treatment in the gradient reduction step. The first assumption,
which is always correct, is that all weights need to be reduced along the batch communication dimension.
This operation is implemented as a non-blocking all-reduce, which returns a future object. To this future
object, additional operations can be chained to using the then member. Each subsequent step is required
to return another future that can be chained to other operations.
We implement other shared weight reductions over communication dimensions orthogonal to the batch
dimension, by registering additional all-reduce operations for respective weight gradients. To identify
which gradients need to be averaged over which communication dimensions, we annotate each weight
tensor inside a Makani model with a list of communication groups (identified by their lookup keys in
the global communicator dictionary), the corresponding gradient tensor needs to be averaged over. This
information can be queried during hook construction to determine which additional reductions have to
be generated. Those reductions are performed once per communicator dimension for all weight gradients
which require reduction in this specific dimension. This ensures that communications are efficiently pooled
as opposed to being performed on a per-gradient basis. The latter occurs if distributed weight gradient
reductions were implemented using the post-gradient-hook functionality in PyTorch. This allows the user
to make individual operations or layers self-contained with respect to tensor parallelism, but at the cost
of increased communication time.
For checkpoint saving and restoring, it is further important to know which weights need to be gathered
from or split across which communicator groups. For this purpose, we annotate each weight tensor with
the corresponding sharding information for each dimension. We do not store the degree of parallelism,
just the communication dimension the corresponding tensor dim needs to be split across. This allows us
to also change the degree of tensor parallelism during checkpoint reload, a feature which is important
to mitigate potential memory limitations during fine-tuning. For example, we can increase the degree
of tensor parallelism in a certain communication dimension to accommodate the memory increase when
increasing the autoregressive rollout steps the model is trained on.

G.4 Scalable training of ML weather models

Makani, our framework for scalable, model-parallel training of machine-learning based weather prediction
models, is openly available at https://github.com/NVIDIA/makani. All training configurations to
reproduce our models are contained in the repository, under the /config folder.

G.5 Inference on distributed memory machines

Since individual ensemble members can be generated in a highly parallel fashion for a minimal
computational cost, producing large ensembles is extremely cheap compared to traditional methods such
as NWP [7, 8]. This enables but also enforces a paradigm shift, where storing all generated data is
neither feasible nor necessary anymore. A close analogy are modern large-language models: those models
essentially distill large amounts of text corpus data in a comparable small machine learning model which
can be queried by the user. Similarly, machine learning-based weather prediction models could be viewed
as distilled versions of the dataset they were trained upon. In Makani, we implemented a fully distributed
inference pipeline which is capable of computing many relevant skill scores used by the weather forecasting
community. In fact, the distributed inference pipeline supports all parallelism options which are also
supported by the training pipeline, allowing for a seamless integration into end to end training and
evaluation workflows. Makani still supports storing multi-year rollouts from individual initial conditions
on disk for the purpose of archiving, visualization, etc. To achieve this, we employ parallel HDF5 with
adjustable double buffering in CPU memory. This allows the user to tune the size of data written vs
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what is kept in memory. In the future, we are planning to add streaming I/O support directly from the
GPU via GPUDirect Storage.
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