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Abstract

We present Isaac Lab, the natural successor to Isaac Gym, which extends the paradigm of GPU-native

robotics simulation into the era of large-scale multi-modal learning. Isaac Lab combines high-fidelity

GPU parallel physics, photorealistic rendering, and a modular, composable architecture for designing

environments and training robot policies. Beyond physics and rendering, the framework integrates

actuator models, multi-frequency sensor simulation, data collection pipelines, and domain randomization

tools, unifying best practices for reinforcement and imitation learning at scale within a single extensible

platform. We highlight its application to a diverse set of challenges, including whole-body control,

cross-embodiment mobility, contact-rich and dexterous manipulation, and the integration of human

demonstrations for skill acquisition. Finally, we discuss upcoming integration with the differentiable,

GPU-accelerated Newton physics engine, which promises new opportunities for scalable, data-efficient,

and gradient-based approaches to robot learning. We believe Isaac Lab’s combination of advanced

simulation capabilities, rich sensing, and data-center scale execution will help unlock the next generation

of breakthroughs in robotics research.

Isaac Lab is Open Source. Code and documentation are available here: https://github.com/isaac-sim/

IsaacLab

Figure 1: Isaac Lab supports diverse robotic applications with exteroceptive observation inputs. It provides a
user-friendly API for experimentation and includes features to facilitate sim-to-real transfer. The framework
also supports multiple learning paradigms, including reinforcement learning and imitation learning.

1A detailed list of contributors and acknowledgments can be found in App. A of this paper.
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1. Introduction

The development of robust and intelligent robotic systems increasingly depends on the ability to evaluate their
performance in complex real-world environments. While the physical world remains the definitive testbed,
the acquisition of physical interaction data with robots is expensive, time-consuming, and often necessitates
specialized instrumentation. These limitations are especially acute in rare but safety-critical situations. Events
such as high-speed collisions, hardware malfunctions, or navigation in unpredictable human environments are
difficult to reproduce and pose significant risks to equipment and human safety. Moreover, real-world data
collection is inherently biased toward normative conditions, leaving robotic systems insufficiently prepared for
atypical or extreme situations. Simulation provides a compelling alternative by offering controlled, reproducible,
and risk-free environments in which robotic systems can be developed and evaluated rigorously. High-fidelity
simulators extend these advantages by modeling physics, sensors, and environmental complexity with greater
realism. This enables large-scale data collection, systematic stress testing, and the development of algorithms
that transfer more effectively to real-world systems.

The emergence of GPU-accelerated, physics-based simulators has democratized robotics research by making
scalable training feasible on consumer-grade hardware. Traditional CPU-based simulators (Coumans and Bai,
2016–2023; Lee et al., 2018; Todorov et al., 2012) often struggle to meet the computational demands of
high-fidelity physics, complex sensor models, and large-scale parallelization. Scaling such simulations typically
requires clusters with high-core CPUs, which are costly and less widely available. In contrast, modern GPU-
based simulators (Makoviychuk et al., 2021; Tao et al., 2025; Zakka et al., 2025) exploit massive parallelism
to efficiently execute a larger number of concurrent environments, dramatically accelerating the training
of complex robotic policies. By running the agent-environment interaction loop entirely on the GPU, these
frameworks avoid inefficiencies associated with frequent CPU-GPU data transfers. This approach is particularly
advantageous for on-policy Reinforcement Learning (RL), which benefits from large batch sizes during training.
Beyond improving efficiency, GPU-based simulation lowers the entry barrier for researchers, allowing training
and development of sophisticated robotic systems without access to specialized supercomputer resources.

A landmark contribution in this space came from NVIDIA Isaac Gym (Makoviychuk et al., 2021), which
demonstrated for the first time that end-to-end RL for complex robotic tasks could be performed entirely on a
single GPU. Isaac Gym uses NVIDIA PhysX, a GPU-accelerated physics engine capable of simulating high-fidelity
rigid body dynamics at massive scales. By exposing the physics simulation results directly as PyTorch tensors,
Isaac Gym provides a GPU-native pipeline that reduces training times from days to hours. Since its release,
the framework has been used successfully in a large number of projects, such as locomotion (Agarwal et al.,
2023; Rudin et al., 2022), whole-body control (Fu et al., 2023; He et al., 2024), in-hand manipulation (Allshire
et al., 2022; Handa et al., 2023), dexterous grasping (Lum et al., 2024; Wang et al., 2023), and industrial
assembly (Narang et al., 2022). In doing so, it has established a new standard for scalable, high-performance
robotic simulation and laid the foundation for subsequent GPU-based simulation frameworks.

Isaac Lab is the natural successor of Isaac Gym, carrying forward the paradigm of GPU-native robotics
simulation into the era of large-scale multi-modal learning. Built on NVIDIA Isaac Sim, Isaac Lab combines RTX
rendering for photorealistic, scalable visuals with PhysX for high-fidelity physics simulation. It uses Universal
Scene Description (USD) as the core data layer for structured world authoring, simplifying the design of
complex sensor-rich scenes. The physics engine adds numerous enhancements over the one in Isaac Gym,
such as filtered contact reporting, mimic joint systems, closed-loop kinematic chains, deformable objects (cloth
and soft bodies), and coupled solvers for rigid and deformable bodies. High-throughput GPU-accelerated
rendering supports large-scale generation of RGB, depth, and segmentation data, facilitating policy training
and sim-to-real transfer using exteroceptive information. Together, these capabilities scale efficiently across
multi-GPU and multi-node setups.

Based on the design from Mittal et al. (2023), Isaac Lab provides users with more than just the outputs of
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the underlying physics and rendering engines. Since the adoption of Isaac Gym, various paradigms have
emerged to facilitate robot learning and sim-to-real transfer. Often, these practices have been independently
re-implemented across projects, leading to significant duplication of effort. Isaac Lab addresses this challenge
by unifying these practices within a modular and extensible framework for robotics research. Key features
include integration of non-linear actuator models, multi-frequency sensor simulation, interfaces for low-level
controllers, and tools for procedural environment generation and domain randomization. The framework
also supports custom sensors beyond rendering, such as raycast-based LiDAR, height scan, and visuo-tactile
sensors. At its core, Isaac Lab designs amanager-based API that organizes environment design into reusable and
composable components, allowing consistent workflows across diverse research projects. However, the use of
this API is optional, and researchers can also structure their simulation environments with simple single-script
setups if preferred. In addition, Isaac Lab offers data collection pipelines to record expert demonstrations,
access to a wide range of RL libraries, and a large suite of robotic environments (shown in Figure 12).

This technical report presents the core capabilities and features of Isaac Lab, providing insight into its design
decisions and implementation. It examines the core technologies underlying Isaac Lab (USD for scene authoring,
PhysX for high-fidelity physics, and RTX rendering for photorealistic rendering), highlighting their importance
for advancing simulation. Building on this foundation, the report details Isaac Lab’s unique enhancements,
including custom sensors, actuator models, motion generation pipelines, teleoperation devices, and the
environment design framework. It further describes the various learning workflows supported by Isaac Lab and
showcases the wide range of robotic applications, from locomotion and navigation to contact-rich manipulation,
each benefiting from the framework’s capabilities and modularity. Finally, the report concludes with future
directions, including the Newton engine (Newton Contributors), and a roadmap for Isaac Lab as a platform for
next-generation robotics research.

Key contributions of Isaac Lab

• Modular and scalable framework: Built on NVIDIA Omniverse, enabling high-fidelity, GPU-
accelerated simulation for complex robots and tasks.

• Advanced sensor simulation: Supports tiled RTX rendering, Warp-based custom sensors, and
physics-based data for rich observation spaces.

• Seamless teleoperation and data collection: Integrates spacemouse, VR headsets, and other
devices for large-scale demonstration capture.

• Extensive environment suite: Provides diverse, ready-to-use environments for reinforcement
learning, imitation learning, and sim-to-real research.

2. Core Simulation Infrastructure

2.1. USD for Robotics

The robotics simulation ecosystem remains highly fragmented, with developers managing diverse data sources
that include CAD models, kinematic and dynamic descriptions, sensor parameters, and more. Additionally,
simulators often rely on multiple specialized attributes for physics and rendering, which further increases
the complexity of asset data. Existing tools illustrate these challenges. Gazebo (Koenig and Howard, 2004)
utilizes the flat and inflexible XML-based Simulation Description Format (SDF). This format limits the ability
to generate large, photorealistic worlds and collaborate on scene variations. It only defines descriptions at
the component level, making complex subsystem behaviors, such as closed-loop kinematic chains, difficult to
represent. Other widely used XML-based robotics formats, such as URDF and MJCF, face similar limitations.
Modern game engines such as Unity and Unreal are increasingly used in robotics. They provide photorealistic
rendering, integrated physics, and better scene authoring capabilities. However, these tools were originally
designed for entertainment and use paradigms that differ from traditional robotics workflows. AirSim (Shah
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Figure 2: Isaac Lab uses OpenUSD to unify complex robotics simulations. Hierarchical scene graphs organize
robots, objects, and sensors, while simulation-specific schemas define visual and collider elements, physical
properties, semantic IDs, and sensor configurations. References and instancing support scalable, parallelized
simulation of large, complex scenes required for robot learning.

et al., 2017) attempts to lower the barrier to entry for robotics researchers, but its approach of compiling
simulations into a monolithic "game" introduces significant limitations: Any modifications to the simulation
often require returning to the underlying game engine. These limitations highlight the need for a flexible
unifying format that can integrate diverse data types, support complex subsystem modeling, and facilitate
collaborative workflows for digital content creation.

Addressing these challenges, Open Universal Scene Description (OpenUSD) (Pixar Animation Studios, 2016) is
an open-source format for robust and scalable authoring of complex 3D scenes composed of numerous elements.
It provides a comprehensive set of tools and Python/C++ APIs to define, organize, and edit 3D data. USD
represents a 3D scene as a hierarchical scene graph (or stage), with data arranged in namespaces of primitives
(or prims). Each prim can contain child prims and have attributes or properties, allowing transformations and
properties to be inherited from parent prims. USD’s schema-based system helps define structured properties
for geometry, materials, physics, and more, while layering and non-destructive composition facilitate multiple
collaborators working on a scene simultaneously without overwriting changes. Additionally, references and
instancing let users combine multiple USD files and reuse repeated elements efficiently. These features make
USD a flexible, scalable, and collaborative foundation that naturally ties into robotics simulation workflows. An
example of a USD scene leveraging referencing is demonstrated in Figure 2.

The Alliance for OpenUSD (AOUSD) is an open, non-profit organization that aims to advance 3D data inter-
operability through OpenUSD. Within this effort, a key development for robotics is the USDPhysics schema.
The USDPhysics schema extends OpenUSD with a standardized way to describe physical properties such as
rigid bodies, collisions, joints, and materials. By providing a common representation for physics simulation, it
enables robotics and simulation tools to share and interpret scenes consistently across different engines and
workflows. While these definitions are designed to generalize across multiple simulation backends, OpenUSD
also allows a straightforward extension with engine-specific schemas. For example, the PhysxSchema provides
parameters used in NVIDIA PhysX, while the MjcPhysics schema, currently under development in collaboration
between NVIDIA and Google DeepMind, extends USD for MuJoCo.

Beyond physics, OpenUSD also provides complementary schemas that enrich how scenes can be represented and
exchanged across domains. The Semantics schema annotates prims with categorical labels, enabling tasks in
perception and learning. Camera prims allow the description of virtual sensors directly within a scene, ensuring
that viewpoints and sensor models are preserved consistently across tools. Similarly, Material schemas capture
surface properties like textures, reflectance, and friction in a standardized way, bridging the needs of both
rendering and physics. These schemas unify geometry, dynamics, semantics, sensing, and appearance within a
single scene description. This integrated representation overcomes the limitations of existing robotics formats
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PhysX Isaac Lab

GPU Tensors Views

API

Figure 3: Integration of USD with PhysX in OmniPhysics. Scene data from USD is parsed into PhysX, which
constructs GPU tensors representing internal simulation states. Unlike IsaacGym, where users accessed these
states directly, OmniPhysics manages them through the View API for improved usability.

such as MJCF (physics-focused, limited scene richness) and URDF (kinematics/dynamics with Gazebo-specific
tags for sensors).

In Isaac Lab, USD serves as the foundation for robotics simulation. While USD’s domain-agnostic design provides
flexibility, it necessitates domain-specific conventions to maintain structured scene graphs and develop reliable
APIs. Robotics uses meters and a Z-up convention in the USD stage, where other domains, such as computer
graphics, follow loosely defined conventions. Prims must follow specific hierarchy rules. For instance, two prims
with rigid body properties cannot be nested under each other. Additional considerations, such as instancing,
are necessary to ensure efficient stage creation for large-scale simulation scenes. To address these requirements,
Isaac Lab provides USD converters for widely used formats, including URDF, MJCF, and meshes (e.g., OBJ,
DAE). It also offers high-level wrappers around USD APIs, allowing users to configure attributes and create
prims via simple configuration objects. These wrappers handle stage-modification nuances, such as cloning
prims efficiently for large-scale scenes and altering USD properties for domain randomization. Additionally,
thanks to ongoing SimReady asset creation efforts, Isaac Lab includes various photorealistic and physically
accurate robot and object assets that are ready for use in simulation.

2.2. Physics Simulation

The NVIDIA PhysX SDK is an open-source, multi-physics simulation engine designed to meet the demanding
needs for robotics and industrial applications. With the release of PhysX 5, the engine incorporates capabilities
from the former NVIDIA Flex library, including Finite Element Method (FEM)–based soft-body dynamics, as well
as Position-Based Dynamics (PBD) for liquids and inflatable objects. It supports a wide range of simulation types,
from rigid and articulated bodies to deformable bodies such as cloth, fluids, and soft bodies. These simulation
objects can interact with each other through two-way coupling between specialized solvers. As an example,
the FEM cloth solver exchanges impulses with the Featherstone-based articulation solver to support efficient
and accurate mixed-physics interactions. Building on this foundation, PhysX has continued to evolve towards
robotics use cases, collaborating with robotics engineers and researchers to develop domain-specific features,
including emulation of force–torque load cells, advanced actuator and friction models for an articulation’s joints,
and collision handling improvements such as Signed Distance Field (SDF) methods, which are particularly
valuable for high-precision, non-convex geometries encountered in robotic assembly tasks.

PhysX can run on both CPU and GPU, providing flexibility for different simulation scenarios. For high-
performance, large-scale robot learning workflows, GPU execution delivers the parallelism and throughput
necessary to scale efficiently. PhysX’s Direct-GPU API provides direct read and write access to simulation
state and control data in GPU memory. The resulting CUDA tensors can then be processed efficiently using
user-defined GPU kernels for downstream applications, such as computing observations for robotics learning
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Algorithm 1 OmniPhysics Workflow in Isaac Lab

1: Prepare USD stage . All modifications possible through USD APIs
2: Start simulation . Parse USD stage and initialize PhysX objects
3: Create physics simulation views . Define views via USD prim path patterns
4: Access simulation state using Tensor API views . Read/write simulation state efficiently
5: if direct GPU API disabled then
6: Use standard USD APIs with OmniPhysics monitoring . Fallback to standard USD workflow
7: else
8: Access PhysX exclusively via Tensor API views . USD read/write suppressed for performance
9: end if

workflows. This end-to-end GPU pipeline eliminates the performance bottlenecks from CPU–GPU data transfers
seen in traditional simulators. The benefit of this GPU-first simulation approach was first demonstrated for
RL in Isaac Gym (Makoviychuk et al., 2021), where training times for complex robotic tasks were reduced
from days to hours. It is important to note that only the simulation state and control can currently be accessed
directly on the GPU device. Simulation parameters, such as friction coefficients, rigid-body masses, and joint
properties, must still be set via the PhysX CPU APIs due to current design constraints.

NVIDIA Omniverse Physics (OmniPhysics) serves as the integration layer for the PhysX simulation engine
within NVIDIA Omniverse. It extends the OpenUSD framework by introducing user-defined data types under
PhysxSchema, which enables the representation and control of physics simulations. OmniPhysics parses these
attributes from USD, maps them into PhysX, runs the simulation, and writes the simulation output back to USD.
It also supports state updates by monitoring changes in USD and updating the active simulation accordingly. In
Isaac Lab, where high-performance and large-scale simulation scenes are common, the USD read–write cycle
during simulation is often a performance bottleneck and is therefore bypassed. Instead, the simulation data is
accessed through OmniPhysics Tensor APIs, which internally rely on PhysX Direct GPU APIs. For workflows that
require rendering, such as vision-in-the-loop training, OmniPhysics also maintains efficient synchronization
between the simulation state and the renderer.

Algorithm 1 summarizes the OmniPhysics workflow in Isaac Lab. The user sets up the USD stage through
USD APIs. Isaac Lab provides configurable interfaces and APIs to facilitate programmatic creation of prims.
These interfaces support spawning prims of different types, modifying their USD attributes, and efficiently
duplicating a prototype scene to multiple environment instances on the USD stage. Once the stage is ready for
simulation and the simulation is played, OmniPhysics parses the USD stage to create a set of PhysX simulation
objects (e.g. robots, rigid objects, or static colliders) that mirror the USD scene. To efficiently scale a prototype
environment to thousands of instances, OmniPhysics provides replication APIs that duplicate the prototype’s
PhysX simulation objects across many parallel training environments. During this replication process, a mapping
is also established between the PhysX objects and their USD prim paths, which is subsequently used to construct
Tensor API views.

The OmniPhysics Tensor API presents simulation data as batched, device-resident arrays organized into
views, as shown in Figure 3. Instead of operating each physics actor individually, users can interact with
a collection of actors through a SimulationView, which links the chosen tensor framework (i.e. NumPy,
PyTorch, or NVIDIA Warp) to the physics simulation backend. A simulation view can then be used to create
specialized views for different types of physics objects, including rigid bodies (RigidBodyView) and articulated
systems (ArticulationView). Views are defined using USD prim path pattern matching. For instance, if
a prototype scene contains a robot prim at "/World/envs/env_0/Robot", and this scene is cloned N times,
then all robots across the N environments can be collected into a single articulation view using the pattern
"/World/envs/*/Robot". The resulting view exposes simulation data as arrays with the first dimension
corresponding to the number of robots N .
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Figure 4: Photo-realistic rendering in Isaac Lab using the Omniverse RTX renderer, demonstrating high-quality
ray tracing with complex physically-based materials authored using NVIDIA’s MDL. The rendering showcases
realistic effects such as reflections and refractions, resulting in visually rich and high-quality scenes.

In Isaac Lab, the Tensor API-based view classes provide efficient access to underlying simulation data for
user-facing asset classes, such as Articulation and RigidObject, as well as physics-based sensor classes like
ContactSensor and IMU. These views enable GPU-accelerated batched operations and serve as the foundation for
additional asset- and sensor-level functionalities. For example, the Articulation class extends the OmniPhysics
ArticulationView to support user-defined actuator models, store default physical properties for domain
randomization, and implement efficient buffering mechanisms to minimize redundant read-write operations.
These API-level features are described in detail in Section 3.

2.3. Rendering

The Omniverse RTX renderer simulates RGB cameras and synthetic ground truth sensors, including depth,
surface normals, and semantic segmentation, using physically based ray tracing. It supports real-time and offline
path tracing, direct lighting, and denoising on top of hardware-accelerated ray tracing. To improve rendering
efficiency, the RTX renderer leverages Deep Learning Super Sampling (DLSS), which upscales images from a
lower internal resolution using high-quality temporal super-resolution, making it well-suited for high-resolution
perception tasks. The RTX renderer allows users to selectively disable DLSS in very low-resolution scenarios
where there is insufficient visual data for the upscaler to make use of. DLSS only affects RGB outputs; other
ground truth data, such as depth and segmentation, are always rendered at their native resolution.

An important aspect of high-quality rendering is applying the right materials to USD prims. Material schemas
for USD prims are authored using NVIDIA’s Material Definition Language (MDL). MDL provides a flexible
and powerful framework for describing complex, physically-based materials (e.g., OmniPBR, OmniGlass) with
realistic details such as reflections, refractions, and surface patterns. These materials enable high-quality visual
results in rendered scenes, as illustrated in Figure 4. Additionally, to support semantic segmentation, USD prims
can also be annotated with semantic information, such as object class or instance identifiers. This metadata
allows per-pixel instance and class labels to be rendered alongside RGB images, which is fully compatible with
tiled rendering in large-scale, multi-camera setups.

To support thousands of cameras in parallel simulation environments, Isaac Lab uses the tiled rendering pipeline
of the RTX renderer. This method batches multiple cameras into a single render pass by spatially arranging them
as tiles within the GPU framebuffer. Each camera preserves its own intrinsics and pose, and the deterministic
tiling layout enables efficient reconstruction of per-environment tensors without incurring costly host–device
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Simulation Scene

with Multiple Cameras

RTX-based

Tiled Rendering

Figure 5: Tiled rendering of multiple simulated environments. Each environment has a separate camera,
and their outputs are spatially tiled into a single GPU frame-buffer. The deterministic layout allows efficient
reconstruction of per-environment observations without costly host–device transfers.

transfers. This design is essential for large-scale data generation workloads, such as vision-in-the-loop RL, as
it scales sensor throughput linearly with GPU resources, minimizes latency, and synchronizes observations
across environments for policy training (see Figure 5). Although active sensors such as LiDARs and radars are
already supported by the Omniverse RTX renderer, their integration with tiled rendering is forthcoming. As an
alternative, the RayCaster sensor uses NVIDIA Warp operations for ray-casting, as described in Section 3.2.3.

Figure 6: 3D Gaussian rendering combined with
mesh rendering, with shadows from the mesh af-
fecting the Gaussian scene.

The RTX renderer can also perform 3D Gaussian rendering
via Omniverse NuRec, supporting realistic reconstructions
of the real-world scenes using approaches such as 3D
Gaussian Splats (3DGS) by Kerbl et al. (2023) and 3D
Gaussian Unscented Transforms (3DGUT) by Wu et al.
(2025). These Gaussian primitives integrate seamlessly
with ray-traced geometry in the RTX renderer, allowing
robots and synthetic objects to operate within photorealis-
tic, reconstructed environments. This approach improves
visual realism and facilitates policy transfer without requir-
ing hand-crafted assets. Figure 6 shows an early example
of this integration from Liu et al. (2025).

Isaac Lab uses the RTX renderer to implement the TiledCamera sensor class, which batches the rendering
output for learning pipelines. It supports specifying and retrieving camera poses in multiple conventions,
such as those used in ROS and computer graphics. The class also ensures that sensor data is updated at a
specified frequency to match real-world sensors. Since the RTX renderer settings affect performance, Isaac
Lab provides users with presets that trade off between quality and speed, and exposes rendering parameters
through configuration objects for further customization. Furthermore, Isaac Lab employs Replicator API to
randomize MDL materials on prims and scene lighting. Together, these features enable scalable, high-fidelity
rendering with multi-camera observations while supporting realistic variations in textures and illumination.

3. Isaac Lab Design and Features

Building on the core technologies introduced in Section 2, Isaac Lab brings state-of-the-art simulation capabilities
to robot learning researchers. While these general-purpose technologies expose numerous low-level states
and properties, this flexibility can create a steep learning curve that alienates non-expert users. Isaac Lab
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Figure 7: Overview of Isaac Lab features. These include support for diverse asset types (articulated robots, rigid
and deformable objects), sensor modalities (proprioception, RGB/depth images, height scans), controllers (IK,
RMPFlow), and teleoperation devices (keyboard, spacemouse). Additionally, the environment design interface
allows adding USD scenes created via custom mesh scans, game-based authoring, or programmatic generation.

aims to lower this entry barrier through a modular, integrated framework that leverages the latest advances in
physics and rendering. Its interfaces are specialized for robot learning, simplifying environment design, and
facilitating deployment to physical robots. The framework adopts a bottom-up design philosophy, starting
with modeling complex actuator dynamics, asynchronous sensing and control, realistic sensor noise, and
environmental uncertainties, and building upward to high-level robot learning interfaces and task abstractions
(Figure 7). Unified abstractions for different robot and object types, support for actuator and noise models to
aid sim-to-real transfer, and integration with peripherals for data collection further streamline robotics research
and development.

3.1. Assets

Assets encompass the physical elements within the environment, including terrains, robots, and objects,
which can be represented as rigid bodies, articulated systems, and deformable objects. The rigid object and
articulation framework provides a robust foundation for simulating both individual rigid bodies and articulated
structures such as robotic arms, mobile manipulators, and floating-base systems. Rigid objects are modeled
as non-deformable entities, represented by their collision geometry and inertial properties, ensuring stable
and efficient simulation of contact dynamics. Rigid objects can be created through various methods, including
importing custom USD files or converting common mesh formats such as OBJ, STL, and FBX directly into USD.

Articulated systems extend the rigid representation by connecting rigid links through joints, supporting a
wide variety of configurations, including fixed-base manipulators and free-floating robots. Articulations can
be incorporated into environments through USD representations or by utilizing built-in converters for URDF
and MJCF assets. The framework offers detailed access to joint states (positions, velocities, torques) and
supports advanced control modes such as position, velocity, and torque control. Key features include updating
buffers lazily for improved simulation performance, joint control actuator models, and compatibility with
kinematic-only or fully dynamic operations. This design makes it suitable for high-fidelity robotics research,
including motion planning, robot learning, control benchmarking, and real-world hardware integration.

The deformable object class provides a sophisticated framework for simulating soft and deformable materials,
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Figure 8: Overview of the Isaac Lab sensor suite, including physics-based sensors (IMUs, frame transformers,
contact sensors), parallelized camera implementations, and warp-based raycasting for geometric perception.
The figure shows example outputs in a photorealistic scene.

including deformable tissues for medical applications, food items handled by service robots in home envi-
ronments, and ropes and cables for industrial settings. It leverages the finite element method, discretizing
objects into tetrahedral meshes composed of two key components: a simulation mesh that accurately models
deformation physics, and a collision mesh dedicated to contact detection. Unlike rigid bodies, deformables
do not rely on a single transform but update their state through mesh point attributes. One key feature is its
support for partial kinematic control, enabling targeted manipulation of specific object nodes while allowing the
rest of the object to respond naturally through full physical simulation. It also provides access to deformation
gradients, stress tensors, and element-wise rotations, offering deep insights into the object’s dynamic behavior.
Furthermore, it enables flexible material binding with customizable physical properties, making it ideal for
advanced soft-body simulations in robotics.

3.2. Sensors

Sensors are fundamental for robot learning, as they enable agents to perceive both their own physical state and
the surrounding environment. Isaac Lab provides three major sensor classes: physics-based, rendering-based, and
warp-based sensors, as shown in Figure 8. While physics-based sensors are generally attached to articulations or
rigid bodies, rendering- and warp-based sensors can also be configured as external observers (e.g., third-person
cameras). All sensors are unified under a common interface, simplifying instantiation, configuration, and
runtime integration. Moreover, the sensor implementations are optimized to run in parallelized environment
settings as demonstrated in competitive throughput benchmarks in Section 4.1.

3.2.1. Physics-based

While many physical signals can be extracted from the articulation and rigid object data classes, capturing
these signals often requires the use of dedicated physical sensors. In particular, Frame Transformers, Inertial
Measurement Units (IMUs), and Contact Sensors can be used to collect relevant physical data across these
modalities.
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The Frame Transformer sensor, while not a direct analog to a physical sensor, provides a convenient method
for computing the poses of multiple target frames relative to a specified source frame. Notably, it batches
transformation computations, significantly reducing computational overhead compared to performing trans-
formations individually. Users can also define offsets for both the source and target frames, enabling precise
specification of transformations relative to key reference points — such as a body’s center of mass or known
positions of motion capture markers.

An IMU sensor provides rich state information about moving bodies, whether they are connected in an
articulation or on their own as a single rigid body. In the real world, simple IMUs traditionally collect angular
velocity via a gyroscope and linear acceleration via an accelerometer. Others can collect orientation information
via a magnetometer or estimation of the direction of gravity. Advanced units may come with onboard sensor
fusion to provide other components of the inertial state. The IMUs in Isaac Lab provide linear and angular
components of pose, velocity, and acceleration. Accelerations are computed via finite difference, which can
introduce noise — especially at low physics rates. Following real-world sensors, the IMUs in Isaac Lab provide
measurements in the sensor’s local frame relative to the world and can be placed on any rigid body with
an arbitrary offset. To simulate real-world behavior, modifiers such as observation noise and signal drift
(see Section 3.2.5) can be applied. Additionally, a built-in measurement provides the projection of world gravity
in the sensor frame.

The Contact Sensor captures interactions between rigid bodies with colliders. In its basic form, it reports the
net normal contact forces acting on the assigned bodies, which can be used to measure data such as ground
reaction forces for locomotion or grasping forces for manipulation. For more fine-grained measurements, users
can specify filter bodies to separate forces between different contact pairs. The sensor also offers optional
outputs, including temporal information such as contact lengths and the intervals between them, as well as
the average point of contact between the body the sensor is attached to and the filter bodies. Since contacts
between rigid bodies are inherently discrete and depend on the observation rate, the sensor can maintain
a short history of contact events. Exposing this history to policies can provide richer feedback and improve
learning performance.

3.2.2. Rendering-based

Rendering-based sensors emulate real-world cameras, which remain among the most informative sensors for
robotic perception. Isaac Lab supports both Pinhole and Fisheye camera models, with outputs including RGB,
depth, semantic labels, instance segmentation, surface normals, and motion vectors. Cameras can be configured
using standard parameters (e.g., focal length, aperture) or intrinsic matrices. Since orientation conventions vary
across frameworks, Isaac Lab supports multiple frame definitions: world (x-forward, z-up), ROS (z-forward,
-y-up), and OpenGL (-z-forward, y-up). For photorealistic rendering, Isaac Lab relies on RTX-based pipeline, as
described in Section 2.3.

Each camera sensor generates a render product, which first uses path-tracing to generate a rough image and
then undergoes post-processing steps such as denoising and anti-aliasing to produce high-quality outputs.
The USD-Camera implementation assigns one render product per environment, enabling highly accurate
images that capture illumination, shadows, and reflections. This is well-suited for data generation tasks where
photorealism is critical and parallelization is less of a concern. In contrast, learning tasks often require frequent
image generation across thousands of environments, where individual render products become a computational
bottleneck. To address this, the Tiled-Camera offers a parallelized implementation that aggregates all camera
data into a single tiled render product. While this approach may slightly reduce photorealistic quality due to
post-processing being optimized for single images rather than tiled layouts, it provides significant speedups.
Ongoing improvements in tiled post-processing aim to further close this quality gap.
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3.2.3. Warp-based

Distance queries are a key component in many robotic tasks and policy learning pipelines. In real systems, such
measurements are typically provided by LiDAR sensors or derived from environment height maps (Miki et al.,
2022; Rudin et al., 2022). In Isaac Lab, we implement these queries through the RayCaster sensor, which
leverages NVIDIA Warp (Macklin, 2022) to achieve lightweight and highly parallelized geometric computations
on the GPU.

The RayCaster can be configured with flexible raycast patterns to emulate a variety of sensors, including height
scanners, solid-state LiDARs, and rotating LiDARs. Rays can be cast against arbitrary dynamic meshes, enabling
users to include or exclude specific actors in the scene. Internally, scene geometry is stored as Warp meshes,
and their poses are synchronized through PhysX views to support dynamic environments. The ray origins
and directions, defined by the chosen pattern, together with the current mesh transforms, are then passed to
Warp kernels for efficient GPU-based raycasting. All raycast results are computed at a single time instance,
eliminating temporal distortion effects that can occur in real-world rotating sensors where individual rays are
captured at different timestamps.

Providing a pinhole raycast pattern enables a RayCasterCamera, which integrates with the standard camera
interface to provide depth images. RGB and semantic outputs are currently under development. Compared to
USD- or Tiled-Cameras, raycast-based sensors prioritize efficiency over photorealism by omitting rendering
effects, making them particularly well-suited for large-scale geometric training scenarios.

3.2.4. Visuo-Tactile

Figure 9: A fast visuo-tactile simulation
module that generates tactile images and
force fields, based on a soft-contact model
between rigid bodies and the sensor.

Tactile sensor simulation consists of modeling (1) sensor–object
contact interactions and (2) transduction of these interactions into
measurable signals. These processes are implemented in Isaac
Lab for vision-based tactile sensors, where contact interactions
are transduced into camera images, as demonstrated in Figure 9
(Akinola et al., 2025). The implementation consists of two GPU-
parallelized phases. In the first phase, soft contact dynamics are
approximated with a compliant contact model. Deformation is not
explicitly modeled, but resistive forces are captured using stiffness
and damping parameters, which regulate softness and velocity
decay during sensor-object interaction. In the second phase, the
contact interaction is used to derive visuotactile RGB images and
contact force fields, where the latter characterizes distributed nor-
mal and shear forces across the sensor. Depth images are rendered
using tiled cameras and mapped to RGB space (Si and Yuan, 2022),
while a penalty-based model is applied to compute the force dis-
tributions (Xu et al., 2022). Together, this implementation enables
substantial performance gains relative to existing simulation frame-
works by combining GPU parallelization, approximate but efficient
contact modeling, and tiled image rendering.

3.2.5. Simulation Frequencies and Noise Models

Isaac Lab supports flexible sensor update frequencies. This avoids the unrealistic assumption of synchronized
sensing and control, and better approximates real-world conditions where sensors operate at different rates
and experience communication delays. Standard noise types (e.g., Gaussian, uniform, salt-and-pepper) are
included by default as a way to augment observation data for robust training and emulation of real-world
systems, improving sim-to-real transfer. Isaac Lab further introduces Modifiers to augment observations with a
wider variety of perturbations. While they can be used to apply simple operations like noise, bias, or scaling,
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Figure 10: Custom actuator integration in Isaac Lab. Different robot joints can use different actuator models.
Implicit actuators rely on the simulator’s PD controller, while explicit actuators (e.g. neural networks) process
commands directly to generate joint efforts that are set into the simulator.

Modifiers can also be used to apply stateful augmentations like discrete filters and integrators. Moreover,
Modifiers are chainable, meaning they can be combined in arbitrary order, allowing for reuse and customization.
These flexible APIs of Isaac Lab allow for a straightforward integration of tailored noise models without having
to adjust the individual sensor.

3.3. Actuators

In Isaac Lab, actuators are the interface between desired joint actions and articulation motion. Actuators
provide a control loop over desired motion and joint intrinsic model definitions. All actuators provide interfaces
for defining joint friction using two different models. The first model is a simple Coulomb friction model with a
constant coefficient of friction. The second model provides a stiction model with a static slip threshold, dynamic
friction, and viscous friction coefficients. Actuators also have an armature value that represents the motor
inertia and is used to affect the dynamic response of the actuator. Limits for both velocity and effort can also
be provided to better approximate real-world limitations. Actuators are separated into two different classes:
implicit and explicit actuators. They can be configured separately across different joints or joint groups in an
articulation (Figure 10).

3.3.1. Implicit Actuators

Implicit actuators utilize the Nvidia PhysX joint PD controllers. These controllers can be used to track both
position and velocity by specifying the stiffness and damping terms of the PD controller. A feedforward effort
can also be provided from the desired control action. Implicit actuators can utilize the velocity and effort
limits to apply inequality constraints to the simulation solver. This can introduce issues with solvers if they
become too restrictive. These joint-level controllers are typically more stable than explicit actuators, as they are
iteratively solved in step with physics. They also tend to be more accurate at low sampling rates than explicit
actuators.

3.3.2. Explicit Actuators

Explicit actuators operate in a similar manner as the implicit actuators, but they better approximate the discrete
implementation of joint controllers on hardware, especially at higher physics sampling rates. Given a desired
joint action, explicit actuators compute the applied effort that is sent to the physics solver. This introduces
the inherent numerical challenges of discrete-time control. Ways to mitigate this include traditional control
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stability analysis, as well as actuator armature. Explicit actuators can utilize the solver limits for velocity and
effort, but can also apply limits that are used by the explicit effort calculations. A variety of different explicit
actuators are available in Isaac Lab, including:

• Ideal PD actuators are the simplest form of explicit actuators. Similar to the implicit actuator, the Ideal
PD actuator implements a PD feedback controller with feedforward effort, using specified stiffness and
damping parameters. However, the Ideal PD actuator operates in a discrete-time formulation. It can also
apply an effort limit, clipping the computed torque before passing it to the solver.

• DC Motor actuators utilize the same control and intrinsic parameters as the Ideal PD actuator, but provide
an additional velocity-dependent effort limit model that approximates a four-quadrant DC motor torque
speed curve. They do not simulate the electro-mechanical dynamics of a DC motor.

• Delayed PD actuators build upon the Ideal PD actuator by providing a mechanism for simulating
communication delay in the control system by buffering desired actions by a configurable number of
simulation steps. These delays are important to simulate when approximating the communication delays
on real distributed systems. The Spot application described in (Section 6.1) is an example use case of the
Delayed PD actuator.

• Remotized PD actuators are used to simulate actuators with joint position-dependent effort limits. Some
robots have remote actuators that utilize linkages to transfer power to distal joints. This type of actuation
results in the nonlinear transformation ratios and position-dependent effort limits that are emulated by
the Remotized Actuator. An example use of this actuator is the Spot knee actuator (Section 6.1).

• Neural Net Actuators utilize a trained neural network for joint control rather than the PD control loop of
the Ideal PD actuator. These models can be trained on hardware data to better emulate the dynamic
response of the actuator in the real world. They are often coupled with the DC motor torque-speed curve
effort limits. Isaac Lab has examples for both Long Short-Term Memory LSTM actuators (Rudin et al.,
2022) and Multi-layer Perceptron (MLP) actuators (Hwangbo et al., 2019) models.

3.4. Controllers

Controllers in Isaac Lab represent a class of robotic tools that generate desired joint-level commands (position,
velocity, effort) from a higher-level input. These higher-level inputs typically involve task or joint space desired
motion. The role of a controller is to determine the desired joint-level actions required to complete the higher-
level command. Controllers in Isaac Lab can be organized into a few key categories: inverse kinematics, force
control, and motion planners. These controllers are typically integrated into the actions of an MDP formulation
of the robot learning tasks.

3.4.1. Inverse Kinematics

The inverse kinematics (IK) controllers in Isaac Lab convert desired task-space motion into the required
joint space motion using two main methods. First is the differential IK controller that utilizes the kinematic
Jacobian to compute changes in joint position from a desired change in end-effector pose. The second is an
implementation of the Pink library that utilizes a quadratic programming method to determine desired joint
velocities from a desired end-effector velocity.

TheDifferential IK controller converts desired changes in task-space pose to changes in joint position by utilizing
the notion of differential kinematics defined by the kinematic Jacobian, by using the inverted Jacobian matrix.
The Jacobian inverse has a flaw that occurs when reaching kinematic singularities. The Differential IK controller
allows for different ways of handling this singularity. Options include the Moore-Penrose pseudo-inverse,
adaptive singular value decomposition, the Jacobian transpose approximation, and the damped pseudo-inverse.
Configurable functionality for the Differential IK controller includes controlling the position or pose of the
end-effector and handling the relative or absolute desired position or pose.

Isaac Lab integrates the Pink library, a Python framework for task-based differential inverse kinematics that
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uses Pinocchio for forward kinematics and quadratic programming (QP) solvers for optimization. Unlike
traditional analytical IK methods, Pink allows for computing motions that steer the robot toward achieving
multiple simultaneous tasks through a weighted objective formulation. Building on this foundation, we have
implemented a reactive IK controller that achieves real-time performance. A key advantage of Pink lies in its
extensible task-based architecture, which allows users to easily introduce custom objectives into its underlying
QP solver. Tasks are defined by residual functions that describe desired behaviors (e.g., end-effector positioning,
collision avoidance, joint limits). While conflicts between competing tasks are resolved through normalized cost
weighting, this approach trades off performance and accuracy of each task. Isaac Lab extends Pink’s task library
with the NullSpacePostureTask, designed for high degree-of-freedom robotic systems. This task regularizes
redundant joints that do not contribute to the primary control objective, such as maintaining a preferred arm
posture during end-effector positioning. The implementation provides controlled null-space behavior while
preserving task-space accuracy, improving motion quality for articulated systems with kinematic redundancy.

3.4.2. Force Control

Force control is a useful way to enable robots to interact with environments and utilize proprioception to
regulate how forces are imparted on the environment and objects. Isaac Lab provides implementation of two
force control methods: the joint impedance controller and the operational space controller.

The Joint Impedance controller provides an interface to control the joint position of an articulation given a
desired impedance. This happens individually at the joint level using a similar PD control to the Ideal PD joint
actuator, but it additionally provides interfaces for calculating feedforward efforts for both inertial and gravity
compensation. This controller also provides the ability to have fixed impedance, variable stiffness, and variable
impedance versions.

The Operational Space controller provides an interface for controlling the impedance of a robot at the
operational or task space of the robot. This controller comes with a generalized interface for functionality like
hybrid force-motion control, dynamics decoupling, gravity compensation, variable impedance, and null space
control for redundant manipulators.

3.4.3. Motion Planning

The cuRobo (Sundaralingam et al., 2023) integration in Isaac Lab enables fast, GPU-parallelized collision-aware
motion planning. At its core is cuRobo’s MotionGen, which combines inverse kinematics, collision checking,
and trajectory optimization, with optional graph-based planning for global motion. This provides low-latency
planning for dynamic scenes and manipulation tasks such as those in workflows like Section 5.5.2. Within
Isaac Lab, the planner is initialized from the robot configuration and world description, running on a dedicated
CUDA device. Tensor handling is managed internally to ensure consistency between cuRobo computation and
Isaac Lab tensors. A brief warmup call primes kernels and caches to reduce first-plan delay.

3.5. Teleoperation Support

Teleoperation remains an integral part of robotics. Its uses span direct user control, controller and policy
evaluation, and demonstrations for robot learning. Teleoperation in Isaac Lab can be performed via a range of
hardware devices and applications in extended reality.

3.5.1. Teleoperation Devices

Isaac Lab provides support for various teleoperation devices that allow users to control a diverse set of robots. A
keyboard device interface is provided and enables delta pose control over robotic arms and grippers. Users can
map additional keys to custom callback functions to design specialized workflows, such as controlling the base
height/velocity of a humanoid. For smoother human control, Isaac Lab also supports spacemouse teleoperation
devices. The use of a spacemouse can enable higher quality human demonstrations for data collection for
imitation learning tasks, as well as provide simultaneous multi-axis movement.
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3.5.2. Extended Reality (XR) Device Teleoperation

Teleoperation of bimanual or humanoid dexterous manipulation tasks can be challenging to nearly infeasible
with traditional devices such as keyboards and spacemice. To enable these tasks, Isaac Lab includes support
for extended reality (XR) devices which allow users to perform dexterous control bimanual/humanoid robots
using an Apple Vision Pro (AVP) headset. The user’s hand joints detected by the AVP are mapped to the
end-effector pose, which is then used in inverse kinematics (IK) to compute the corresponding joint angles and
arm positions. To provide a natural and intuitive user experience, the IK formulation incorporates two tasks:
(1) a waist task, which infers waist joint positions from hand motion, and (2) a null-space task to maintain the
arm in nominal (neutral) positions as described in Section 3.4.1.

In contrast to prior XR teleoperation systems that directly stream stereoscopic video from the robot’s perspective
to the operator’s display (Cheng et al., 2024; Zhang et al., 2025), our approach leverages NVIDIA’s CloudXR
framework (NVIDIA) to enhance user comfort through low-latency streaming, supported by GeForce Now
technology. CloudXR incorporates re-projection algorithms to mitigate the perceptual effects of residual
streaming delays, thereby providing stable and visually comfortable image qualities. An additional benefit is
the platform’s support for augmented reality (AR) overlays, which allows operators to maintain contextual
awareness of their environment during teleoperation.

3.6. Procedural Generation

3.6.1. Terrain Generation

Isaac Lab supports multiple approaches for creating simulation environments: (i) procedural generation through
scripts, (ii) importing scanned meshes (Straub et al., 2019), (iii) interactive editing via the Isaac Sim game-
like GUI, and (iv) hybrid combinations of thereof. The script-based interface provides fine-grained control
over environment difficulty and enables systematic terrain randomization for benchmarking robustness. This
interface leverages Trimesh (et al.) to generate primitive shapes and arbitrary meshes, which can be flexibly
combined into complex structures (e.g., pyramids or composite terrains). It also supports heightfields, which
are automatically converted into meshes to represent rough terrain surfaces. To ensure efficient simulation, all
generated structures are optimized to minimize mesh complexity while preserving geometric fidelity, thereby
improving performance in the underlying PhysX engine. Figure 11 showcases various types terrain assets
available in Isaac Lab.

3.6.2. Integration with External Asset Generation Frameworks

Scene graph generation frameworks such as Scene Synthesizer (Eppner et al., 2024) and Infinigen (Raistrick
et al., 2024) can be used to programmatically design cluttered 3D environments (such as homes and kitchens)
and exported to USD for use in Isaac Lab. These frameworks have a library of predefined objects and seemlessly
combine them with artist-generated datasets like Objaverse (Deitke et al., 2023) to generate USD scenes.
Training loco-manipulation policies on such procedural scenes in Isaac Lab results in better robustness and
generalization. For instance, (Sleiman et al., 2024) showed sim-to-real transfer of a door opening policy by a
quadrupedal mobile manipulator, while (Luo et al., 2025) demonstrated generalizable pick-and-place skills for
a humanoid robot trained in a large number of procedural kitchen environments.

3.6.3. Multi-Asset Spawning and Randomization

After defining a terrain, Isaac Lab allows assets to be instantiated in the scene and cloned across parallel
environments. Within each environment, multiple assets can be spawned simultaneously, and both geometric
and visual properties can be randomized. Isaac Lab further supports swapping assets across environments,
provided they belong to the same asset class. For example, in a manipulation task, the target object may vary
between a cup, a glass, or cutlery, enabling the policy to generalize across different shapes while pursuing the
same objective. For vision-based policies, Isaac Lab integrates domain randomization techniques to improve
sim-to-real transfer. Here, visual properties such as textures, materials, and colors can be procedurally varied
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Figure 11: Overview of different terrains that can be used with Isaac Lab. The procedural terrains are generated
using Trimesh and allow for large, randomized terrains. At the same time, USD terrains fromMatterport (Chang
et al., 2017), NV SimReady Assets, or the NV Scene Synthesizer can be imported into Isaac Lab.

across assets and environments. This combination of geometric variation and visual randomization promotes
robustness by exposing policies to a broader distribution of task-relevant scenarios.

3.7. Task Framework and Environments

Isaac Lab supports two primary paradigms for constructing and executing robot learning workflows: the
manager-based workflow and the direct workflow. These workflows differ in their level of abstraction, mod-
ularity, and intended use cases. This provides flexibility for users ranging from those building minimal,
high-performance environments to those developing complex, structured robotic systems.

The manager-based workflow provides a more structured and modular design, encapsulating robot components
into reusable subsystems (e.g., actions, observations, rewards, commands). In contrast, the direct workflow
offers an interface that allows users to interact directly with the simulation, physics, and learning components
without enforcing a specific organizational structure. It is particularly well-suited for performance-sensitive
training pipelines, where minimal overhead and tight integration with GPU resources are critical. Algorithm 2
outlines the step function logic for both workflows, demonstrating the sequence of computations to step an
environment.

3.7.1. Manager-Based Workflow

The manager-based workflow in Isaac Lab is a structured way to build environments by decomposing the
MDP into reusable managers — observations, actions, rewards, terminations, commands, curricula, events,
and recording — so each unit has a single responsibility and a clear interface. This design targets ML/RL
practitioners: you interact with MDP concepts directly while the framework handles simulation plumbing
(scene updates, decimation), vectorization, per-env resets, and Gym-compatible spaces derived from the active
terms. As a result, environments remain readable and extensible, and switching on/off terms or swapping
configurations becomes a configuration change rather than a refactor.
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Algorithm 2 Environment Step Function

1: input: action
2: output: observations, rewards, terminations, timeouts, extras
3: procedure Step(action)

// pre-physics step

4: Process actions (e.g. clipping, affine transformation)
// physics step

5: for each substep in environment decimation do

6: Apply processed actions to simulation buffers (via actuator models)
7: Apply pre-simulation events (if any)
8: Advance simulation (without rendering)
9: if render interval reached and is_rendering then

10: Render simulation
11: end if

12: Update scene buffers
13: end for

// post-physics step

14: Update episode counters
15: Compute terminations and timeouts
16: Compute rewards

// environment reset

17: reset_env_ids← environments to reset
18: if reset_env_ids not empty then

19: Update curriculum
20: Apply reset events to reset the environments
21: Reset episode counter and internal buffers (e.g. state history)
22: Update simulator kinematic state
23: if sensors present and rerender configured then

24: Render simulation
25: end if

26: end if

// command and observation update

27: Update commands
28: Apply interval events (if any)
29: Compute observations
30: return observations, rewards, terminations, timeouts, extras
31: end procedure

Beyond enabling flexible MDP definitions, Isaac Lab ships a catalog of tested, independent term functions
with explicit inputs/outputs. Practitioners can add or ablate terms without touching unrelated code paths,
accelerating idea testing, ablation studies, and continuous development. The manager API formalizes where
each computation lives and exposes logging hooks to attribute signals at term-level granularity (e.g., reward
contributions, termination causes), improving training analysis and reproducibility. While a manager layer
can introduce modest overhead compared with a hand-tuned direct workflow, most of that overhead is CPU
orchestration and kernel-launch latency rather than physics itself — precisely the kind of cost that CUDA
Graphs are designed to reduce by bundling many GPU operations into a single launch. We foresee manager
term graphed executions as a plausible roadmap to bootstrap the MDP calculation runtime, thus narrowing any
remaining gap.

3.7.2. Direct Workflow

The direct workflow in Isaac Lab is designed to expose fine-grained control over simulation and learning
pipelines with minimal abstraction overhead. It allows users to instantiate simulation environments, robots,
and tasks directly through procedural APIs, providing immediate access to low-level data structures such as
joint states, contact forces, and sensor outputs.

This workflow is particularly aligned with the end-to-end training paradigm introduced in Isaac Gym (Makoviy-
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chuk et al., 2021), where simulation and learning are tightly coupled on the GPU. Users can execute physics
steps, compute rewards, apply control actions, and collect observations within a single, optimized environment
class. The simplicity and performance of the direct workflow make it ideal for benchmarking algorithms and
performance-sensitive workflows.

Despite its simplicity, the direct workflow remains extensible. Users can define custom tasks, observations, and
reward functions, and integrate third-party learning frameworks or data logging tools as needed. It serves as a
strong foundation for users who require maximum performance and flexibility, especially in scenarios where
control and learning are prioritized over system modularity.

3.7.3. Environments

Isaac Lab provides robot learning environments across four families, namely classic, locomotion, manipulation,
and navigation, with many tasks offered in both direct and manager-based variants. Figure 12 showcases some
examples of environments available in Isaac Lab.

Across categories, the environments were chosen for their sim-to-real relevance, their advanced simulation fea-
tures (e.g., SDF, contact sensing, tiled rendering), and their clear skill structure spanning dexterity, locomotion,
and hierarchical control. Re-implemented benchmarks share unified APIs and data layouts to minimize glue
code and maximize comparability and accessibility for the community to recreate, study, or expand.

Figure 12: Suite of environments in Isaac Lab. They illustrate a variety of simulation capabilities, including
contact-rich interactions, multiple sensor modalities for observations, and support for diverse robotic morpholo-
gies, such as humanoids, quadrupeds, fixed-arm robots, and dexterous hands.

Classic. “Hello World” tasks (Ant, Humanoid, Cartpole) are quick-start baselines for bring-up, regression,
and throughput testing. Their simplicity allows for rapid prototyping before integration into more complex
environments.

Locomotion. Quadruped velocity-tracking and terrain curricula follow massively parallel training recipes and
evaluation protocols inspired by prior work (Rudin et al., 2022), which we expanded to 11 different robot
morphologies, including a1, g1, h1, go1/2, Anymal-B/C/D, Cassie, Digit, and Spot. Notably, this implementation
has shown robust sim to real for Anymal and Spot.

Manipulation. Dexterous hand–arm tasks (e.g., reorientation, grasping) (Petrenko et al., 2023; Singh et al.,
2025) are re-created, alongside contact-rich assembly benchmarks that leverage SDF-based contact modeling
and force-aware strategies (Narang et al., 2022; Noseworthy et al., 2025; Tang et al., 2024). The suite covers
both single-object dexterity and multi-part assembly, with options for tactile/force sensing.
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Navigation. Goal-conditioned navigation tasks target hierarchical RL setups where we show how to compose a
high-level command policy with a low-level locomotion policy into one environment.

Multi-Agent Environments Isaac Lab includes and supports the creation of custom environments for solving
general physical-based Multi-Agent Reinforcement Learning (MARL) tasks, in which multiple learning agents
coexist and interact within a shared environment. Depending on the nature of the problem and the interests of
the agents, tasks can be defined with different settings, such as competition (agents play against each other),
cooperation (agents work together to achieve a common goal), or a combination of the two.

The exposed API is available for direct workflows and is based on PettingZoo (Terry et al., 2021) Parallel API.
The Parallel API is a standard interface for MARL in which all involved agents observe the environment and take
action simultaneously at each step. Future releases will explore PettingZoo’s Agent Environment Cycle (AEC)
game model, in which agents act sequentially and environments are updated after each agent makes a decision.

4. Simulation Performance

4.1. Environment Throughput

We evaluate throughput for complex learning tasks with different sensor setups. All benchmarks are executed
in headless mode on three GPU platforms: L40 (48 GB), RTX Pro 6000 (96 GB), and GeForce 5090 (32 GB).
These cover a range of numbers and generations of RTX cores and VRAM sizes. In addition, we study the
scaling behavior under distributed training across multiple GPUs on the RTX Pro 6000. As a performance metric,
we report frames per second (FPS), defined for environment learning throughput as:

FPS =
# of environment steps

simulation time+ learning time
(1)

Apart from the GPU, environment throughput can also be dependent on single-core CPU performance due to
bottlenecks in some parts of PhysX simulation and the main training loop. The L40 server uses two AMD EPYC
7763 64-Core Processors, the RTX Pro 6000 server uses two AMD EPYC 9554 64-Core Processors, and finally
the GeForce 5090 workstation uses a single 8-core AMD 9800X3D processor with single-core performance more
than double that of the L40 server.

We first benchmark state-based environments, where simulation cost is dominated by PhysX computation.
We then analyze perceptive environments, where rendering becomes the bottleneck. Finally, we compare
performance across the manager-based and direct workflows introduced in Section 3.7.1 and Section 3.7.2.

4.1.1. State-based environments

Figure 13: Log-scale throughput comparison for state-based manipiulation tasks on three GPU platforms,
including distributed training with two, four, and eight GPUs. Shown are (A) the DexrAH lift task and (B) the
Franka arm cabinet drawer opening task.
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For state-based training relying on proprioceptive information only, we benchmark two manipulation tasks -
the DextrAH (Lum et al., 2024) lifting teacher task with no perception, and the Franka arm cabinet drawer
opening task.

As shown in Figure 13, the systems with newer Blackwell GPUs have improved performance across both
environments compared to the previous generation L40. Distributed training provides further gains, scaling
almost perfectly linearly as the number of GPUs increases. With eight GPUs and 16384 environments, the
DextrAH teacher task reaches over 900,000 frames per second in training, while the Franka cabinet task reaches
over 1.6 million frames per second.

It is notable that the workstation GeForce 5090 system comes close in performance to the two GPU RTX Pro 6000

server in the Franka cabinet drawer task, but is only about 25% faster in the DextrAH task. These differences
are primarily due to the combination of CPU bottlenecks and extremely fast single-core CPU performance
in the 9800X3D CPU compared to the throughput-oriented server CPUs. Eliminating these bottlenecks is an
important goal for future releases of Isaac Lab and the Newton physics engine.

4.1.2. Perceptive Environments

Figure 14: Log-scale throughput comparison for perceptive locomotion tasks across GPU models and distributed
training setups. Both tasks include a RayCaster-based height scanner (1.6m× 1.2m, resolution 0.1m). Addi-
tionally, the Digit task highlights the simulation of closed-loop kinematic chains in Isaac Lab.

In perceptive tasks, the simulation speed depends on the combination of PhysX and rendering speeds, where the
latter typically dominates computational demands. We benchmark three perceptive tasks: two rough terrain
locomotion tasks with the Unitree G1 humanoids and Agility Robotics Digit humanoid, and the end-to-end
perception-based version of DextrAH for dexterous manipulation (Singh et al., 2025). The two locomotion tasks
use a height-scanner of size 1.6m×1.2m implemented using the RayCaster sensor. For the DextrAH environment,
we compare two rendering approaches: the Tiled-Camera (Section 3.2.2) and the Warp-based RayCasterCamera

(Section 3.2.3). The Digit locomotion environment also showcases the simulation of closed-loop kinematic
chains. Benchmarks are run on the same GPU platforms as for the state-based learning tasks.

As shown in Figure 14 and Figure 15, throughput improves substantially with newer GPUs (RTX Pro 6000

and GeForce 5090) and with distributed training, mirroring the trends observed in state-based environments.
However, throughput remains lower overall compared to state-based tasks due to the additional rendering cost.
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Figure 15: Log-scale throughput comparison for perceptive learning task in dexterous manipulation (DextrAH).
Results are shown for the Tiled and Raycaster-based camera at 64x64 resolution across GPU models (left) and
distributed training setups (right). All multi-GPU training is tested on RTX Pro 6000 systems.

The GeForce 5090 system, with its high single-core performance CPU, achieves higher throughput at smaller
environment counts, while the RTX Pro 6000 system narrows the gap as the number of environments increases.
Owing to its larger VRAM capacity, the RTX Pro 6000 also supports a greater degree of parallelization,
enabling more environments to be simulated concurrently. When comparing sensor implementations, the
RayCasterCamera demonstrates superior performance on a single GPU. In contrast, with multiple GPUs
and large environment counts, the Tiled-Camera achieves better parallelization, eventually surpassing the
RayCasterCamera.

4.1.3. Workflow Comparison

Figure 16: Log-scale throughput comparison for the ANYmal locomotion task using the manager-based and
direct workflows.

We further evaluate the performance of the manager-based and direct workflows introduced in Section 3.7.1
and Section 3.7.2. As shown in Figure 16, the direct workflow generally achieves slightly higher throughput, on
average 3.53% on a single RTX PRO 6000. However, the performance gap is small and becomes negligible for
larger environment counts and in tasks where perception dominates the computational cost. This indicates that
the manager-based workflow offers comparable efficiency while providing additional structure and flexibility
for complex training setups.
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(a) Stereo Encoder (b) Cross-Attention Mask

Figure 17: Singh et al. (2025) train a student policy with stereo RGB images. (a) The stereo encoder uses a
pre-trained ResNet-18 (with the last two layers removed) to encode each image independently into a high-
dimensional vector. Each vector is projected and split into 128 tokens. Tokens from both images, along with a
learnable [embed] token, are passed into a two-layer transformer that performs cross-attention. The output
from the [embed] token is processed through an MLP, producing the final stereo embedding vector. (b) The
turquoise regions illustrate cross-attention between the tokens. Each image’s tokens attend to the other image’s
tokens and the shared [embed] token, which attends to all tokens.

5. Learning Techniques and Workflows

5.1. Reinforcement Learning

Isaac Lab adheres to the Gymnasium API (Towers et al., 2024), a widely adopted interface for defining
RL environments. By conforming to the gymnasium.Env specification, Isaac Lab environments can be used
directly with any library that supports Gym-compatible environments. At the same time, many RL frameworks
implement custom specifications for handling batched data from parallelized environments. To address this,
Isaac Lab is designed with extensibility in mind to integrate custom solutions with minimal engineering effort.
Out-of-the-box, Isaac Lab provides built-in support for SKRL (Serrano-Munoz et al., 2023), RSL-RL (Schwarke
et al., 2025) and RL-Games (Makoviichuk and Makoviychuk, 2022), Stable-Baselines3 (SB3) (Raffin et al.,
2021), and Ray (Moritz et al., 2018). These libraries complement different aspects of the RL workflow and
highlight Isaac Lab’s interoperability.

Learning effective control policies directly from visual inputs is a central challenge in modern robotics and
reinforcement learning. While traditional approaches rely on low-dimensional state representations, many
real-world applications require policies capable of interpreting and acting upon high-dimensional sensory
observations, such as RGB or depth images. Isaac Lab supports this line of research by providing fast high-
fidelity rendering and privileged state access. It supports visual domain randomization, exposing policies to
diverse lighting conditions, textures, colors and backgrounds, and provides examples using pre-trained visual
backbones such as Theia (Shang et al., 2024) and ResNet (He et al., 2016).

In the following, we describe two complementary paradigms for incorporating perception into reinforcement
learning: teacher-student distillation, where a perception-based student imitates a privileged state-based teacher,
and end-to-end perception-in-the-loop training, where policies are learned directly from raw sensory inputs.
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5.1.1. Teacher-Student Distillation

Training end-to-end pixels-to-action policies directly with RL presents unique challenges, as the agent must
simultaneously learn perception and control. A widely adopted solution is the teacher-student distillation
approach (Chen et al., 2020; Lee et al., 2020), in which a teacher policy, trained via RL on state-based
(privileged) observations, guides a student policy that receives partial information (such as rendered RGB
images) corresponding to the teacher’s states. The student is trained using an online imitation learning method,
such as DAGGER (Ross et al., 2011), which is particularly effective as it incrementally aggregates data from the
student’s own trajectories while leveraging the teacher for corrective actions.

The distillation framework can be applied to students receiving different types of observations. For example,
Lee et al. (2020) trains a student with proprioception-based observations, while Lum et al. (2024) uses
depth-based observations. More recently, Singh et al. (2025) train a student policy with RGB images, using
high-fidelity rendering in Isaac Lab. Student architectures tend to be simpler for proprioception- and depth-
based observations. In contrast, training an RGB-based student is more challenging, as the network must learn
invariance to textures and lighting, infer 3D structure, and identify objects of interest directly from RGB inputs.
To facilitate this, it is often helpful to initialize the student with a pre-trained encoder, as shown in Figure 17.

5.1.2. End-to-End Perception-in-the-Loop

While distillation enables training an RGB-driven student policy by imitating a state-based teacher, there
are compelling reasons to also train policies end-to-end directly from images. First, end-to-end training can
exploit rich spatial and shape cues that low-dimensional state vectors cannot capture. Second, imitation-
based distillation introduces an information gap due to input mismatch: the teacher observes privileged state
information, while the student sees only partial observations. This can lead to a performance drop, as the
student must reconstruct unobserved states from images, a challenge that becomes particularly pronounced
under high camera occlusions.

Singh et al. (2025) show the first sim-to-real system trained end-to-end for multi-fingered hands using Isaac
Lab. Training end-to-end RL policies can also give rise to emergent active perception behaviors. Luo et al.
(2025) use Isaac Lab to train a humanoid agent relying solely on egocentric vision and proprioception to
perform various loco-manipulation tasks. Similarly, Yang et al. (2025) train an attention-based RL policy for
long-range navigation. The learned agents in these works exhibit search and exploratory behaviors, actively
moving around to gather visual information relevant to the task, demonstrating active perception strategies
that emerge naturally from end-to-end training.

5.2. Population-Based Training

While RL remains the predominant approach for training policies in simulation, the stochastic nature of the
training process and the large hyperparameter space collectively introduce high variance in training results,
particularly for systems with high Degrees-of-Freedom (DoF) systems and tasks with sparse rewards. As a result,
some runs may progress rapidly, while others stagnate with little or no improvement. Petrenko et al. (2023)
addresses this problem by using genetic algorithms to mutate the hyperparameter space, promoting diversity
and exploration in the learning agent. Built on top of Population-Based Training (PBT) (Jaderberg et al.,
2017), DexPBT assigns each worker an independent RL training process with its own set of hyperparameters.
Periodically, the best-performing workers, with their weights and hyperparameters, replace the worst-performing
ones, as illustrated in Figure 18.

Isaac Lab includes an implementation of DexPBT with RL-Games for the dexterous manipulation environments
in DextrAH (Lum et al., 2024; Singh et al., 2025), as shown in Figure 19. It reproduces the 6D reposing task
from the original DexPBT work using 8 workers, each with 1–2 GPUs, and converges in approximately 16 hours
on NVIDIA OVX L40 hardware. The PBT framework in Isaac Lab is configurable and generalizable to other
environments, enabling scalable multi-node RL training.
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Figure 18: An overview of the PBT framework for RL in Isaac Lab. Each worker runs an independent RL
training process with its own hyperparameters. Periodically, top-performing workers share their weights and
hyperparameters to replace those of bottom-performing workers, while genetic mutations introduce diversity
in the hyperparameter space. This iterative process improves exploration and stability in RL training.

Figure 19: The 6-D object reposing task from DexPBT (Petrenko et al., 2023), performed with an Allegro hand
mounted on a KUKA arm. Results are reproduced in Isaac Lab using 8 workers, each with 1–2 GPUs.

5.3. Domain Randomization

Domain Randomization (DR) is a critical component of sim-to-real transfer, where the system parameters are
randomized in simulation to promote policy generalization and robustness on deployment. For physics, these
include friction, armature, gravity, and mass (Peng et al., 2017), while for rendering they include texture,
material, and lighting (Sadeghi and Levine, 2016; Tobin et al., 2017). Such parameters may be difficult to
estimate accurately or may vary over time in the real world. By randomizing them over broad distributions
during training, policies acquire invariance to these parameters, improving transfer to reality. A key requirement
for DR is the ability to modify parameters on the fly, providing diverse training scenarios to the learning agent.

Isaac Lab supports randomization of both physics and rendering parameters. Mesh-related attributes, such as
scale and collider type, can only be randomized before the simulation begins playing (Algorithm 1). Most other
physics parameters can be randomized at runtime. As discussed in Section 2.2, due to current PhysX design
limitations, only simulation state is accessible directly on the GPU, while simulation parameters (e.g. masses,
friction, contact offsets, and joint armature) must be modified through the CPU API. Rendering parameters such
as visual materials, lighting intensities, light source locations, and background textures can also be randomized
at runtime, though they currently rely on CPU-based USD APIs. Figure 20 illustrates RGB renderings in Isaac
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Figure 20: Top: Camera renderings from different environment instances in simulation, adapted from Singh
et al. (2025). Bottom: Examples of data augmentations applied to these renderings before passing them to the
learning agent.

Lab with randomized textures and lighting, alongside standard computer vision augmentation techniques.

Furthermore, Isaac Lab also supports Automatic Domain Randomization (ADR) (OpenAI et al., 2019) through
a configurable curriculum framework that adaptively adjusts the difficulty of the environment based on the
performance of the agent. The dexsuite examples in Isaac Lab provide reference ADR configurations for RL
training. The framework automatically manages difficulty progression, continuously challenging the learning
agent without overwhelming it, thereby promoting more robust and generalizable policies.

5.4. Imitation Learning

While RL has demonstrated clear benefits when scaling with large amounts of simulation data, designing
reward functions for many robotic tasks remains a challenge. Imitation Learning (IL) offers an alternative
by allowing agents to learn directly from expert demonstrations rather than relying solely on trial-and-error
exploration. Simulation provides a safer, more scalable, and cost-effective environment for collecting training
data for IL than the real world. Additionally, recent advances in sim-to-real techniques, including the use
of generative models such as NVIDIA Cosmos, offer promising approaches for training policies entirely on
synthetic data and transferring them effectively to real-world environments.

Isaac Lab supports IL through integration with the widely used RoboMimic framework by Mandlekar et al.
(2022). Demonstration data can be collected through human teleoperation or synthetically generated using
Isaac Lab Mimic (described in Section 5.5) . All demonstrations are stored in the standardized HDF5 format
based on the RoboMimic schema. Isaac Lab includes a suite of reference training and evaluation scripts that
work out of the box with RoboMimic, offering a streamlined starting point for experimentation. It also provides
a workflow for converting existing HDF5-based datasets into the LeRobot format (Cadene et al., 2024), thereby
facilitating access to the extensive ecosystem of open-source models and tools available on the Hugging Face
Hub. This conversion transforms row-oriented HDF5 structures into a highly optimized, columnar Parquet
format suitable for time-series data, while simultaneously encoding camera frames into MP4 video files.

5.5. Synthetic Data Generation

Isaac Lab Mimic focuses on synthetically generating a large number of robot demonstrations from a limited
set of human demonstrations. The workflow segments a human demonstration into object-centric subtasks,
applies rigid transformations to each segment, and recombines them into new demonstrations (Jiang et al.,
2025; Mandlekar et al., 2023). By transforming and stitching trajectories, Mimic adapts these demonstrations
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Figure 21: Top: The generation pipeline for loco-manipulation synthetic data using Isaac Lab Mimic. Bottom:
A loco-manipulation task consisting of multiple subtasks for manipulation and navigation, such as walking to
the shelf, picking up the box, turning towards the table, walking to the table, squatting down, and dropping
the box. This example is included as part of Isaac Lab Mimic workflow.

so that the robot can successfully execute tasks even when the robot or objects occupy poses different from
those in the original demonstration, significantly expanding the diversity and coverage of the training dataset.

To make a manager-based environment design compatible with the Mimic workflow, users implement the
required integration interfaces, including functions to convert robot poses to actions (and vice versa), retrieve
the robot end-effector pose, and extract the gripper state from environment actions. Once an environment is
Mimic-compatible, it can generate an effectively unbounded number of synthetic demonstrations from as few
as a single human demonstration. Furthermore, Isaac Lab Mimic supports parallelized environment execution
for data generation, substantially increasing throughput and reducing overall demonstration generation time.

5.5.1. Loco-Manipulation Data Generation

An example of the Isaac Lab Mimic workflow is learning loco-manipulation tasks through imitation learning.
Figure 21 provides an overview of the data generation pipeline that employs a decoupled whole-body controller
for a humanoid, similar to Ben et al. (2025). By combining a whole-body controller with navigation, we
synthesize task demonstrations for loco-manipulation, where coordinated locomotion and manipulation enable
robots to move (e.g. walk or squat) while simultaneously interacting with objects (e.g. grasping, pushing,
pulling). This coupling supports complex sequences such as picking up an object from a table, traversing space,
and placing the object elsewhere.

The system augments demonstrations with randomized pickup and drop-off locations for boxes, and varied
positioning of obstacles. It enhances the data collection pipeline by segmenting manipulation into pick-
and-place phases interleaved with locomotion. Using this pipeline, we generate abundant augmented loco-
manipulation data from manipulation-only human demonstrations, allowing humanoid robots to learn inte-
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grated loco–manipulation skills. The provided interface in Isaac Lab remains flexible, allowing users to apply
different embodiments, including humanoids and mobile manipulators, with their choice of controllers.

5.5.2. SkillGen-based Dataset Augmentation

SkillGen (Garrett et al., 2024) is an automated demonstration generation system in Isaac Lab Mimic that
produces high-quality, collision-aware robot demonstrations at scale. It combines human-provided subtask
segments with GPU-accelerated motion planning (described in Section 3.4.3) to create diverse feasible
trajectories that adapt to new object placements and scene layouts. By automating transit motions between
annotated skills, it reduces manual data collection while improving dataset consistency and validity.

The Isaac Lab integration of SkillGen offers simple controls for scalable dataset creation. Users can select
planner-backed generation with a single flag, configure the number of trials, number of parallel environments,
and compute devices, and adjust the planner’s parameters to balance speed, success rates, and motion quality.
The resulting datasets support IL workflows in Isaac Lab.

6. Application to Robotics Research

In the following, we provide an overview of the various robotic research areas that have benefited from the
capabilities of Isaac Lab. As the framework continues to mature, this section will be expanded to include the
latest advancements and applications. We focus this survey primarily on work conducted by closely collaborating
academic and industrial partners, including NVIDIA, ETH Zürich, and the Robotics and AI Institute (RAI).

6.1. Locomotion

Legged locomotion has long posed a central challenge in robotics, due to the difficulty of maintaining balance,
coordinating complex movements, and adapting to uncertain or dynamic environments. Reinforcement learning
enabled a significant breakthrough (Hwangbo et al., 2019), allowing robots to learn locomotion policies with
a level of robustness that was difficult to achieve with traditional, model-based techniques (Lee et al., 2020;
Miki et al., 2022). Because this learning process requires vast amounts of data, simulation has become an
indispensable component for developing controllers safely and efficiently (Rudin et al., 2022), with successful
deployment across several robotic platforms, as depicted in Figure 22.

The RAI Institute released the first open-source end-to-end training pipeline for Boston Dynamics’ Spot using
Isaac Lab, along with a method to close the sim-to-real gap via evolutionary strategies (Miller et al., 2025),
achieving zero-shot transfer from simulation to hardware with running speeds up to 5.2 m/s, nearly three
times the default limit. Their approach closely models hardware-specific dynamics, including actuator delays
and joint torque limits, using custom actuator classes in Isaac Lab to enable robust and dynamic real-world
performance. Wen et al. (2025) optimized a style-imitation objective with constraints to learn locomotion
for quadruped and humanoid from imperfect demonstrations. Arm et al. (2025) explored how to develop
and validate a locomotion controller and a base pose controller in gravity environments from lunar gravity
to a hypothetical super-Earth. Cathomen et al. (2025) proposed an unsupervised skill discovery method to
learn various locomotion skills for a quadruped without explicit task-specific rewards. Li et al. (2025) created
an open-source multi-agent soccer environment and use multi-agent reinforcement learning (MARL) to train
decentralized policies for sophisticated team play behavior. Arnold et al. (2025) used Isaac Lab to train an RL
controller for a wheeled quadruped capable of transportation of materials over challenging terrains.

Although locomotion can be learned with purely proprioceptive information, incorporating exteroceptive
feedback from sensors such as LiDARs or cameras can greatly increase the capabilities of learned controllers.
For example, Rudin et al. (2025) trained a quadruped robot to climb obstacles and traverse unstructured
terrain using depth images as input to an end-to-end visuomotor policy. It first applies reinforcement learning
on a simplified terrain representation, then distills the policy with depth-image observations, and finally
performs RL fine-tuning. The required algorithms are tightly integrated with Isaac Lab through the RSL-RL
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Figure 22: Platforms using Isaac Lab for learning robust and agile locomotion. Top to right: (a) Boston Dynamics
Spot (Miller et al., 2025), (b) Magnecko (Arm et al., 2025), (c) LEVA (Arnold et al., 2025), (d) ANYmal (Rudin
et al., 2025), and (e) RAI UMV (RAI Institute, 2025).

library (Schwarke et al., 2025). Bjelonic et al. (2025) investigate bridging the sim-to-real gap for multiple
legged robots by employing evolutionary algorithms for system identification, tuning simulation parameters to
better match real-world robot trajectories.

Beyond legged locomotion, Isaac Lab has also been applied to wheeled platforms, such as the Ultra Mobility
Vehicle (UMV), developed by the RAI Institute (Figure 23). UMV enhances the bicycle form with a custom
jumpingmechanism, enabling both efficient wheeled locomotion and dynamic legged behaviors, such as hopping,
flipping, and obstacle clearance. Achieving these behaviors requires accurate modeling of wheel–ground
dynamics and the use of domain randomization to capture the uncertainties of high-energy impacts. Isaac
Lab supports both aspects, allowing UMV to deploy RL policies with robust sim-to-real performance. This
demonstrates how Isaac Lab facilitates high-performance mobility research on robotic systems that extend
beyond conventional legged designs (RAI Institute, 2025).

6.2. Whole-body control

Whole-Body Control (WBC) considers the robot as a single, integrated system, enabling simultaneous coordi-
nation of locomotion, manipulation, and environmental interaction across all available degrees of freedom.
This holistic approach allows robots to perform complex, multi-objective tasks—such as walking while carrying
objects, stabilizing against external forces, or adjusting posture in real time to maintain balance—making WBC
essential for deployment in unstructured and dynamic environments. However, achieving effective WBC in
practice presents significant challenges. It requires resolving multiple, often competing objectives (e.g. balance
vs. manipulation accuracy), handling kinematic and dynamic constraints, and managing the interactions
between subsystems such as arms, legs, and torso. Additionally, WBC must be robust to modeling inaccuracies,
sensor noise, and latency in perception and actuation. Despite these complexities, recent advances have
accelerated progress in the field. Learning-based methods, motion retargeting from human demonstrations,
and task prioritization strategies are increasingly integrated into modern WBC pipelines. Isaac Lab has further
enabled scalable development and evaluation of WBC policies, offering high-fidelity simulation, physics realism,
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Figure 23: Left: The ANYmal robot interacting with the rocks by using the robot’s foot (Arm et al., 2024).
Right: Boston Dynamics eAtlas robot to perform a wide array of athletic skills, sourced from diverse human
motion data, including video and motion capture (RAI Institute, 2025).

and seamless deployment on real-world hardware.

Building on the idea of leveraging humanoid motion datasets for general-purpose control, He et al. (2025)
propose a policy distillation framework that unifies different control modes under a single WBC policy. A
remake of the HOVER framework with Isaac Lab (Biswas et al., 2025) enhances the original implementation
with extensive Sim2Sim and Sim2Real evaluations, demonstrating the effectiveness of Isaac Lab training in
comparison to the initial implementation in IsaacGym. Sleiman et al. (2024) applied DeepMimic-style training
to long-horizon loco-manipulation tasks, where a quadrupedal robot with an arm learns to interact with
articulated objects like dishwashers and spring-loaded doors. Stolle et al. (2024) introduced a perceptive
pedipulation policy that uses elevation maps to perform local collision avoidance while tracking foot positions,
allowing the robot to safely navigate around dynamic obstacles using contact filtering in Isaac Lab.

On the control side, Portela et al. (2025) developed methods for robust end-effector pose tracking on rough
terrains, while Vijayan et al. (2025) proposed a multi-critic setup for smoother whole-body control through
robust end-effector twist tracking. Dadiotis et al. (2025) developed a learning-based controller for a mobile
manipulator to move an unknown object to a desired position and yaw orientation through a sequence of
pushing actions. The proposed controller for the robotic arm and the mobile base motion is trained using a
constrained RL formulation.

Isaac Lab has also been used to develop RL policies for humanoid platforms such as Boston Dynamics’ At-
las (Boston Dynamics, 2025; RAI Institute, 2025). Leveraging human motion capture and animation data, the
trained policies enable a diverse set of whole-body movements, including army crawling, shoulder rolls, hand-
stand forward rolls, and breakdance motions (Figure 23). This work showcases rich multi-contact behaviors
and demonstrates Isaac Lab’s ability to support RL pipelines that extend humanoid control beyond conventional
locomotion. Together, these works push humanoid capabilities beyond locomotion into rich loco-manipulation
and robust interaction in unstructured environments.

6.3. Navigation

Navigation remains a central challenge in robotics, which requires an integration of perception, planning, and
control across diverse embodiments and environments. Isaac Lab has rapidly become a preferred framework
for learned navigation research, as demonstrated by a growing body of recent works spanning wheeled, legged,
aerial, and even aquatic and space robots, as well as different learning paradigms.
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Figure 24: Sim-to-real navigation with Isaac Lab: (a) ViPlaner (Roth et al., 2024) learns an end-to-end policy
from depth and semantic images. (b) A perceptive Forward Dynamics Model (Roth et al., 2025) trained in
simulation and deployed with a sampling-based planner. (c) An RL navigation policy with a novel memory unit
for spatio-temporal reasoning (Yang et al., 2025).

Figure 25: COMPASS (Liu et al., 2025) trains residual RL policies in diverse simulated scenes for cross-
embodiment mobility. It enables sim-to-real transfer to a mobile wheeled platform , quadruped and a hu-
manoid. Fine-tuning GR00T N1.5 on COMPASS distillation datasets further demonstrates zero-shot sim-to-real
navigation.

Navigation requires policies to have a precise understanding of the environment and the skills of the embod-
iment. For the former, Isaac Lab’s sensor ecosystem (Section 3.2) provides physically and photometrically
realistic modalities at scale, making it well-suited for vision-based navigation. This has enabled works such as
ViPlanner (Roth et al., 2024), which trains an end-to-end semantic local planner purely with data generated in
Isaac Lab (Figure 24), and NaVILA (Cheng et al., 2025), which extends navigation to vision-language-action
models for legged robots. By combining sensors with the accurate PhysX simulation of Isaac Lab, researchers at
ETH have developed RL based navigation policies with a novel recurrent memory architecture for long-range
navigation (Yang et al., 2025). Another line of navigation research focuses on learning forward-dynamics
models for safe motion planning, which can be established using the accurate dynamics provided within Isaac
Lab (Roth et al., 2025).

A unifying factor across these contributions is Isaac Lab’s ability to support multi-platform training through the
manager-based workflow (Section 3.7.1), where switching between environment scenes and robot embodiments
requires only minimal reconfiguration while preserving realistic physical behavior. Building on this foundation,
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a central goal in robot learning is to develop generalizable navigation policies that transfer across embodiments
and adapt efficiently to real-world conditions. COMPASS (Liu et al., 2025), a novel workflow for developing
cross-embodiment mobility policies by integrating imitation learning, residual RL, and policy distillation, has
demonstrated the effectiveness of RL fine-tuning and strong zero-shot sim-to-real performance using Isaac Lab
(see Figure 25). COMPASS can also provide navigation specialist policies for generating large-scale synthetic
datasets in Isaac Lab to train advanced VLA foundation models (e.g. Gr00t N1.5). By leveraging COMPASS,
the USD scenes generated from the real-to-sim NuRec pipeline, such as these example assets, can be used to
further reduce the sim-to-real gap.

6.4. Industrial Manipulation

Industrial manipulation frequently involves contact-rich interactions, where robots must maintain sustained
physical contact with objects and precisely regulate forces and motions under uncertainty. In contrast to
simple pick-and-place operations, such tasks demand careful handling of friction, compliance, and alignment,
and are essential for assembly processes like peg insertion, gear meshing, threaded-fastener mating, and
snap-fit assembly. Isaac Lab provides simulation capabilities, robotic assembly environments, and algorithms
for simulating and learning skills for precise contact-rich manipulation.

Figure 26: Assembly Environments in Isaac Lab (Tang
et al., 2023). Left: Simulation. Right: Real World.

The Factory environments combine SDF-based con-
tact generation, a contact reduction technique, and
a Gauss–Seidel solver for efficient contact simu-
lation (Narang et al., 2022). Policies trained in
these environments can achieve zero-shot sim-to-
real transfer with 83–99% success rates (Tang et al.,
2023). The AutoMate environments extend these
capabilities towards more challenging geometries
and generalizable assembly by combining reinforce-
ment and imitation learning and train multi-task
policies (Tang et al., 2024). The environments include 100 simulation-compatible assembly assets, specialist
policies for ∼80 tasks, and a distilled generalist policy for 20 tasks, all achieving around 80% success rates
both in simulation and in the real world. See Figure 26.

SRSA (Guo et al., 2025) enables continual learning by selecting and fine-tuning pre-trained skills from a task
library based on task similarity, while MatchMaker (Wang et al., 2025) procedurally expands this library for
scalable training. FORGE (Noseworthy et al., 2025) introduces force-aware environments with features such as
adaptive force regulation, thresholding, and randomized dynamics to enable robust execution of precision tasks
like snap-fit insertion and gear meshing under uncertainty. Complementing these approaches, TacSL (Akinola
et al., 2025) uses visuotactile sensing to handle occlusion and lighting variation, enabling precise contact-rich
manipulation with reliable sim-to-real transfer, supported by Isaac Lab’s tactile simulation tools.

In addition to assembly tasks, grasping is also a foundational task in robotic manipulation, requiring precise
coordination between sensing, planning, and control to enable robots to reliably interact with objects in
diverse and often unstructured environments. Isaac Lab advances this capability by providing high-fidelity
simulation, accurate contact modeling, and GPU-accelerated data generation pipelines. vMF-Contact (Shi et al.,
2024) introduced a novel probabilistic architecture for learning hierarchical contact grasp representations
and used Isaac Lab for both data collection and task-level grasp evaluation. GraspDataGen (Carlson, 2025)
(see Figure 27) recently introduced a new Isaac Lab-based pipeline for modular 6 DoF grasp sampling and
evaluation conditioned on object meshes. Several common industrial pinch grippers (Robotiq 2F-85, 2F-140,
RG6, Franka-Panda) are supported out of the box and can be used to sample a dense set of Isaac Lab verified
grasp poses for custom objects. Additionally, GraspQP (Zurbrügg et al., 2025) introduced modular Isaac
Lab environments that extends grasp evaluation to multi-DoF grippers, including ShadowHand, AbilityHand,
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Figure 27: Left: GraspDataGen (Carlson, 2025) exhaustively evaluates 6 DoF grasps in Issac Lab given an
object and gripper asset. Right: GraspQP (Zurbrügg et al., 2025) uses Isaac Lab to evaluate grasp candidates,
synthesized using an analytical formulation, on multi-DoF grippers .

Allegro, and both two- and three-fingered Robotiq grippers.

6.5. Dexterous Manipulation

(a) Simulation (b) Real

Figure 28: Left: DextrAH (Singh et al., 2025) environment training
in simulation. Right: The trained policy deployed in the real world.

Dexterous manipulation with multi-
fingered hands remains challenging com-
pared to standard parallel-jaw grasping
due to the high-dimensional action space
and fine-grained control required for co-
ordinated finger movements and in-hand
object manipulation. While most grasp-
ing systems operate open-loop and pre-
dict gripper poses for simple contact, they
often fall short in dynamic tasks or tasks
with high precision requirements. Isaac
Lab enables the development of advanced dexterous manipulation policies by offering high-fidelity simulation
of multi-DOF hands, accurate contact modeling, and support for rich sensory inputs, including vision and
proprioception. It allows for scalable policy training and deployment of learned dexterous manipulation policies
on real-world robotic platforms through features such as domain randomization and tiled rendering.

DextrAH-RGB (Singh et al., 2025) trained an RL policy on the KUKA arm with an Allegro hand in simulation
that used privileged state information and then distilled this into a network that takes stereo RGB pairs as
input. This is the first system to have shown that an end-to-end network directly operating on raw RGB streams
can control arm and multi-fingered hands, all leveraging the high-quality rendering from Isaac Lab (Figure 28).
More recently, Singh et al. (2025) leveraged Isaac Lab to train depth-based end-to-end policies from scratch
for the DextrAH (Lum et al., 2024; Singh et al., 2025) task.

Perceptive Dexterous Humanoid Control (PDC) (Luo et al., 2025) demonstrated vision-driven whole-body
control of simulated humanoids (shown in Figure 29), closing the perception–action loop through egocentric
visual input. Prior approaches often rely on privileged object states from simulation, limiting the emergence of
human-like behaviors such as active search. The PDC framework addresses this by using egocentric vision and
proprioception only, introducing a perception-as-interface paradigm with visual cues (e.g. masks, 3D markers,
hand indicators) for tasks like search, grasp, placement, and drawer manipulation. Leveraging Isaac Lab’s
large-scale GPU-accelerated simulation, policies are trained via RL with motion priors (Luo et al., 2023), scaling
across procedurally generated kitchens and tabletop tasks. Results show that training directly from pixels,
rather than distilling from state-based policies, led to better generalization and more natural behaviors. This
highlights the power of Isaac Lab as a platform for scalable visual RL in complex loco-manipulation tasks.
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Figure 29: Perceptive Dexterous Control (PDC) (Luo et al., 2025) enables a humanoid equipped with egocentric vision to
search, reach, grasp, and manipulate objects in cluttered kitchen scenes. PDC uses visual perception as the sole indicator of
which hand to use, which object to grasp, where to move, and which drawer to open.

Figure 30: Spatial Memory Task (Steiner et al., 2025). A humanoid in a simulated industrial space (left) and
within a metric-semantic reconstruction built by Mindmap (right) (colored by Principal Component Analysis).
By using the reconstruction, Mindmap generates trajectories that depend on parts of the scene that are outside
the robot’s Field Of View.

Mindmap (Steiner et al., 2025), shown in Figure 30, contributes tools for extending 3D manipulation policies
with spatial memory, including an imitation learning pipeline in Isaac Lab that utilizes a metric-semantic map
built using nvblox (Millane et al., 2024). The authors demonstrate the efficacy of these tools by extending a
state-of-the-art 3D diffusion policy (Ke et al., 2024), and demonstrated significantly improved success rates on
challenging manipulation tasks that require spatial memory.

6.6. Healthcare

Autonomy in healthcare robotics presents unique challenges compared to other domains, such as manipulation,
locomotion, and autonomous driving, due to the need for high-precision, contact-rich interaction with soft
tissue and delicate instruments. Progress in this domain has been limited by the absence of domain-specific
simulation tools capable of capturing the complexities of clinical environments. Simulation has become central
to addressing these gaps, enabling scalable data generation, safe policy training, and sim-to-real transfer. Recent
advances have focused on building high-fidelity digital twins tailored for healthcare workflows, accelerating
the development of intelligent robotic systems across surgical, diagnostic, and teleoperated applications.
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Figure 31: Top Row: (Left) Ultrasound simulation in Isaac for Healthcare. (Right) Digital twin of human
anatomy in NVIDIA Omniverse. Bottom Row: Training fine-grained robotic maneuvers performed during
surgery and the hands-on training exercises used in tabletop surgical curricula.

Isaac Lab powers the simulation backbone of Isaac for Healthcare (NVIDIA), a domain-specific developer
framework designed to accelerate the development of intelligent healthcare robotic systems. It addresses key
challenges such as simulating anatomical and procedural complexity, integrating clinical data, and supporting
robust sim-to-real transfer. High-fidelity digital twins with contact modeling and photorealistic rendering
enable scalable training, synthetic data generation, and teleoperation pipelines essential for surgical autonomy.
As part of a broader stack spanning AI model training, simulation, and clinical deployment, Isaac Lab plays
a central role in healthcare robotics as it supports digital prototyping, hardware-in-the-loop training, and
teleoperation-based imitation learning via XR and peripheral interfaces – making it a versatile platform for
developing dexterous robotic policies using GPU-accelerated reinforcement and imitation learning.

Isaac Lab’s simulation infrastructure is actively enabling key Isaac for Healthcare workflows in robotic surgery,
ultrasound, and telesurgery (Figure 31). In robotic surgery (Moghani et al., 2025), it enables photorealistic,
physics-based simulation of surgical tasks such as needle manipulation and tool control. In ultrasound, GPU-
accelerated ray tracing simulates acoustic wave propagation to produce realistic B-mode images. For telesurgery,
Isaac Lab supports the development and deployment of remote systems across varying network conditions.

Yu et al. (2024) build on Isaac Lab to deliver an enhanced digital twin simulator tailored for surgical robotics,
featuring contact-rich physical interactions, photorealistic rendering in NVIDIA Omniverse, and GPU-accelerated
physics. It provides a benchmark for surgical tasks that represent core subtasks in surgical training. ORBIT-
Surgical enables scalable reinforcement and imitation learning, teleoperation workflows, and synthetic data
generation for active perception. The platform demonstrates successful sim-to-real transfer of learned policies
for zero-shot deployment of needle manipulation skills on a physical surgical robot, highlighting its effectiveness
in accelerating the development of autonomous surgical systems.

Additionally, Ao et al. (2025) is a scalable simulation platform for advancing autonomy in orthopedic surgery,
developed on the Isaac Lab infrastructure. It features anatomically realistic, CT-derived 3D patient models
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and supports ultrasound simulation using both physics-based and generative methods. SonoGym enables
large-scale, parallel training and evaluation across diverse anatomical variations, providing a robust testbed for
ultrasound-guided navigation and anatomical reconstruction.

6.7. Generalist Foundation Models

Foundation models for robotics aim to generalize across tasks, embodiments, and environments by leveraging
large-scale, diverse data during pretraining — similar to advances in vision and language domains. GR00T
N1 (NVIDIA et al., 2025) is an open foundation model for generalist humanoid robots, built as a vision-language-
action model using NVIDIA’s Eagle VLM and a Diffusion Transformer (DiT) to integrate visual, textual, and
action data. It is pre-trained on a mixture of real robot demonstrations, Internet-scale video, and large-scale
synthetic data generated using the Mimic pipeline in Isaac Lab. Synthetic data plays a key role in overcoming
the scarcity of real-world data, enhancing robustness and generalization. The model can be post-trained
with new demonstrations, collected or synthesized in Isaac Lab, for task specialization, and can be further
improved via sim-and-real co-training (Maddukuri et al., 2025). The upgraded GR00T N1.5 improves language
grounding, generalization, and real-world performance using architectural refinements and the FLARE training
technique (Zheng et al., 2025), which introduces action prediction and implicit world modeling objectives.

Given a foundation model, such as GR00T N1.5, we can perform online post-training with RL. While this is
difficult to perform in the real world, Isaac Lab’s high-fidelity rendering and multi-environment setup enables
sample-efficient online post-training to be done safely and efficiently in simulation. This post-training process
can be scaled to a wide range of new tasks with sample-efficient RL techniques (Luo et al., 2024), residual RL,
and learned reward models for dense feedback during online fine-tuning (Zhang et al., 2025). As the field
advances towards real-world RL fine-tuning, this simulation-first approach within Isaac Lab is a crucial part of
the pipeline for ensuring policies are robust and safe before being deployed on physical hardware.

7. Conclusion

Isaac Lab represents a significant advancement in simulation tooling for robotics, unifying high-fidelity physics,
scalable rendering, and modular architecture into a single, extensible framework. Built on NVIDIA Isaac Sim
and leveraging PhysX and RTX rendering, Isaac Lab delivers high-throughput simulation with support for both
direct and manager-based learning workflows. Its key contributions include accurate and performant sensor
simulation and actuation modeling, an extensive collection of environments, and tools for motion generation
and imitation learning, enabling workflows for training foundation models, RL fine-tuning, and large-scale
perception systems. The framework integrates seamlessly with popular learning libraries and adheres to
industry-standard APIs, facilitating rapid experimentation and deployment.

By bridging the gap between performance and flexibility, Isaac Lab is poised to have a profound impact on
both robotics research and industrial development. It provides GPU-accelerated workflows for developing
and benchmarking learning algorithms and offers a scalable and photorealistic platform to simulate complex
robotics systems, enabling safer, faster, and more robust robotics development cycles.

Ongoing development of Isaac Lab includes integration with the Newton physics engine, which will introduce
even greater physical realism, performance and flexibility for challenging tasks. Combined with continued
improvements to rendering, data generation, and scalability, Isaac Lab is positioned to become a central
platform for the next generation of robotics innovation, supporting research at scale and accelerating the path
from simulation to real-world deployment.

8. Future Work and Discussion

To further advance Isaac Lab, a major upcoming milestone is integration with the Newton physics engine — a
GPU-accelerated, extensible, and differentiable simulator offering state-of-the-art solvers for rigid, articulated,

36

https://github.com/newton-physics/newton


Isaac Lab: A GPU-Accelerated Simulation Framework for Multi-Modal Robot Learning

Figure 32: Newton supports multi-physics environments by coupling solvers specialized for different types of
dynamics. Left: A Franka arm simulated using MuJoCo folds cloth simulated with Vertex Block Descent (VBD)
solver(Chen et al., 2024) . Right: An ANYmal robot simulated with PhysX maneuvers through a non-rigid
terrain simulated with Multiple Material Method (MPM) solver(Daviet and Bertails-Descoubes, 2016).

and deformable body dynamics (Figure 32). This addresses key limitations of existing engines in complex
robotic scenarios. Alongside physics improvements, future releases will enhance rendering capabilities through
deeper integration with NVIDIA’s RTX real-time ray tracing technologies, enabling more photorealistic and
physically accurate visuals for vision-based learning. Efforts will also focus on boosting performance and
scalability to support large-scale perception training. Additionally, we aim to build a standardized platform
for policy evaluation and benchmarking across diverse robotic domains. By incorporating a broad suite of
learning-friendly environments, the platform will support rigorous, reproducible evaluation and promote
widespread adoption as a unified framework for advancing generalizable robotic policies.

8.1. Newton Engine and Isaac Lab Integration

Newton is an open-source, GPU-accelerated physics simulation engine explicitly designed for roboticists and
simulation researchers. Developed through a collaborative effort by NVIDIA, Google DeepMind, and Disney
Research, Newton aims to advance robot learning and development by providing a robust, scalable, and extensi-
ble platform for physical AI. Built upon NVIDIA Warp (Macklin, 2022), a developer framework for accelerating
simulation and spatial computing, Newton extends and generalizes Warp’s existing simulation functionality,
integrating MuJoCo Warp as a primary backend. It emphasizes GPU-based computation, differentiability, and
user-defined extensibility, facilitating rapid iteration and scalable robotics simulation.

8.1.1. Key Characteristics and Features

Newton is distinguished by several characteristics that cater to the requirements of modern robotics research:

• Open-Source and Community-Driven: Newton is an open-source project with source code available on
GitHub and distributed via PyPI.

• GPU-Accelerated Performance: Leveraging NVIDIA Warp and CUDA graphs, Newton delivers high-
performance, end-to-end GPU simulations without low-level programming, eliminating CPU bottlenecks
common in older physics engines.

• Extensibility: Newton’s modular design enables easy integration of custom solvers andmodels, supporting
realistic multiphysics simulations with diverse materials like food, cloth, soil, and cables.

• Differentiability: Newton’s automatic differentiation of inputs, states, controls, and parameters acceler-
ates policy training, design optimization, and system identification for efficient, gradient-based robot
learning.

• Unified API: Newton offers a single, consistent programming interface for interacting with various
physical simulations — including rigid bodies, soft bodies, granular material, and cloth — within the
same framework and across multiple solvers.
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Figure 33: The Newton Physics Engine is an open-source, GPU-accelerated simulation engine built upon NVIDIA
Warp, designed for roboticists and simulation researchers. Its architecture separates the Model (non-time-
varying system definition) and State (time-varying physical configuration) for clarity and flexibility, while
various Solvers advance the simulation over time by integrating physics. This design, emphasizing flat data
structures, enables seamless integration with Deep Learning (DL) frameworks like PyTorch and JAX, and
platforms such as Isaac Lab via the omni.newton extension, with key solvers like the MuJoCo Warp built on
the same GPU-accelerated foundation.

• OpenUSD Integration: The engine utilizes the OpenUSD framework, benefiting from its flexible data
model and composition engine to aggregate data describing robots and their environments.

8.1.2. Architecture and Design Principles

Newton’s architecture is structured around a clear separation of concerns, and is designed for flexibility and
interoperability with DL frameworks.

• High-level architecture: Newton organizes simulation around a few core components: newton.ModelBuilder
for constructing models, newton.Model for physical structure, newton.State for dynamic data, and
newton.Solver for advancing simulation. It supports importing URDF, MJCF, and USD assets via
newton.Importer and integrates easily with platforms like Isaac Lab.

• Separating physical model from numerical method: Newton separates the time-invariant physical
model from the time-stepping solver. This allows different solvers to be applied to the same model,
optimizing for various dynamic regimes.

• Flat data over Object Oriented Programming (OOP): Simulation data is represented as tensors and flat
arrays, not deep class hierarchies. This design aligns with ML frameworks like PyTorch and JAX, enabling
efficient vectorization, JIT compilation, zero-copy interoperability where possible and easy integration
into learning workflows.

• No hidden state: All internal state is exposed, giving users full control over memory and computation.
Solvers act like pure functions — data in, data out — with any state mutation made explicit for clarity
and composability.
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• Modular, "take what you need": Newton is modular, from low-level geometry up to full solvers. Users
can integrate only the components they need, supporting both lightweight prototypes and full production
systems.

• Flexible Selection API: Similar to PhysX’s Tensor API, Newton’s Selection API allows creating specialized
views of entities in the scene and enables batched, zero-copy access to all attributes in Model, State, and
Control objects of scene subsets, such as specific robots or manipulators. It supports named attribute
access, joint/link filtering, and custom ordering — making it easy to extend and integrate with ML
pipelines and custom solvers.

8.1.3. Solver Implementations

Newton supports a diverse array of solver implementations including a mix of explicit and implicit methods,
as well as reduced and maximal coordinate approaches, each offering unique trade-offs in terms of accuracy,
memory usage, and performance.

• Canonical Solvers: Out-of-the-box, Newton includes classical solvers such as XPBD (Macklin et al., 2016),
Featherstone (Featherstone, 1984), and Semi-Implicit Euler. These solvers are generally lightweight
implementations of well-established methods as reference for implementers or solver developers.

• New Solvers: An important new development in Newton is the MuJoCo Solver based on the MuJoCo
Warp library, which is a full re-implementation of the MuJoCo (Todorov et al., 2012) algorithms built
using NVIDIA Warp. This provides significant performance gains over previous JAX-based MuJoCo XLA
(MJX) implementations, particularly for complex scenes involving numerous contacts (e.g. dexterous
manipulation, humanoid locomotion), without requiring manual contact pruning. In addition, Newton
will include a dedicated maximal coordinate solver called the Kamino Solver from Disney Research
designed to robustly handle systems with closed loops (Tsounis et al., 2025).

• Solver Extensions: In addition to built-in solvers, many partners are building their simulators on Newton,
such as specialized IPC (Li et al., 2020) solvers for tactile manipulation (Li et al., 2025), and specialized
solvers for cloth dynamics, e.g.: Style3D Solver.

Newton’s solver abstraction supports mixed systems encompassing rigid bodies, cloth, and particle simulations.
Multiple solvers can run independently to manage these diverse dynamics, with ongoing development focused
on achieving two-way coupling for more intricate interactions.

8.1.4. Newton USD as a Staging Schema for USD Physics Standardization

As part of the AOUSD’s initiative to advance USD as a descriptive language for Physical AI, new schemas
are being developed to represent the physical properties of robotic systems in an engine-agnostic manner.
This effort is aligned with Newton’s solver-abstraction API, which also aims to generalize across simulation
backends. Developed alongside the Newton API, the Newton USD schema serves as a staging ground where
generalized simulation parameters are identified and formalized, with the express goal of proposing them for
future inclusion in the USD Physics standard.

8.1.5. Newton Integration with Isaac Lab

Integration of Isaac Lab with the Newton physics engine is currently underway and accessible on Isaac Lab
repository in an experimental feature branch. This early-stage integration supports a subset of robotics
environments, including reinforcement learning tasks for flat-terrain locomotion, manipulation, and vision-
based workflows. These implementations serve as testbeds to evaluate Newton’s performance, stability, and
physical accuracy through representative robotic workflows. As part of this integration effort, we have conducted
both sim-to-sim comparisons against the existing PhysX backend, as well as sim-to-real validation on physical
hardware platforms. These tests aim to characterize policy transferability between simulation engines and
real-world deployment.

Ongoing development will focus on expanding Newton support across the full Isaac Lab feature set — including
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additional sensor and actuator simulation and learning environments — with the objective of achieving feature
parity with the existing PhysX backend in the coming months. This work represents a critical step toward
establishing Newton as the default physics engine for high-fidelity and scalable robotics simulation within Isaac
Lab. Community engagement is encouraged as we refine this integration and continue to ensure robust support
for both research and industrial workflows.

8.2. Policy Evaluation and Benchmarks

8.2.1. Isaac Lab - Arena

Figure 34: The architecture diagram of Isaac Lab
- Arena, a framework and collaborative ecosystem
for accessible and scalable policy evaluation in
simulation.

Isaac Lab – Arena is designed to streamline and scale
robotic policy evaluation. While Isaac Lab’s manager-
based workflow offers powerful configuration capabilities,
achieving end-to-end simulation— from asset preparation
to environment setup and large-scale policy evaluation
— often requires significant manual effort. This leads to
fragmented setups with high overhead, limited scalability,
and a steep entry barrier. Arena introduces a system-
atic, scalable approach to evaluation, built on Isaac Lab.
It provides a robust framework for setting up and exe-
cuting complex experiments with minimal infrastructure
overhead — serving as a launchpad to make advanced
simulation-based experimentation more accessible and
efficient.

The framework supports simplified, composable task def-
initions for easy customization and scene diversification,
as outlined in Figure 34. It includes extensible libraries for
metrics, data collection, and evaluation — starting with
rule-based methods and soon expanding to include neural
and agent-based approaches. Arena enables parallel, GPU-
accelerated evaluations and integrates seamlessly with
data generation, training and deployment frameworks to
support closed-loop workflows. It also includes a growing
library of sample tasks across manipulation, locomotion,
and loco-manipulation.

NVIDIA is actively collaborating with policy developers,
benchmark authors, and simulation partners such as
Lightwheel to co-develop Arena, use it to accelerate their
evaluations, and enable the contribution of their methods and benchmarks back to the community. Isaac Lab –
Arena will be open-sourced on GitHub soon.

8.2.2. Assembly Benchmark

Isaac Lab provides optimized environments for evaluating and benchmarking robotic manipulation policies on
contact-rich tasks. These tasks correspond to a subset of the National Institute of Standards and Technology
(NIST) Assembly Task Board 1 (Kimble et al., 2020). Previous works (Noseworthy et al., 2025; Tang et al.,
2023, 2024) have demonstrated that the policies trained and evaluated in these environments can be effectively
transferred to real robots. A natural next step is to extend these contact-rich environments to cover the full set
of NIST benchmark tasks, further broadening their applicability and impact.
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8.2.3. Dexterous Manipulation Suite

Isaac Lab currently provides a basic manipulation task suite — comprising of lifting, grasping, and reorienting
tasks with the KUKA Allegro hand — available under the dexsuite module. These tasks build on prior works
from DextrAH (Lum et al., 2024; Singh et al., 2025) and DexPBT (Petrenko et al., 2023). Looking ahead,
we plan to significantly expand this suite to include more complex and realistic scenarios across industrial,
logistics, and domestic-service domains. In particular, we aim to target humanoid platforms equipped with
multi-fingered hands, operating in unstructured home environments — thereby broadening the applicability of
Isaac Lab to real-world, high-dexterity tasks.
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C. Version History

This whitepaper will evolve alongside the Isaac Lab codebase. Each version of the document corresponds to
a specific release of the framework, and the following entries summarize the most significant updates. For
detailed updates, please check the Release Notes on GitHub.

Version Summary of Changes

v2.3 (2025-09-30) Initial release of Isaac Lab whitepaper. Covers successor relationship to Isaac Gym,
modular architecture, sensor simulation, teleoperation, and data collection.
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