
ACCORD: Enabling Associativity for Gigascale DRAM
Caches by Coordinating Way-Install and Way-Prediction

Vinson Young†, Chiachen Chou†, Aamer Jaleel*‡, and Moinuddin K. Qureshi†

†Georgia Institute of Technology ‡NVIDIA
{vyoung,cchou34,moin}@gatech.edu, ajaleel@nvidia.com

Abstract—Stacked-DRAM technology has enabled high
bandwidth gigascale DRAM caches. Since DRAM caches re-
quire a tag store of several tens of megabytes, commercial
DRAM cache designs typically co-locate tag and data within
the DRAM array. DRAM caches are organized as a direct-
mapped structure so that the tag and data can be streamed
out in a single access. While direct-mapped DRAM caches
provide low hit-latency, they suffer from low hit-rate due
to conflict misses. Ideally, we want the hit-rate of a set-
associative DRAM cache, without incurring additional latency
and bandwidth costs of increasing associativity. To address this
problem, way prediction can be applied to a set-associative
DRAM cache to achieve the latency and bandwidth of a
direct-mapped DRAM cache. Unfortunately, conventional way
prediction policies typically require per-set storage, causing
multi-megabyte storage overheads for gigascale DRAM caches.
If we can obtain accurate way prediction without incurring
significant storage overheads, we can efficiently enable set-
associativity for DRAM caches.

This paper proposes Associativity via Coordinated Way-Install
and Way-Prediction (ACCORD), a design that steers an incom-
ing line to a “preferred way” based on the line address and uses
the preferred way as the default way prediction. We propose
two way-steering policies that are effective for 2-way caches.
First, Probabilistic Way-Steering (PWS), which steers lines to a
preferred way with high probability, while still allowing lines
to be installed in an alternate way in case of conflicts. Second,
Ganged Way-Steering (GWS), which steers lines of a spatially
contiguous region to the way where an earlier line from that
region was installed. On a 2-way cache, ACCORD (PWS+GWS)
obtains a way prediction accuracy of 90% and retains a hit-
rate similar to a baseline 2-way cache while incurring 320
bytes of storage overhead. We extend ACCORD to support
highly-associative caches using a Skewed Way-Steering (SWS)
design that steers a line to at-most two ways in the highly-
associative cache. This design retains the low-latency of the
2-way ACCORD while obtaining most of the hit-rate benefits
of a highly associative design. Our studies with a 4GB DRAM
cache backed by non-volatile memory shows that ACCORD
provides an average of 11% speedup (up to 54%) across a
wide range of workloads.

Keywords-Stacked DRAM, HBM, Associativity, Cache

I. INTRODUCTION

As modern computer systems pack more and more cores
on a processor chip, both bandwidth and capacity of memory
systems must scale proportionally. Advancements in memory
packaging and interconnect technology have enabled stacking
several DRAM chips, thereby offering 4-8X bandwidth of

*Aamer Jaleel contributed to this work while at Intel.

conventional DIMM-based DRAM [1]. Meanwhile, emerging
non-volatile memory technology, such as phase change
memory (PCM) [2], [3], [4] and 3D XPoint [5], provide
4-8X higher capacity than DRAM. Therefore, future memory
systems are likely to consist of high-bandwidth stacked
DRAM and high-capacity non-volatile memory [6], [7], [8],
[9]. An attractive option is to architect stacked DRAM as a
hardware-managed cache and place it between on-die caches
and memory [10], [11], [12], [13], [14], [15], [16], [17], [18].

Architecting stacked DRAM as a cache has several
challenges, including designing and accessing a tag-store
of several megabytes. For example, a 4GB cache consists
of 64 million 64-byte lines, which requires a tag-store of
128MB (even if each tag is only 2 bytes). Therefore, practical
designs co-locate tags with data in the stacked DRAM. For
example, alloy cache [11] proposes storing tag next to data at
a line granularity in a direct-mapped cache, so that a single
access can provide both data and the associated tag, which
allows for quick determination of a hit or a miss. Unlike its
set-associative counterpart [12], [13], [14], [16], the direct-
mapped organization is attractive as it eliminates additional
accesses to determine location of lines and optimizes for
hit latency. Commercial processors such as Intel Knights
Landing (KNL) [10] take a similar approach and architect
DRAM cache at 64-byte linesize, direct-mapped, tags-stored
with-data (in unused ECC bits). In this paper, we focus on
such practical DRAM caches that place tags with data.

Although direct-mapped DRAM caches minimize band-
width overhead, they suffer from a low cache hit rate because
of conflict misses. While trading off the hit rate for lower
hit latency may be acceptable when main memory access
latency is similar to DRAM-cache latency (e.g., DDR-based
main memory), such a tradeoff may not be suitable for
systems that have much higher memory latency than that
of DRAM caches (e.g., non-volatile memory, or NVM).
Ideally, for NVM-based memory systems, we would like
to improve the hit rate and reduce long-latency accesses
to main memory. One simple way that improves the cache
hit rate is to make DRAM caches set-associative. However,
set-associative DRAM caches require efficient mechanisms
that (1) determine the matching location (way) on a hit, (2)
determine that a line does not exist in any way on a miss,
(3) determine the matching way on a writeback operation,
and (4) maintain the replacement state.

 60

 70

 80

 90

1-
w
ay

2-
w
ay

4-
w
ay

8-
w
ay

(a) Hit Rate

H
it
 R

a
te

 (
%

)

 0

 0.5

 1

 1.5

2-
w
ay

4-
w
ay

8-
w
ay

(b) Speedup (Parallel)

S
p
e
e
d
u
p
 (

P
a
ra

lle
l)

 0

 0.5

 1

 1.5

2-
w
ay

4-
w
ay

8-
w
ay

(c) Speedup (Idealized)

S
p
e
e
d
u
p
 (

Id
e
a
liz

e
d
)

Figure 1. Impact of increasing associativity from 1-way to 8-way on (a) hit-rate (b) performance of parallel lookup design that streams the entire set (c)
performance of an idealized set-associative design (BW and latency of 1-way). Speedup is averaged across all workloads w.r.t. a baseline direct-mapped
cache. See Section III-A for detailed methodology.

A straightforward way to implement a set-associative cache
is to stream out all N ways on each access (a design referred
to as parallel lookup). While such a design may obtain
higher hit rate than a direct-mapped cache, it suffers from
high bandwidth overheads, causing performance degradation.
Figure 1(a) shows that increasing the set associativity of a
4GB DRAM cache from 1-way to 8-way improves the hit
rate from 74% to 80%. Unfortunately, the 8-way cache with
parallel lookup degrades performance, shown in Figure 1(b).
If we could obtain the hit rate of a set-associative cache and
maintain the latency and bandwidth of a direct-mapped cache,
performance could improve significantly, 21% with an 8-way
cache shown in Figure 1(c). Thus, enabling set associativity
for DRAM caches must be done in a bandwidth-efficient
manner for performance.

An alternative design, serial lookup, checks the ways one-
by-one and stops when a tag matches. Serial lookup improves
bandwidth consumption but introduces serialization latency
as the way lookups are now dependent on each other. The
hit latency of this design can improve if we intelligently
choose which way to lookup first, using way prediction.
Unfortunately, conventional way predictors [19], [20], [21],
[22] rely on per-set metadata (e.g., tracking the most-recently
used line in a set) or per-line metadata (e.g., tracking partial
tags of each line in a set). Consequently, these designs are
impractical for gigascale caches as they would incur several
megabytes of SRAM storage overhead. Ideally, we want
accurate way prediction without the storage overheads.

Prior approaches for way prediction need significant
storage, as way prediction is independent of way install.
If we coordinate way install with way prediction, we could
predict ways with high accuracy and low storage overhead.
For example, consider an extreme case in a 2-way cache,
in which we install all lines with even tags to way-0, and
odd tags to way-1. In such a design, based on the line
address, we would obtain 100% accuracy for way prediction.
Unfortunately, such a design would degenerate into a direct-
mapped cache, as a line is always forced to go to exactly
one location. However, this example provides an important
insight: by guiding the rules of where lines can go, we can
effectively make the cache more predictable without requiring
significant storage for way prediction. Based on this insight,
this paper makes the following contributions:

Contribution-1: We propose ACCORD (Associativity via
Coordinated Way Install and Way Prediction), a framework
that allows low-cost way prediction for DRAM caches by
coordinating the cache install policy and the way prediction
policy. ACCORD steers an incoming line to a “preferred
way” based on the line address and uses the preferred way
as the default way prediction. ACCORD provides a robust
framework for obtaining associativity when associativity is
beneficial, but not degrading performance when the system
is insensitive to increased cache associativity.

Contribution-2: We propose a Probabilistic Way-Steering
(PWS) policy that steers lines into the “preferred way” with
a high probability (say 85%) while using this preferred way
as a stateless way prediction. Since PWS allows the line to
be installed in another way with some probability (15%), the
lines conflicting for the same preferred location will still have
a chance to eventually co-reside within the same set. With
this steering mechanism, PWS obtains most of the 2-way hit
rate but obtains high accuracy for way prediction (83%).

Contribution-3: We propose a Ganged Way-Steering (GWS)
policy that steers the lines of a spatially contiguous region
to the same way where a line from that region was recently
installed. By coordinating the install decisions across sets,
GWS allows accurate way prediction by simply tracking the
way of a few recently accessed regions and predicting that
other lines from that region are resident in the same way. We
show that tracking 64 recent regions (storage overhead of less
than 320 bytes) with GWS is sufficient to provide high way
prediction accuracy for workloads with high spatial locality,
and combining GWS with PWS provides an accuracy of 90%
for a 2-way cache.

In addition, we extend ACCORD to support higher levels
of set associativity and show that the main obstacle for a
highly set-associative cache is the cost of miss confirmation
(the need to check all of the ways in a set).

We perform evaluations using 21 workloads on a 16-core
system with a 4GB DRAM cache and non-volatile memory.
Our studies show that ACCORD with 2-ways provides 7.3%
speedup (up to 40%), which is close to the 10% speedup
of an idealized 2-way cache. Furthermore, ACCORD with
increased associativity provides average speedup of 11% (up
to 54%), while retaining similar bandwidth consumption to
that of a direct-mapped cache.

2

S+1

0 1Way

Addr Two possible locations

DRAM ARRAY

72B = 64B Data

+ 8B of <Tag + ECC>
ROW BUFFER

(a) Current DRAM Cache Design (direct−mapped)

Addr

set S S+1S−1

(b) 2−Way Extension

Ways placed in the same row buffer

DATA(64B)
ECC+TAG

(8B)
S−1 set S

Figure 2. (a) Organization of practical DRAM caches (Intel KNL): Each access indexes a direct-mapped location and transfers 72 bytes that has tag and
data. (b) Extending to a 2-way cache. Ways in the same set are placed in the same row buffer. Each memory address has two possible locations (ways).

II. BACKGROUND AND MOTIVATION

We now discuss the trade-offs in designing direct-mapped
and set-associative DRAM caches.

A. Organization of Practical DRAM Caches

Recent research work have enabled fine-grained (64B line
size) DRAM caches in a low-cost manner [11], [17]. To
avoid on-die tag storage overhead, these studies propose
co-locating tags with data in a stacked-DRAM array. These
proposals optimize for low hit latency, even if it comes at the
expense of slight reduction in hit rate [11]. For example, the
alloy cache organizes the DRAM cache as a direct-mapped
structure and alloys tags and data together, which form a
72-byte unit. Such a unit is streamed out on a cache access.
Therefore, one access to a direct-mapped location retrieves
one data line and the corresponding tag. Thus, a cache hit
or miss is quickly determined with the single tag, and cache
hits can be serviced immediately after the access. This direct-
mapped tags-with-data design is attractive for latency, as hits
and misses can be serviced with just one DRAM access.
Commercial designs, like Intel Knights Landing [10], also
adopt such a low-latency DRAM cache–a direct-mapped, 64B
linesize structure that stores tags as part of line in unused
ECC bits,1 shown in Figure 2(a). In this paper, we consider
such practical gigascale DRAM caches, a line-granularity
organization that co-locates tag with the data line.

B. Challenges in Set-Associativity

Trading off the cache hit rate for low hit latency may be
acceptable when the memory latency is similar to DRAM
cache latency. However, this trade-off is unacceptable when
the main memory latency is much longer than the DRAM
cache latency. For example, when main memory is NVM,
memory access latency can be roughly 2X-4X as long as
DRAM cache latency. Therefore, it is important to optimize
for the DRAM cache hit rate while retaining low DRAM
cache hit latency. A straightforward way of improving the
cache hit rate is to build a set-associative DRAM cache. For
example, we extend the practical DRAM cache design to
a 2-way cache, shown in Figure 2(b). The tag of a way is
associated with the way, and ways in the same set are placed
in one row buffer [12]; in this case, each memory address has

1The tags of the KNL design are kept in the ECC space. The stacked
DRAM technology used in KNL provides a 16-byte bus for data and two-
byte bus for ECC, for a total width of 18 bytes. Fortunately, we need only 9
bits for providing SECDED on a 16-byte entity, which means 7 bits are left
unused in each burst. A cache line of 64-byte is transferred over four bursts,
therefore there are 28 unused bits in the ECC space, which is sufficient for
storing the tag information for the given data line.

two possible locations. However, we identify the following
obstacles in designing set-associative DRAM caches:
1) Determining Hit Location: On an access, the line can
be present in any way of a set in a set-associative DRAM
cache. We may need to check all the ways to obtain the
requested line, thus incurring the bandwidth and latency
overheads associated with accessing multiple lines. Ideally,
we want to implement a set associative DRAM cache while
retaining the single lookup of a direct-mapped DRAM cache.
2) Miss Confirmation: On miss, we need to ensure that
the line is not present in the DRAM cache. This typically
requires checking all ways in a set, which incurs bandwidth
overhead proportional to DRAM cache set associativity.
For set-associative DRAM caches, we want to reduce the
bandwidth overheads incurred by miss confirmation.
3) Writeback Probe: On a writeback operation to a set-
associative DRAM cache, a writeback probe may be needed
to determine the way in which the line is resident. For a
direct-mapped DRAM cache, simply knowing that the line
is resident is sufficient to avoid a writeback probe operation
(by keeping the DRAM cache presence, or DCP bit, in the
L3 cache [17]). However, for a set-associative DRAM cache,
we additionally need to know “which way” to write back to.
To determine the correct way to write back to on a writeback,
we extend the DCP scheme to store way information as well.
We note that any associative DRAM cache will require this
extension to enable write performance.
4) Replacement Policy: A set-associative cache relies on a
replacement policy to choose a victim line. For any intelligent
replacement policy, an update of the replacement state is
performed on hits and insertions (e.g., counter update [23]).
Since DRAM caches store the tags with the line, updating
the replacement state incurs a DRAM write operation (to
the line). Unfortunately, performance overhead because of
extra bandwidth for such updates far outweighs performance
benefits from the improved hit rate [11]. In fact, using an
update-free replacement policy (e.g., random) provides better
performance.2 As such, we use random replacement for set-
associative DRAM caches throughout this paper.

C. Options for Implementing Set-Associativity

In an N-way set-associative cache, a line can be resident in
any of the N locations. Ideally, we desire a low-latency and
low-bandwidth implementation of a set-associative DRAM
cache. We now discuss some options for implementing a
set-associative DRAM cache.

2For example, using LRU replacement for a 2-way DRAM cache degrades
performance by 9% compared to random replacement.

3

Addr

Way 0 Way 1 Way 0 Way 1 Way 0 Way 1

Addr
read both ways

A
Bcheck way−0 first

If miss, check Way 1A, B

(a) Parallel Lookup (b) Serial Lookup

Addr

(c) Way−Predicted Lookup

B

If miss, check Way 0

BA
Way−Pred

Way = 1

B

Predicted

ABA

Figure 3. Comparison of accessing lines in a 2-way DRAM cache. (a) Parallel Lookup: One cache request reads all ways in the corresponding set. (b)
Serial Lookup: A request first reads way-0; if miss, it checks way-1. If data is in way-1, this dependent way checking incurs serialization penalty. (c)
Way-Predicted Lookup: A request first reads a predicted way; if miss, it checks the other way.

1) Parallel Lookup: A straightforward way to locate data
in an N-way DRAM cache is to read all N lines of a set on
each access, shown in Figure 3(a). We refer to such a design
as a parallel lookup design. Table I shows the number of line
transfers for a cache hit and a cache miss for this design. The
number of transfers represents bandwidth overhead that is
the number of lines transferred on the bus, and the number of
accesses indicates the serialization penalty (i.e., the number
of dependent checks). While parallel lookup may be practical
for SRAM caches, the bandwidth overhead of streaming N
lines on each access becomes prohibitive for DRAM caches.

Table I
THE NUMBER OF CACHE ACCESSES AND LINE TRANSFERS FOR LOOKING

UP A N-WAY SET-ASSOCIATIVE CACHE

Cache Actions on Actions on Hit RateOrganization A Hit A Miss

Direct-mapped 1 access 1 access low1 transfer 1 transfer
Parallel Lookup 1 access 1 access high(N-way) N transfers N transfers
Serial Lookup ˜N/2 accesses N accesses high(N-way) ˜N/2 transfers N transfers
Way Predicted ˜1 access N accesses high(N-way) ˜1 transfer N transfers

2) Serial Lookup: Alternatively, we can check the lines
sequentially (see Figure 3(b)). We refer to this design as
a serial lookup design, which reduces the bandwidth for
transferring lines on a hit from N to ˜(N+1)/2 on average
(see Table I). However, it introduces latency as the lookups
are now serially dependent on each other (N accesses). If
we can predict which way the line is likely to be in, we can
reduce hit latency further.

3) Way-Predicted Lookup: We can reduce serialization
penalty by intelligently choosing which way to check first
using Way-Prediction (see Figure 3(c)). We refer to this
design as a Way-Predicted Lookup design. On a hit, if we
can predict the way accurately, we can service hits with just
one DRAM access (see Table I). This organization achieves
the hit latency of a direct-mapped cache while maintaining
the hit rate of an N-way cache. However, achieving high way-
prediction accuracy at low storage cost is difficult in practice.
Furthermore, the bandwidth overheads of miss confirmation
is still N lookups.

D. Conventional Way-Predictors: Challenge in Scaling to
Gigascale DRAM Caches

Way Prediction has been proposed for SRAM caches (L1
or LLC) for reducing latency and power. For L1, tracking the
most-recently-used way in each set (MRU Pred [19], [20])
provides high accuracy as the access stream of an L1 cache
has high temporal locality. Unfortunately, such locality is
typically not visible to secondary caches (L2/L3/L4), so MRU
prediction tends to be not as effective. Secondary caches can
use a partial-tag (e.g., 4-bits) design for each line to avoid
cache lookup [21], [22], [24], [25], [26], [27]. Unfortunately,
both MRU Pred and Partial-Tag design require per-set or
per-line storage. Such schemes would incur storage overhead
of several MBs for a 4GB DRAM cache, in Table II.

Table II
ACCURACY AND STORAGE OF WAY PREDICTORS FOR A 4GB CACHE

Rand Pred MRU Pred Partial-Tag
Storage 0B overhead 4MB overhead 32MB overhead
2-way 50.0% 85.7% 97.3%
4-way 25.0% 74.3% 91.6%
8-way 12.5% 63.2% 81.2%

Table II shows that simply predicting a random location
has low accuracy (labeled as Rand Pred). Additionally, MRU
prediction accuracy also degrades significantly at higher
associativity. The partial-tag design has good accuracy but
incurs an impractical storage overhead of 32MB. If we are to
implement way prediction effectively at the size of DRAM
caches, we need a way-predictor that is both accurate and
requires lower storage overhead than conventional designs.

E. Insight: Way-Steering for Way-Prediction

In a conventional set-associative design, any way in a
set can be replaced (determined by the replacement policy),
thus complicating the way prediction. We observe that if we
steer the incoming line to a “preferred way” based on the
line address at install time, way prediction can simply use
the preferred way as the default prediction at access time.
The coordination between way install and way prediction
improves the prediction accuracy. Based on this insight, we
develop a low-overhead, low-latency, and low-bandwidth way
prediction for set-associative DRAM caches. We explain our
methodology before describing our proposal.

4

III. METHODOLOGY

A. Framework and Configuration

We use USIMM [28], an x86 simulator with detailed
memory system model. We extend USIMM to include a
DRAM cache. Table III shows the configuration used in
our study. We assume a four-level cache hierarchy (L1,
L2, L3 being on-chip SRAM caches and L4 being off-chip
DRAM cache). All caches use 64B line size. We model a
virtual memory system to perform virtual to physical address
translations. The baseline contains a 4GB direct-mapped
DRAM cache that places tags with data in the unused ECC
bits [10]. The parameters of our DRAM cache is based on
HBM technology [1]. The main memory is based on non-
volatile memory and assumed to have a latency similar to
PCM [2], [3], [4], [6]: the read latency is 2-4X and the write
latency is 4X as long as those of DRAM [29].

Table III
SYSTEM CONFIGURATION

Processors 16 cores; 3.0GHz, 2-wide OoO
Last-Level Cache 8MB, 16-way

DRAM Cache
Capacity 4GB
Bus Frequency 500MHz (DDR 1GHz)
Configuration 8 channel, 128-bit bus
Aggregate Bandwidth 128 GB/s
tCAS-tRCD-tRP-tRAS 13-13-13-30 ns

Main Memory (PCM)
Capacity 128GB
Bus Frequency 1000MHz (DDR 2GHz)
Configuration 2 channel, 64-bit bus
Aggregate Bandwidth 32 GB/s
tCAS-tRCD-tRP-tRAS-tWR 13-128-8-143-160 ns

B. Workloads

We run benchmark suites of SPEC 2006 [30], GAP [31],
and HPC. For SPEC, we perform studies on all 9 benchmarks
that have at least 5% speedup potential going from 1-way
to 8-way, along with 2 workloads that are less sensitive to
set associativity. GAP is graph analytics with real data sets
(twitter, web sk-2005) [32]. The evaluations execute
benchmarks in rate mode, where all cores execute the same
benchmark. In addition to rate-mode workloads, we evaluate
10 mixed workloads, which are created by choosing 16 of the
16 SPEC workloads that have at least two miss per thousand
instructions (MPKI). Table IV shows L3 miss rates, memory
footprints, and performance potential with ideal 8-way cache
for the rate-mode workloads used in our study.

We perform timing simulation until each benchmark in
a workload executes at least 2 billion instructions. We use
weighted speedup to measure aggregate performance of the
workload normalized to the baseline and report geometric
mean for the average speedup across all the 21 workloads.
For other workloads that are neither memory bound nor
sensitive to set associativity of DRAM caches, we present
performance of all 46 workloads evaluated (29 SPEC, 10
SPEC-mix, 6 GAP, and 1 HPC) in Section VI-A.

Table IV
WORKLOAD CHARACTERISTICS

Suite Workload L3 MPKI Footprint
8-Way

Potential
Speedup

SPEC

soplex 29.8 3.6 GB 2.43
leslie 17.0 1.2 GB 1.63
libq 25.6 512 MB 1.55
gcc 5.8 2.9 GB 1.27

zeusmp 5.3 3.3 GB 1.18
wrf 7.4 2.2 GB 1.18

omnet 20.8 2.4 GB 1.17
xalanc 4.3 3.0 GB 1.09

mcf 83.1 26.1 GB 1.06
sphinx 13.7 293 MB 1.01
milc 25.5 9.0 GB 0.99

GAP

pr twitter 121.7 30.5 GB 1.15
cc twitter 108.7 18.6 GB 1.15
bc twitter 81.1 26.9 GB 1.11

pr web 17.8 30.3 GB 1.07
cc web 9.2 18.6 GB 1.05

HPC nekbone 6.4 111 MB 1.04

IV. DESIGN OF ACCORD

A. An Overview of ACCORD

Way-prediction can enable a set-associative cache to
maintain the hit latency of a direct-mapped cache but the hit-
rate of an associative cache. Conventional way predictors are
designed independent of the way install policy of the cache
and typically incur significant storage overhead.3 The cache
install policy decides the way in which an incoming line is
installed. Generally, a line has full flexibility to be installed
in any way.There tends to be no correlation between the line
address and the install way. If we can instead coordinate way-
install with way-prediction, we can obtain high accuracy for
way prediction while incurring negligible storage overhead.
To this end, we propose Associativity via Coordinated Way-
Install and Way-Prediction (ACCORD), a design that steers
an incoming line to a “preferred way” based on line address
and uses that preferred way as way prediction.

Way 0 Way 1

DRAM Cache

Way Install
PolicyPredictor

Way

Line A (Install)Line A (Access) Coordinate

Way
Preferred

Figure 4. Overview of ACCORD. Coordinating Way-Install and Way-
Prediction using Way Steering

Figure 4 shows how ACCORD changes the cache install
policy to prefer a particular way based on the line address,
in a process which we refer to as Way Steering. For way
prediction, the preferred way is determined based on the line
address, and this way information is used as the prediction.

3There have been proposals for storage-free position-based prediction [33],
[19], but, these proposals require bandwidth-intensive swaps to maintain
accuracy. We evaluate such proposals in Section VII.

5

The Way Steering policies in ACCORD do not restrict the
line to always be installed in the preferred way. The policies
are designed such that it is possible, although less likely, that
the line can be installed in the non-preferred way. In this
section, we propose and evaluate two low-cost and effective
policies for way-steering in a 2-way DRAM cache. We then
show how to extend ACCORD to support higher levels of
set associativity in Section V-A.

B. Probabilistic Way-Steering (PWS)

The install policy in practical set-associative DRAM cache
is likely to employ random replacement (to avoid bandwidth
for updating replacement state on a hit). Random replacement
chooses any way in a set with equal probability. For example,
in a 2-way cache, either way will be picked with 50%
probability. However, using the line address, we can bias
the install policy to select a particular way with a higher
probability. Based on this insight, we propose our first way-
steering policy, Probabilistic Way Steering (PWS).

Page A

15%

(a) Preferred Way Determination

85%
Way 0 Way 1

(b) Install using PWS

Direct−mapped Index

0 Index
Set Byte

OffsetTag A

Preferred Way = Way−0 A3

 A1

A2

A0

Figure 5. Probabilistic Way-Steering (PWS): (a) deciding the preferred
way based on tags and (b) installing line in the preferred way based on
preferred-way install probability (e.g. 85%).

PWS determines the preferred way of a line based on
the tag of the line, as shown in Figure 5(a). If the tag
is even, Way-0 is preferred; if the tag is odd, Way-1 is
preferred. On an install, PWS chooses the preferred way
with a given probability, Preferred-Way Install Probability
(PIP). For example, if PIP=85%, then, PWS chooses the
preferred way with 85% likelihood, as shown in Figure 5(b).
For a two-way cache, PWS with PIP=50% is an unbiased
policy that is identical to the baseline random replacement
policy, whereas PIP=100% degenerates into a direct-mapped
cache. On an access, the way-prediction statically predicts the
preferred way based on the tag. As we install in the preferred
way 85% of the time, we will find the line in the preferred
way 85% of the time. As such, the prediction accuracy of
PWS is approximately equal to PIP. Note that a high value
of PIP can degrade cache hit-rate as it reduces the flexibility
of an associative cache. We analyze the sensitivity to PWS’s
PIP threshold using a synthetic kernel and our workloads.

1) Analyzing PWS Using Cyclic Reference Model: We
analyze the effectiveness of PWS with various PIP values
using a cyclic reference model [34], [23] to model hit-rate
of two conflicting lines. Let a and b denote the address of

0.00

0.20

0.40

0.60

0.80

1.00

2 4 8 16 32 64 128

PIP=50%

PIP=90%

H
it
 r

a
te

Number of Iterations (N)

PIP=50%
PIP=70%
PIP=80%
PIP=90%

Figure 6. Impact of PIP on hit-rate of a 2-way cache for a cyclic-reference
kernel. PIP=80% provides hit-rate near PIP=50% (unbiased random policy).

two cache lines that map to the same set of a 2-way cache.
These lines are accessed one after the other. A temporal
sequence that repeats for N times is represented as (a,b)N .
If N=1, the cache would get zero hits due to compulsory
misses. However, when N¿1, we would expect the cache to
provide hits in steady state. Note that a direct-mapped cache
would always provide 0% hit-rate due to thrashing.

Figure 6 shows the hit-rate of this kernel as N is varied
from 2 to 128 using PWS while varying PIP from unbiased
(50% for a two-way cache) to 90%. We find that PIP=70%
and PIP=80% maintain similar hit-rate compared to the unbi-
ased random replacement policy (PIP=50%) as the two lines
are installed in the two separate ways quickly. Interestingly,
with enough re-use, even PIP=90% will eventually learn to
use both ways and provide improved hit-rate. Thus, tuning
PIP effectively allows PWS to trade off a small amount
of hit-rate (i.e., speed of learning to use both ways) for
predictability.

2) Impact of PWS on Hit-Rate and Performance: PWS
must balance between the dueling needs of high hit-rate
as well as high way-prediction accuracy. Table V shows
the hit-rate and performance of PWS as a function of PIP,
averaged over all our workloads. At PIP of 80% or below,
PWS provides most of the hit-rate of a 2-way cache, and
achieves high way-prediction accuracy (similar to PIP). Note
that even at PIP=90%, PWS still provides most of the hit-
rate benefit of a 2-way design, as lines that constantly thrash
eventually use the other way. However, at PIP=100%, the
design simply degenerates into a direct-mapped cache. We
observe that, PIP between 80% and 85% provides the best
trade off between hit rate and way-predictability. Performance
of PWS is maximized (5.6% speedup) at PIP=85%. Thus,
we use PIP=85% for the rest of this paper. Note that PWS
performance improvements incur zero storage overhead.

Table V
AVERAGE HIT-RATE AND SPEEDUP OF PWS

Organization Hit-Rate WP Acc. Speedup
2-way (Unbiased, PIP=50%) 77.5% 50.0% 2.6%

2-way PWS (PIP=60%) 77.5% 59.8% 3.7%
2-way PWS (PIP=70%) 77.5% 69.4% 4.7%
2-way PWS (PIP=80%) 77.3% 78.6% 5.5%
2-way PWS (PIP=85%) 77.2% 83.1% 5.6%
2-way PWS (PIP=90%) 76.9% 87.8% 5.3%

Direct-Mapped (PIP=100%) 74.2% 100.0% 0.0%

6

 40

 60

 80

 100

m
ilc

sp
hi
nx

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

bc
 tw

i

pr
 tw

i

cc
 tw

i

om
ne

t
w
rf

ze
us

m
p

gc
c

lib
q

le
sl
ie

so
pl
ex

m
ix
1

m
ix
2

m
ix
3

m
ix
4

G
m

ea
nW

a
y
-P

re
d

 A
c
c
u

ra
c
y
 (

%
) Rand Pred Probabilistic Way-Steering Ganged Way-Steering Probabilistic + Ganged WS

Figure 7. Accuracy of way-predictors for a 2-way cache. While probabilistic way-steering (PWS) provides a 83% accuracy, ganged way-steering (GWS) is
75% accurate. Combining GWS with PWS provides 90% accuracy.

C. Ganged Way-Steering (GWS)

PWS guides most of the lines to the preferred way;
however, some lines in the region can still go to different
ways. This is because PWS makes the install decisions on
each miss, and decides if the incoming line should be installed
in the preferred way or the non-preferred way. In conventional
cache management schemes, the install decisions of one set
has no bearing on the install decisions on another set. We
develop an insight that if we could coordinate the install
decisions across sets, then we can obtain even higher way-
prediction accuracy. For example, if multiple lines of a
spatially contiguous region miss the cache, then rather than
making independent install decisions for each line in the
region, we could make the install decision for the first line
in the region and install subsequent lines from the region in
the same way as the earlier line from that region. Based on
this insight, we propose Ganged Way-Steering (GWS).

Only one in Way 0

(a) Probabilistic Steering

85%
Prefer Way 0

A, B
15%

Way 0 Way 1

Prefer Way 0
A, B

15%

Install B2, B3 in the same way

Way 0 Way 1

(b) Ganged Way−Steering

85%

A and B prefer Way−0

Follow B0

Install B0 in Way−1

B1

A2

A1

A0

A3

B2

B3B3

B0B0

B1

B2

A3

A2

A0

Figure 8. The benefit of coordinating install decisions across sets: (a)
PWS install lines of each region (A and B) into either way. (b) GWS steers
later lines from the region into the same way earlier line was installed. The
purple boxes denote lines that can be way-predicted.

1) GWS: Insight and Proposal: Figure 8 compares PWS
and GWS for a spatial pattern from two regions (A and
B). PWS can install lines from these regions in either way.
However, with GWS, install decisions are made only for
the first line in the region, and subsequent lines are steered
such that they follow the decision made by the first line.
With GWS, the preferred way for a line at install time is
the way where recent lines from that region were steered to.
And way-prediction is decided based on the way of the last
accessed line of that region. For a workload with good spatial
locality, GWS can get near-ideal way-prediction accuracy by
predicting last-way seen (¿90%). GWS only needs a method
to track the install-way of recently missed lines and the
way-location of recently accessed lines.

2) GWS: Implementation: Figure 9 shows our implemen-
tation of GWS for the install policy. GWS tracks the last-
way-installed for recently installed regions in a Recent Install
Table (RIT). On an install, GWS first checks the RIT to see if
the cache has recently installed lines from that region. If yes
(RIT hit), GWS steers subsequent installs to that same way.
If no (RIT miss), GWS defaults to a different way-install
policy (e.g., unbiased or PWS), and inserts an entry into RIT.

WayRegionID

Line A (Access)

Way

Recent Lookup Table (RLT) Recent Install Table (RIT)

WayRegionID

0x001 0 0x101 1Way
InstallPredict

Way 0 Way 1

DRAM Cache

Line X (Install)

Figure 9. Design of Ganged Way-Steering (GWS)

GWS also tracks last-way-seen for a few recently accessed
regions in a Recent Lookup Table (RLT). On a DRAM cache
access, GWS checks the RLT to see if it has recently accessed
that region. If yes (RLT-hit), GWS predicts last-way-seen
for that region. If no (RLT miss), GWS cannot provide
a way-prediction, and defaults to a way-prediction policy
(e.g., random or PWS). This coordinated Ganged-Install and
Ganged-Prediction provides high way-prediction accuracy
for workloads with high spatial locality within a region. Each
entry of RIT and RLT consists of a RegionID (˜19 bits), and
a way information (1 bit for a two-way cache). The region
size is 4KB, and we use a 64-entry RIT and 64-entry RLT
(total 160B storage overhead) as tracking 64 regions captures
most of the benefit of GWS.

3) Impact on Way-Prediction Accuracy: Figure 7 shows
the way-prediction accuracy of PWS, GWS, and PWS+GWS.
PWS has an accuracy close to 85% (since PIP=85%). GWS
has near-ideal accuracy for workloads with high spatial
locality (e.g., nekbone and libq have 99% accuracy). Note
that GWS can only way-predict on RLT hits and defaults to
random prediction on RLT miss. As such, GWS has limited
accuracy when pages are sparsely accessed or the workload
footprint is large (e.g., mcf and pr twi). GWS, combined with
the way-prediction policy of PWS, improves way-prediction
accuracy to 90%.

7

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

m
ilc

sp
hi
nx

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

bc
 tw

i

pr
 tw

i

cc
 tw

i

om
ne

t
w
rf

ze
us

m
p

gc
c

lib
q

le
sl
ie

so
pl
ex

m
ix
1

m
ix
2

m
ix
3

m
ix
4

G
m

ea
n

S
p

e
e

d
u

p

Parallel Serial PWS GWS PWS+GWS Perfect WP

Figure 10. Speedup from 2-way DRAM Cache. Parallel Lookup wastes bandwidth and Serial lookup incurs latency. Combining Probabilistic Way-Steering
and Ganged Way-Steering provides 7.3% speedup, close to (10%) with perfect.

4) Impact on Cache Hit-Rate: Table VI shows the impact
of Way-Steering on hit rate. Increasing associativity to 2 ways
increases hit-rate from 74.2% to 77.5%. GWS retains the hit-
rate of a 2-way cache, as it simply increases the granularity at
which replacement happens. PWS, on the other hand, trades
hit-rate for predictability, so there is small hit-rate degradation
under PWS+GWS, to 77.3%. Overall PWS+GWS achieves
high way-prediction accuracy (>90%), while keeping most
of the hit-rate of a 2-way cache (77.3%).

Table VI
SENSITIVITY OF HIT-RATE TO PWS THRESHOLD

Direct-mapped 2-Way Rand PWS GWS PWS+GWS
Amean 74.2% 77.5% 77.2% 77.7% 77.3%

5) Impact on Performance: Figure 10 shows the speedup
for parallel tag-lookup, serial tag-lookup, PWS, GWS,
PWS+GWS, and perfect way-prediction. Parallel tag-lookup
wastes significant bandwidth to look up both tags on every
access. Serial tag-lookup performs slightly better because
of the reduction of hit-locating bandwidth. Perfect way-
prediction achieves 10.2% speedup servicing hits with
one access. Probabilistic Way-Steering biases the cache
to act as direct-mapped for 85% of installs. For sparsely-
accessed workloads, PWS allows the cache to still predict
correctly 85% of the time. PWS provides a good baseline
prediction accuracy for the cache. However, accessing lines
in unpreferred ways still need 2 accesses. For workloads
with high amounts of page-level locality, we can do better
with Ganged Way-Steering.

Ganged Way-Steering improves way-predictability for
workloads with high spatial locality by steering ganged
patterns to install in the same way. For workloads with
high spatial locality (e.g. libq, nekbone), GWS gets near-
ideal prediction accuracy. This translates to near-ideal hit
latency, hit-rate (see Table VI), and performance for gang-
accessed workloads, for a total of 6.8% speedup. However,
GWS underperforms direct-mapped by up to 10% for a few
workloads (mcf, sphinx) that have limited spatial locality. The
combination of PWS and GWS allows the cache to predict
ganged patterns nearly perfectly, and sparse accesses with
85% accuracy, for an average way-prediction accuracy of
90%. PWS+GWS achieves 7.3% speedup out of the 10.2%
maximum possible speedup (perfect way-prediction) for a
2-way cache, with only one workload experiencing small
degradation. The next section shows how these ideas can be
used for higher levels of effective associativity.

V. EXTENDING ACCORD FOR HIGHER ASSOCIATIVITY

Thus far, we have analyzed ACCORD for 2-way caches,
and found that PWS+GWS is quite effective. Next step is to
scale to N-ways. However, there is a major obstacle in making
DRAM cache highly set-associative: the prohibitive cost of
miss confirmation. For an N-way cache, a cache request needs
to do N lookups to confirm a miss. Consider a scenario where
an 4-way cache receives 100 requests, and 60 of them hit.
Even with perfect way prediction, the 40 misses still incur
160 lookups (40*4) for confirmation, shown in Figure 11(a).
The bandwidth for servicing misses far exceeds the bandwidth
for servicing hits. We found that extending ACCORD to four
ways achieves only 3% speedup and extending it to eight
ways causes 6% slowdown. Therefore, to enable high set
associativity, we must address the cost of miss confirmation.

A. Skewed Way Steering (SWS)

If each line in a set can be restricted to only two possible
locations, the miss confirmation needs to check only two
ways, significantly reducing the bandwidth overhead of miss
confirmation. Figure 11(b) shows an example. Lines A, B,
and C map to the same set and thrash in their preferred ways
(Way-1); besides the preferred way, each line now can be in
one and only one other location determined by the hash of
tags: A in 1 or 3, B in 1 or 2, and C in 1 or 0. On misses, A, B,
and C might first try to install in their preferred way. But on
subsequent misses, B could be installed in its alternate way
Way-2, and C in Way-0. Therefore, with this restriction, most
of lines can still fit in the cache [35], but miss confirmation
cost is reduced to two lookups. Based on this insight, we
propose Skewed Way-Steering (SWS), which restricts lines to
having exactly one Alternate location, instead of allowing
the line to have (N-1) non-preferred locations in a N-way
set-associative cache.

(b) Skewed Way−Steering

Miss Conf.

ABC

Same preferred way

Check two ways: preferred & alternate

C BA

line C

line B
One distinguished alternate way

Check all four ways

Miss Conf.

ABC

Same preferred way

Way 0 1 2 3

CB A

Three non−preferred ways

(a) Full flexibility of four ways

Figure 11. (a) Full flexibility of four ways. Miss confirmation checks
all locations. (b) Skewed Way-Steering. Each line in the same set has one
distinct alternate location. Miss confirmation checks only two locations.

8

0.80

1.00

1.20

1.40

1.60

ACCORD SWS(8,2)

ACCORD 2-way

S
p
e
e
d
u
p

ACCORD 2-way
ACCORD SWS(8,2)

Figure 12. Speedup of ACCORD over 46 workloads (including ones not sensitive to memory or hit rate).

The Alternate way is selected using an intelligent hashing
function such that the Alternate location is guaranteed to
be different from the Preferred location. For a 4-way cache,
the Preferred Way is selected based on the two LSB bits of
the tag. To determine the Alternate Way, we look at two-bit
groups in the tag starting from the third LSB to the MSB,
such that it does not match the Preferred Way and the first
such mis-match is regarded as the Alternate Way. In the rare
case that all 2-bit values in the tag are identical, the Alternate
Way is obtained by inverting the Preferred Way.

For our previous example, where A, B, and C map to
the same set, if we have a 4-way cache with SWS, then
the cache cannot accommodate A, B, and C if they all map
to the same pair of ways (the likelihood of this is 1/36).
The idea of SWS can be extended to N ways. For an N
way set-associative cache, the N ways are all still organized
in the same row buffer to reduce miss lookup cost. While
we implement SWS with only one Alternate location, SWS
can be extended to support multiple Alternate locations for
flexibility, albeit at higher cost of miss-confirmation. We call
such organizations with N ways and k hashes as SWS(N,k).

B. Impact on Cache Hit Rate

SWS provides flexibility of where to place lines, while
simultaneously removing worst-case tag-lookup bandwidth.
We show aggregate hit-rate for SWS(4,2) and SWS(8,2)
and compare it with the hit-rate of direct-mapped, 2-way
ACCORD (PWS+GWS), and 8-way cache. In Table VII, we
can see that SWS(8,2) offers improved hit-rate over 2-way
ACCORD, at similar miss-confirmation cost. Note that going
from 2-way to 8-way provides little hit-rate improvement,
and, SWS provides 1/3rd of the benefit for nearly free.

Table VII
HIT-RATE OF DIFFERENT ACCORD DESIGNS

Direct-mapped ACCORD SWS SWS 8-Way(2-way) (4,2-way) (8,2-way)
Hit Rate 74.2% 77.3% 77.7% 77.9% 79.7%

C. Impact on Performance

Figure 13 shows the speedup of ACCORD 2-way, AC-
CORD with SWS(4,2), and ACCORD with SWS (8,2).
ACCORD with SWS(8,2) provides the highest hit rate and
speedup. However, it can degrade performance for sphinx,
because sphinx already had 99% hit rate, and any increase
in bandwidth consumption or reduction in row buffer hit rate
(due to N-way) degrades performance. Overall, ACCORD
with SWS(8,2) provides improved hit-rate at direct-mapped
bandwidth cost, achieving a total speedup of 10.6%.

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

m
ilc

sp
hi
nx

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

bc
 tw

i

pr
 tw

i

cc
 tw

i

om
ne

t
w
rf

ze
us

m
p

gc
c
lib

q

le
sl
ie

so
pl
ex

m
ix
1
m

ix
2
m

ix
3
m

ix
4

G
m

ea
n

S
p
e
e
d
u
p

ACCORD 2-way
ACCORD SWS(4,2)

ACCORD SWS(8,2)

Figure 13. Speedup from extending ACCORD using SWS. SWS(8,2)
provides an average speedup of 10.6%.

VI. RESULTS AND ANALYSIS

A. Evaluations Over More Workloads

Figure 12 shows speedup of ACCORD with 2-way and
SWS(8,2) across all 46 workloads evaluated, including 29
SPEC, 10 SPEC-mix, 6 GAP, and 1 HPC workloads. On
average, ACCORD improves performance by 4% and 6%
for the 2-way and SWS(8,2) configurations. And, ACCORD
improves the performance of the 10 Mix workloads by 7%
and 11% on average. More importantly, Figure 12 shows
that ACCORD maintains performance across all workloads,
including ones that are not sensitive to increased associativity.

B. Impact of Cache Size

We use a default cache size of 4GB for our studies.
Table VIII shows the speedup of ACCORD as the size of the
DRAM cache is varied from 1GB to 8GB. ACCORD provides
significant speedup across different cache sizes, ranging from
13.6% at 1GB to 8.6% at 8GB. As expected, when the cache
size is increased, larger portions of the workload fit in, and
there is reduced scope for improvement.

Table VIII
SENSITIVITY TO CACHE SIZE

Cache Size Avg. Speedup from ACCORD
1.0GB 13.6%
2.0GB 12.0%
4.0GB 10.6%
8.0GB 8.6%

C. Storage Requirements

We analyze the storage overheads of ACCORD in Table IX.
Both PWS and SWS do not require any storage overheads.
The only storage required is for GWS. Each entry in the
Recent Lookup Table entry (RLT) and Recent Install Table
(RIT) is 20 bits (1 valid bit + 19-bit tag). With a 64-entry
RLT and 64-entry RIT, the total storage overheads would
be 320 bytes. Thus, ACCORD enables associativity while
incurring a total storage overhead of 320 bytes.

9

0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60

m
ilc

sp
hi
nx

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

bc
 tw

i

pr
 tw

i

cc
 tw

i

om
ne

t
w
rf

ze
us

m
p

gc
c

lib
q

le
sl
ie

so
pl
ex

m
ix
1

m
ix
2

m
ix
3

m
ix
4

G
m

ea
n

S
p
e
e
d
u
p
 (

2
-w

a
y
)

CA-Cache (No SRAM) MRU Pred (4 Mega Byte SRAM) Partial-Tag (32 Mega Byte SRAM) ACCORD (320 Byte SRAM)

Figure 14. Speedup of way predictors and ACCORD for a 2-way cache. ACCORD obtains high performance while avoiding multi-MB SRAM overheads.

Table IX
STORAGE REQUIREMENTS OF ACCORD

ACCORD Component Storage
Probabilistic Way-Steering 0 Bytes

Ganged Way-Steering 320 Bytes
Skewed Way-Steering 0 Bytes

ACCORD 320 Bytes

D. Energy of Off-chip Memory System

Figure 15 shows DRAM cache + memory power, energy
consumption, and energy-delay-product (EDP) of a system
using ACCORD 2-way and ACCORD SWS(8,2), normalized
to a baseline direct-mapped cache. We model power and
energy for stacked DRAM with [36], [37], and model power
and energy for non-volatile memory with [6]. ACCORD
provides similar DRAM-cache energy consumption with
bandwidth-efficient design, and reduces main memory energy
consumption by increasing DRAM cache hit rate. Overall,
ACCORD reduces energy use by 3% and EDP by 14%.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

Speedup Power Energy EDPN
o
rm

a
liz

e
d
 t
o
 B

a
s
e
lin

e

ACCORD 2-way
ACCORD SWS(8,2)

Figure 15. Memory system energy with ACCORD. ACCORD keeps similar
DRAM-cache energy consumption but reduces main memory energy.

VII. RELATED WORK

Skewed-Associative Caches. Prior work proposed skewed
associative cache [35], [38] design that allows a cache line to
reside in two possible locations (based on a hash of memory
address). If the first hash of two lines collide, it is unlikely
the second hash location will also collide. Our extension of
SWS for ACCORD can be thought of as a skewed cache with
a direct-mapped location and a skew location chosen within
a group of 4 (or 8) physically-contiguous lines. However,
we tailor our design for DRAM such that the possible skews
are resident in the same row buffer, to reduce the latency
to access these locations. Furthermore, SWS relies on way-
prediction so that most hits can be serviced with one access.

Hash-Rehash Cache. The Hash-Rehash and Column-
Associative caches (CA-cache) [33], [39] serially check two
indices (preferred and alternate) in a direct-mapped cache

and move the line physically to the preferred index, if a hit
happens at the alternate index. Thus, a hit to the preferred
index can be serviced in one access, whereas a hit to the
alternate index requires not only two accesses but also the
bandwidth to swap between the two indices. The probability
of CA-cache to obtain a hit with one access is similar to
having a two-way cache with MRU-based way predictor (see
Table X). However, CA-cache incurs significant bandwidth in
swaps, even when the cache is not sensitive to associativity.
Figure 14 shows CA-cache degrades performance by 3.7%,
due to its increased bandwidth consumption (e.g., sphinx).
Meanwhile, ACCORD provides robust performance as it does
not require additional bandwidth consumption (i.e., swaps)
to maintain its prediction accuracy.

Table X
COMPARISON OF DIFFERENT WAY PREDICTORS

CA-Cache MRU Pred Partial-Tag ACCORD
Storage (2-way) (0MB) (4MB) (32MB) (320 bytes)

Accuracy (2-way) 85.2% 85.7% 97.3% 90.4%
Accuracy (4-way) N/A 74.3% 91.6% 90.1%
Accuracy (8-way) N/A 63.2% 81.2% 90.1%

Way Prediction. There has been research on using way
prediction in on-chip caches to reduce hit latency [19], [25]
as well as energy consumption [40], [20]. For reducing hit
latency, existing proposals, such as PSA Cache [19] utilize a
most-recently-used (MRU) bit per set; however, MRU-based
approaches are primarily designed for L1 caches and do not
scale well to subsequent levels of the cache hierarchy due to
filtering of spatial locality. When applied to DRAM caches,
the MRU-based predictor has poor accuracy, as shown in
Table X. The storage overhead of MRU-based prediction
is still significant for gigascale DRAM cache. For example,
4MB SRAM overhead (50% overhead for 8MB LLC) for a
4GB DRAM cache. We compare performance in Figure 14.

Several proposals use partial-tags[21], [22], [24], [25], [26]
to reduce power in on-chip last-level caches. The accuracy
of partial-tag way predictors does not scale with increasing
associativity due to increased false tag-matches. Furthermore,
the storage required by partial-tag based predictors increases
linearly with the number of lines in the cache, and it becomes
prohibitively large for DRAM cache. For example, a predictor
with 4-bit partial-tag incurs 32MB SRAM overhead for our
4GB DRAM cache. As shown in Figure 14, ACCORD
matches the performance of prior way predictors while
avoiding the multi-megabyte storage overhead.

10

0.40

0.60

0.80

1.00

1.20

1.40

1.60

m
ilc

sp
hi
nx

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

bc
 tw

i

pr
 tw

i

cc
 tw

i

om
ne

t
w
rf

ze
us

m
p

gc
c

lib
q

le
sl
ie

so
pl
ex

m
ix
1

m
ix
2

m
ix
3

m
ix
4

G
m

ea
n

S
p
e
e
d
u
p

Timber BWP Unison ACCORD

Figure 16. Speedup from TIMBER, Buffered Way-Predictor (BWP), Unison, and ACCORD.

Selective Direct-Mapping [41], [40] proposes to identify
conflicting lines with a small 16-entry victim list, and use
associativity for only those conflicting lines. In concept, this
can be thought of as similar to our PWS scheme where we
use direct-mapped most of the time to improve prediction
accuracy. However, their scheme diverges at the level of giga-
scale last-level cache, where most of the quickly-conflicting
lines are filtered by the associativity of earlier levels and the
remaining conflict intervals are at a much larger time scale.

Prior work has also looked at Bloom filters for cache hit
prediction[27]. However, Bloom filters require a storage over-
head of 240MB for a 4GB cache for obtaining an accuracy
similar to partial-tags. ACCORD, on the other hand, obtains
performance similar to storage-intensive way predictors while
obviating the storage and bandwidth overheads.

Comparison to Other Line-Based DRAM Caches. In
our study, we use a practical DRAM cache organization that
associates tags with each data line. A different approach
enables set associativity by tag grouping. For example,
Aggressive Tag-Cache [42] groups tags of 15-way set into
one cache line and accesses it separately from data, and,
Timber [18] uses a small structure (8KB) that keeps recently
accessed tag lines. Figure 16 shows that 2-way Timber
improves workloads that have good spatial locality and are
sensitive to associativity, such as soplex, but degrades other
workloads by as much as 49% (e.g., mcf). The degradation
results from the low hit rate of the tag cache for workloads
with poor spatial locality. For such workloads, Timber needs
two accesses for every cache request (one for tag and the
other for data). On average, ACCORD improves performance
by 11% while Timber has 8% slowdown.

Buffered Way Predictor. Buffered Way Predictor [43]
proposes to maintain the way-location of every line in
memory in a region in the DRAM Cache, and cache them
in an on-chip buffer. We compare with a 2-way BWP in
Figure 16. For our 128GB memory, a 2-way BWP would
take 256MB of our 4GB DRAM Cache to store all 1-bit way
information, and would cache way information in a 128KB
way-cache. For workloads with good spatial locality or small
memory footprint, the 128KB way-cache has high hit-rate
and is able to provide accurate predictions. Unfortunately,
for workloads with large memory footprint and poor spatial
locality (e.g., mcf or pr twi), the way-cache provides poor hit-
rate and consequently requires significant extra bandwidth to

obtain and update the way prediction entries in DRAM cache.
On average, our proposed ACCORD improves performance
by 11% while BWP improves performance by 1%.

Comparison to Page-Based DRAM Caches. The baseline
DRAM cache in our paper is organized at a line granularity
(64B) with tags as part of line. An alternate approach is
use sectored caches and page-granularity caches to reduce
the storage required for the tag-store. The recently proposed
Unison Cache[16] architects the DRAM cache as a 4-way
set-associative cache with 1KB lines and 64B sectors. Unison
stores the tag and sector bits in the DRAM alongside data. To
access the DRAM cache, the Unison Cache controller sends
two concurrent DRAM requests: one for the tags and another
for the data from the predicted way. And, the page-granularity
enables Unison to obtain accurate way prediction.

We compare ACCORD to a 4-way Unison Cache with
512B lines and 64B sectors. Figure 16 shows the performance
of ACCORD and Unison relative to the direct-mapped
DRAM cache. For SPEC, Unison outperforms a direct-
mapped design due to its increased associativity. However,
for workloads with large memory footprint and low spatial
locality (e.g., GAP workloads of cc, bc, and pr), the large
linesize of Unison prevents large amounts of the cache
from being used. Accounting for such worst-case workloads,
the performance of Unison breaks even with direct-mapped
design. In comparison, ACCORD achieves the improved hit-
rate of an associative cache, while maintaining the bandwidth-
efficiency and high utilization of line-based designs.

VIII. CONCLUSIONS

This paper addresses the challenge of enabling set associa-
tivity for line-granularity DRAM caches at low bandwidth
and low storage cost. We propose ACCORD (Associativity via
Coordinated Way Install and Way Prediction), a framework
that enables low-cost way prediction by steering lines to
“preferred” ways on install time and predicting the preferred
way on access time. We propose two policies: probabilistic
way-steering, which steers cache line installs to a preferred
way based on its tag and predicts the preferred way on an
access, and ganged way-steering, which steers subsequent
installs in a region to the same way and predicts accesses in
that region with last observed way. These policies provide a
90% way-prediction accuracy at negligible storage overhead
(320 bytes). To obtain higher levels of set associativity (e.g., 8-
way) at reduced overheads of miss confirmation, we propose

11

skewed way-steering policy that steers lines to at most two
locations in an N-way set-associative cache. Our evaluations
on a 4GB DRAM cache show that ACCORD outperforms
direct-mapped organization by 11% on average. We develop
ACCORD over the existing DRAM cache design used in
industry, and we believe the simplicity of our solution will
make it appealing for industrial adoption.

ACKNOWLEDGEMENTS

We thank Alaa Alameldeen, Rajat Agarwal, and Prakash
Ramrakhyani for detailed comments and feedback on an
earlier draft of this work. We also thank the anonymous
reviewers and our colleagues from the Memory Systems Lab
for their critique and suggestions. This work was supported
by a gift from Intel.

REFERENCES

[1] J. Standard, “High bandwidth memory (hbm) dram,” JESD235, 2013.
[2] M.K. Qureshi, S. Gurumurthi, and B. Rajendran, “Phase change

memory: From devices to systems,” Synthesis Lectures on Computer
Architecture, vol. 6, pp. 1–134, 2011.

[3] Y.C. et al., “A 20nm 1.8v 8gb pram with 40mb/s program bandwidth,”
in ISSCC ’12, Feb 2012, pp. 46–48.

[4] H.S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran,
M. Asheghi, and K.E. Goodson, “Phase change memory,” IEEE,
vol. 98, pp. 2201–2227, Dec 2010.

[5] Intel and Micron, “A revolutionary breakthrough in memory technol-
ogy,” 2015.

[6] B.C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in ISCA ’09. New
York, NY, USA: ACM, 2009, pp. 2–13.

[7] M.K. Qureshi, V. Srinivasan, and J.A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in ISCA ’09. New York, NY, USA: ACM, 2009, pp. 24–33.

[8] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: A hybrid pram and
dram main memory system,” in DAC ’09, July 2009, pp. 664–669.

[9] A. Bivens, P. Dube, M. Franceschini, J. Karidis, L. Lastras, and
M. Tsao, “Architectural design for next generation heterogeneous
memory systems,” in Memory Workshop (IMW), 2010 IEEE Interna-
tional. IEEE, 2010, pp. 1–4.

[10] A. Sodani, R. Gramunt, J. Corbal, H.S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.C. Liu, “Knights landing: Second-
generation intel xeon phi product,” IEEE Micro, vol. 36, pp. 34–46,
Mar 2016.

[11] M.K. Qureshi and G.H. Loh, “Fundamental latency trade-off in
architecting dram caches: Outperforming impractical sram-tags with
a simple and practical design,” in MICRO ’12. IEEE Computer
Society, 2012, pp. 235–246.

[12] G.H. Loh and M.D. Hill, “Efficiently enabling conventional block
sizes for very large die-stacked dram caches,” in MICRO ’11. New
York, NY, USA: ACM, 2011, pp. 454–464.

[13] J. Sim, G.H. Loh, H. Kim, M. O’Connor, and M. Thottethodi,
“A mostly-clean dram cache for effective hit speculation and self-
balancing dispatch,” in MICRO ’12. IEEE, 2012, pp. 247–257.

[14] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for
servers: Hit ratio, latency, or bandwidth? have it all with footprint
cache,” in ISCA ’13. New York, NY, USA: ACM, 2013, pp. 404–415.

[15] S. Franey and M. Lipasti, “Tag tables,” in HPCA 2015.
[16] D. Jevdjic, G.H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A

scalable and effective die-stacked dram cache,” in MICRO 2014.
[17] C. Chou, A. Jaleel, and M.K. Qureshi, “Bear: Techniques for

mitigating bandwidth bloat in gigascale dram caches,” in ISCA ’15.
New York, NY, USA: ACM, 2015, pp. 198–210.

[18] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity dram
cache management,” IEEE Computer Architecture Letters, vol. 11, pp.
61–64, July 2012.

[19] B. Calder, D. Grunwald, and J. Emer, “Predictive sequential associative
cache,” in HPCA 1996.

[20] H.C. Chen and J.S. Chiang, “Low-power way-predicting cache using
valid-bit pre-decision for parallel architectures,” in (AINA’05), vol. 2,
March 2005, pp. 203–206 vol.2.

[21] C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting cache for
low-energy high-performance systems,” in ISLPED ’04, Aug 2004,
pp. 126–131.

[22] F.M. Sleiman, R.G. Dreslinski, and T.F. Wenisch, “Embedded way
prediction for last-level caches,” in ICCSD 2012.

[23] A. Jaleel, K.B. Theobald, S.C. Steely, Jr., and J. Emer, “High
performance cache replacement using re-reference interval prediction
(rrip),” in ISCA ’10. New York, NY, USA: ACM, 2010, pp. 60–71.

[24] J.J. Valls, J. Sahuquillo, A. Ros, and M.E. Gmez, “The tag filter cache:
An energy-efficient approach,” in 2015 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing,
March 2015, pp. 182–189.

[25] D.H. Albonesi, “Selective cache ways: On-demand cache resource
allocation,” in MICRO ’99. IEEE, 1999, pp. 248–259.

[26] J.J. Valls, A. Ros, J. Sahuquillo, and M.E. Gomez, “Ps-cache: An
energy-efficient cache design for chip multiprocessors,” J. Supercom-
put., vol. 71, pp. 67–86, Jan. 2015.

[27] M. Ghosh, E. Ozer, S. Ford, S. Biles, and H.H.S. Lee, “Way guard:
a segmented counting bloom filter approach to reducing energy for
set-associative caches,” in ISLPED ’09. ACM, 2009, pp. 165–170.

[28] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Usimm: the utah
simulated memory module,” University of Utah, Tech. Rep, 2012.

[29] DDR4 SPEC (JESD79-4), JEDEC, 2013.
[30] J.L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH

Comput. Archit. News, vol. 34, pp. 1–17, Sep. 2006.
[31] S. Beamer, K. Asanovic, and D.A. Patterson, “The GAP benchmark

suite,” CoRR, vol. abs/1508.03619, 2015.
[32] T.A. Davis and Y. Hu, “The university of florida sparse matrix

collection,” ACM Trans. Math. Softw., vol. 38, Dec. 2011.
[33] A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance

of operating system and multiprogramming workloads,” ACM Trans.
Comput. Syst., vol. 6, pp. 393–431, Nov. 1988.

[34] S. McFarling, “Cache replacement with dynamic exclusion,” in [1992]
Proceedings the 19th Annual International Symposium on Computer
Architecture, 1992, pp. 191–200.

[35] A. Seznec, “A case for two-way skewed-associative caches,” in ISCA
’93. New York, NY, USA: ACM, 1993, pp. 169–178.

[36] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K. Goossens,
“System and circuit level power modeling of energy-efficient 3d-
stacked wide i/o drams,” in DATE ’13. San Jose, CA, USA: EDA
Consortium, 2013, pp. 236–241.

[37] K.T. Malladi, I. Shaeffer, L. Gopalakrishnan, D. Lo, B.C. Lee, and
M. Horowitz, “Rethinking dram power modes for energy proportional-
ity,” in MICRO ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 131–142.

[38] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways and
associativity,” in MICRO ’10. IEEE, 2010, pp. 187–198.

[39] A. Agarwal and S.D. Pudar, Column-associative caches: A technique
for reducing the miss rate of direct-mapped caches. ACM, 1993,
vol. 21, no. 2.

[40] M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and K. Roy,
“Reducing set-associative cache energy via way-prediction and selec-
tive direct-mapping,” in MICRO ’01. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 54–65.

[41] B. Batson and T.N. Vijaykumar, “Reactive-associative caches,” in
PACT ’01, 2001, pp. 49–60.

[42] C.C. Huang and V. Nagarajan, “Atcache: reducing dram cache latency
via a small sram tag cache,” in PACT ’14. ACM, 2014, pp. 51–60.

[43] Z. Wang, D.A. Jimnez, T. Zhang, G.H. Loh, and Y. Xie, “Building
a low latency, highly associative dram cache with the buffered way
predictor,” in SBAC-PAD ’16, Oct 2016, pp. 109–117.

12

