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Abstract—Intra-thread instruction duplication offers straight-
forward and effective pipeline error detection for data-intensive
processors. However, software-enforced instruction duplication
uses explicit checking instructions, roughly doubles program
register usage, and doubles the arithmetic operation count per
thread, potentially leading to severe slowdowns. This paper
investigates SwapCodes, a family of software-hardware cooper-
ative mechanisms to accelerate intra-thread duplication in GPUs.
SwapCodes leverages the register file ECC hardware to detect
pipeline errors without sacrificing the ability of ECC to detect
and correct storage errors. By implicitly checking for pipeline er-
rors on each register read, SwapCodes avoids the overheads of in-
struction checking without adding new hardware error checkers
or buffers. We describe a family of SwapCodes implementations
that successively eliminate the sources of inefficiency in intra-
thread duplication with different complexities and error detection
and correction trade-offs. We apply SwapCodes to protect a GPU-
based processor against pipeline errors, and demonstrate that it is
able to detect more than 99.3% of pipeline errors while improving
performance and system efficiency relative to software-enforced
duplication—the most performant SwapCodes organization in-
curs just 15% average slowdown over the un-duplicated program.

I. INTRODUCTION

Datacenters and high performance computer (HPC) systems
typically rely on commodity hardware with error checking and
correcting (ECC) codes applied to large memory structures to
increase hardware reliability. While storage ECC detects and
often corrects errors in on-chip memory, it leaves coverage
holes for errors that occur in pipeline structures such as datapath
registers and arithmetic logic. Any thorough protection scheme
must avoid such coverage holes. Efficient pipeline error han-
dling is of particular concern for data-intensive processors, such
as GPUs, due to the emerging importance of these devices for
performance and reliability-conscious users and the large area
that these chips devote to compute logic and pipeline registers.

A straightforward, general, and transparent way to provide
pipeline error detection is to perform each instruction twice,
eventually checking for agreement between the data produced
by the original and shadow instructions. Intra-thread instruction
duplication places the duplicated instruction pair within the
same thread, using regular instructions and existing compiler
mechanisms for scheduling and checking [1], [2], [3], [4]. It
is applicable to any program without programmer intervention.

The major downside of intra-thread instruction duplication is
high performance and energy overheads, stemming from three
primary sources. First, software duplication detects pipeline er-
rors using explicit checking instructions. In Section IV, we show

that these checking instructions lead to as much as 35% dynamic
instruction bloat. Second, instruction duplication increases the
program register usage, potentially limiting the parallelism that
is exposed in a data-intensive processor. Finally, it doubles the
number of arithmetic instructions, which can severely degrade
the performance of compute-bandwidth-limited programs.

The compute-class processors that are used for datacenters
and HPC systems typically provide error detection [5] or
correction [6], [7] for register file storage using ECC codes,
leaving the datapath pipeline unprotected. Register file storage
ECC cannot check for pipeline errors because encoding takes
place after these errors strike, meaning that valid-yet-incorrect
codewords are written back to the register file. This paper
describes and evaluates a novel error code organization called
SwapCodes that builds upon instruction duplication while
allowing the register file error detection hardware to implicitly
detect pipeline errors. SwapCodes is so-named because it swaps
in the ECC check-bits from the duplicate instruction to ensure
that a single pipeline error cannot affect both the data and
check-bits of any codeword. By re-using the register file ECC
bits and checking for errors with the ECC decoder, SwapCodes
avoids the overheads of explicit instruction checking without
adding new error checkers or hardware buffers.

High-reliability systems differ in their efficiency needs and
the amount of chip area and design effort they can devote
to pipeline error detection. Thus, we present a family of
SwapCodes organizations that progressively target the three
sources of performance overheads described above with
differing design complexities. Our specific contributions when
creating SwapCodes are:

e We describe Swap-ECC, a mostly-software approach
to leverage intra-thread duplication and the register file
error detecting hardware for efficient GPU pipeline error
detection with modest hardware changes. We describe two
algorithms (SEC-DED-DP and SEC-DP) that maintain
storage correction for SEC-DED protected register files
while completely avoiding pipeline error miscorrection. SEC
DED-DP works for any SEC-DED code while SEC-DP puts
design constraints on the SEC-DED code to lower overheads.

e We describe Swap-Predict, an organization that extends
Swap-ECC with selective ECC check-bit prediction to
opportunistically improve efficiency. We also describe
the innovations required to predict residue codes for the
mixed-operand-width GPU MAD instruction.



o We present a detailed evaluation of SwapCodes performance
using a modified compiler pass and running on an NVIDIA
Tesla P100 compute-class GPU. The simple Swap-ECC
organization roughly halves the slowdown of instruction
duplication on average, and the most performant Swap-
Predict variant incurs just 15% mean slowdown over the
un-duplicated program.

e We use gate-level fault injection to quantify the resilience
of SwapCodes and demonstrate that SwapCodes detects
more than 98.8% of pipeline errors with a standard
error-correcting register file and more than 99.3% with an
equal-redundancy error-detecting residue code.

II. BACKGROUND
A. Scope and Focus

We describe and evaluate SwapCodes for a data-intensive
GPU-based processor; Figure 1 shows the GPU hardware that
this work targets. GPU programming models run thousands of
threads that each execute the same code. Code is executed in
a unit called a CUDA kernel,1 which is further subdivided into
thread blocks called cooperative thread arrays (CTAs) and
32-wide bundles of threads called warps. These warps execute
on compute cores called the GPU streaming multiprocessors
(SMs). SMs execute using the single-instruction multiple-thread
(SIMT) model, where each 32-thread warp runs in lockstep
but control flow can diverge across threads. A hardware-
implemented control-flow stack ensures that a warp eventually
traverses the execution path of each constituent thread.

There is a limited amount of GPU state, and increasing
the state-per-thread can limit the number of threads that
concurrently execute, harming performance. This observation
leads to two design principles that are respected by SwapCodes.
First, SwapCodes does not reserve shadow state per thread
(unlike software-enforced intra-thread instruction duplication)
so as not to reduce the amount of exposed parallelism.
Second, SwapCodes does not introduce new thread-local
microarchitectural state (such as a buffer to temporarily hold
results), since such state must be replicated for each executing
thread, potentially using a large amount of area.

This paper considers only transient errors that affect a single
computation; such errors are important to HPC systems as they
pose a high risk of silent data corruption [8], [9]. The primary
goal of SwapCodes is to protect the logic and pipeline state in
the GPU SMs. The SM is important to protect, as it has a large
amount of unprotected logic and state and it is heavily utilized
for well-tuned applications. GPU-based error injection shows
that pipeline errors in the SM cause silent data corruption at
the program output up to 20% [10] or 40% [11] of the time.
Recent neutron beam testing campaigns show the SDC rates in
ECC-protected GPUs to be high for some reliability-conscious
users and also demonstrate that software-enforced duplication
reduces the overall GPU silent data corruption rate by roughly
an order of magnitude [12], [4].

IThis paper uses NVIDIA GPU terminology but SwapCodes could apply
to any GPU with an ECC-protected register file.
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Fig. 1: The sphere of replication targeted by SwapCodes. The
main focus is the SM pipeline datapath; structures in the control
path get some incidental coverage but we do not focus on such
errors. Structures in the memory sub-system must be protected
by conventional means (such as storage ECC).

The instruction delivery and memory subsystems are not
protected by SwapCodes. These subsystems deal mainly with
data transmission (rather than transformation) at a coarse
access granularity and consist largely of data buses and SRAM
buffers. Thus, these structures can be effectively protected
by more conventional techniques such as storage ECC and
transmission bus parity [13], and they are not our focus.

B. Error Correcting and Detecting Codes

An error checking and correcting code (ECC) detects and
perhaps corrects errors using redundant check-bits that are
generated algorithmically from the protected data. A data
and check-bit pair is called an ECC word. A valid ECC
word whose check-bits are consistent with its data is called
a codeword, while an invalid pair is called a non-codeword.
The process of generating a codeword from data is called
encoding, and the process of detecting errors in a word and
(possibly) restoring the original data is decoding.

The error detecting and correcting capabilities of a binary
ECC code are often characterized by the maximum number
of erroneous bits that the code is guaranteed to detect and
correct. Compute-class GPU processors conventionally apply
a single-bit-error-correcting and double-bit-error-detecting
(SEC-DED) code to the register file [7], [14], which if used for
detection alone can also function as a triple-bit-error-detecting
(TED) code. An error that exceeds the correction capabilities
of an ECC code, but is within the detection capabilities, will
flag a detected-yet-uncorrected error (DUE). Errors that exceed
the detection capabilities of a code can either happen to be
be detected (resulting in a DUE) or they can lead to silent
data corruption (SDC).

SwapCodes is a general scheme that works with any system-
atic register file error detecting or correcting code.? The pipeline
error detection coverage of SwapCodes depends on the error-
detecting strength of the underlying ECC code, and part of this

2A systematic code is one whose data and check-bit locations are fixed
at design time; most practical ECC codes are systematic [15].



TABLE I: A qualitative comparison of pipeline error detection alternatives.

High-Level Duplication Thread Duplication Instruction Duplication Concurrent Check SwapCodes
Granularity Process/Kernel/Warp Thread Instruction Operation Instruction
Sphere of Rep. Device Pipeline Pipeline Arithmetic Pipeline
S/W Changes Program/Runtime Runtime/Compiler Compiler None Compiler
H/W Changes None None None Arithmetic Control Logic
Transparent No No Yes Yes Yes
Performance Hit Medium—-High Medium—High Medium-High None-Low Low-Medium
Major Issue Data Duplication Thread Usage Performance Complexity/Scope None

work is to quantify its behavior using different register file error
codes. The primary error-correcting code we consider is a Hsiao
SEC-DED code [16], which is able to provide triple-bit error
detection against pipeline errors using SwapCodes. Register
files can also employ a detection-only error code that does
not attempt error correction [5]. Therefore, we also consider
alternate error-detection-only codes called low-cost residue
codes [17], which have been applied to high-reliability register
files in the past [18], [19], [20]. Residue codes operate by taking
the remainder of the data value divided by some odd checking
modulus as the error detecting check-bits. To avoid general
division during encoding and decoding, low-cost residue codes
rely on checking moduli in the form A=[2%-1; aeN] [17].

ECC decoders are generally self-checking checkers [21]
with internal redundancy to properly diagnose latent permanent
errors (such as a stuck-at-0 error at the detected-error output).
Respecting the synthesis constraints of these self-checking
checkers complicates the backend design flow. Accordingly,
SwapCodes is designed to re-use the existing register file ECC
decoder such that it requires no new error checkers.

C. Pipeline Error Detection

Table I shows a qualitative overview of state-of-the-art
techniques for pipeline error detection. High-level duplication
schemes (column 1) check for agreement between the original
program and a duplicate copy at the process [22], [23],
kernel [3], CTA [3] or warp [24], [25], [26] granularity.
While conceptually simple, these techniques halve the GPU
throughput and they require significant system-level architecture
changes. Those that operate at the program granularity modify
system calls and I/O, and those that operate at finer granularities
often must duplicate memory data, potentially complicating
the runtime system and halving device memory capacity.

Inter-thread Duplication. Inter-thread duplication (col-
umn 2) replicates the threads within a warp, splitting each
> 16-thread warp in two [27], [24], [26] and checking for
errors at the memory boundary. This approach seems attractive
for GPUs, as it can leverage the naturally lockstepped execution
within each warp for implicit synchronization between threads.
Also, inter-thread duplication can use fast inter-thread GPU com-
munication primitives (shuffle instructions) for checking [24],
[26]. However, since it doubles the thread count, inter-thread
duplication does not work for programs that use more than
half the maximum thread-count for each CTA. Furthermore,
since inter-thread duplication splits warps, it has difficulty with
programs that use intra-warp communication instructions (such

as shuffles), programs that use complex multithread instructions
(such as the Tensor Core matrix-multiply-and-accumulate [28]),
or that use shared memory for intra-warp communication
assuming unsplit warps. Because inter-thread duplication does
not work for all programs, it is not programmer transparent.

Intra-thread Duplication. Intra-thread instruction duplica-
tion (column 3) performs each instruction twice and checks
for agreement between the original and shadow instructions.
It has been successfully employed for both CPU [1], [2] and
GPU-based programs [3], [4]. The most notable advantage
of this approach is that it does not change the programming
model and it can provide general and programmer-transparent
pipeline error detection. However, software-enforced intra-
thread duplication uses explicit checking instructions, increases
program register usage, and doubles the number of arithmetic
operations, potentially leading to significant slowdowns.

Concurrent Hardware Checkers. An alternative to
duplication-based pipeline error detection is to employ special-
ized concurrent checkers (column 4) to vet operations as they
execute [29], [30], [31], [32], [33], [18], [19], [34], [35], [36].
Such techniques provide low-latency error detection with less
performance overheads than duplication, but they either suffer
from limited scope (protecting only a simplified RISC pipeline)
or the significant design complexity and costs of protecting
each pipeline operation individually. This is problematic for
GPUs, which execute a complex instruction set with many
specialized instructions—for example, the authors of Argus-G
propose concurrent checking for GPUs but note that production
SMs would require un-described novel checkers [33].

SwapCodes. The SwapCodes organizations (column 5) seek
to leverage the best elements of the pipeline duplication
alternatives while avoiding their major limitations. SwapCodes
is a hardware-software collaborative organization that leverages
software-enforced intra-thread duplication and the existing
register file ECC hardware to provide efficient pipeline error
detection with modest hardware changes. Some SwapCodes
organizations also leverage selective ECC check-bit prediction
units to opportunistically improve efficiency while avoiding
the complexity and practical concerns of a fully concurrently-
checked datapath.

III. SWAPCODES FOR PIPELINE ERROR DETECTION

The core concept behind SwapCodes is to duplicate each in-
struction, pairing the data from the original instruction with the
ECC check-bits from its shadow. Swapping the data and check-
bits from the original and shadow codeword ensures that a single
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Fig. 2: Intra-thread duplication maintains a shadow register
space for duplicate state. Swap-ECC stores the data of the
original instruction with the ECC from the shadow instruction.

TABLE II: The Swap-ECC hardware and software changes.

Structure/Program  Swap-ECC Changes

Backend Compiler  Add an intra-thread duplication pass.
Backend Compiler

ISA Meta-Data

Swap-ECC-aware scheduling.
Add a 1b data write enable.

Add a data write enable

Register File .
and muxes for move propagation.

Error Reporting
(Storage Correction)

Augmented error reporting
to separate storage from pipeline errors.

pipeline error cannot affect both the data and check-bits of any
register. This strategy allows the register file ECC hardware to
detect execution errors in structures such as pipeline registers
or arithmetic logic. We describe a family of SwapCodes organi-
zations below that trade off performance and design complexity.
Section III-A describes a basic mostly-software SwapCodes or-
ganization we call Swap-ECC. Section III-B describes two error
reporting algorithms that Swap-ECC can use to maintain SEC-
DED storage correction without risk of misdetecting pipeline
errors. Section III-C describes Swap-Predict, organizations that
optimize Swap-ECC with selective ECC check-bit prediction
units to opportunistically improve efficiency.

A. Swap-ECC: SwapCodes with Intra-Thread Duplication

SwapCodes with intra-thread duplication employs swapped
codewords within each thread to detect both register file storage
and pipeline errors. Figure 2 illustrates this organization, which
we call Swap-ECC, contrasting it with software-enforced
instruction duplication. Intra-thread instruction duplication
executes each instruction twice, maintaining a shadow register
space for the duplicate state. Swap-ECC also executes each
instruction twice, but it overwrites the ECC produced by the
original instruction with the ECC from the shadow instruction.

Table II shows the hardware and software changes needed
for Swap-ECC support. Swap-ECC requires the compiler to
perform intra-thread instruction duplication. The register file
must support the ability to write only the ECC check-bits
back for a shadow instruction. The ISA must be extended
with a 1b meta-data flag to identify shadow instructions for
masked write-back. Finally, end-to-end move propagation
(described later) may require some registers and multiplexers
to propagate the ECC check-bits.

(3) Swap-ECC
ADD R3,R1,R2 //orig.
ADD.ECC R3, R1,R2 //shad.

ISETP.EQ P1,R1,R3
@P1 BRA,U “(.L 1) //check
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L 1:

Fig. 3: An example of intra-thread duplication and Swap-ECC.
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Fig. 4: Swap-ECC need not duplicate move instructions if the full
swapped ECC codeword is propagated back to the register file.

Scheduling. Swap-ECC is able to use compiler-defined
scheduling without any additional hardware or explicit syn-
chronization. The original and shadow Swap-ECC instructions
write different parts to the same register and have a write-after-
write dependence. This dependence is meaningful because it
ensures that a following instruction cannot read a register until
both its data and ECC are produced. The dependence also
prevents the GPU register allocator from inserting instructions
with the same source and destination registers; this is because
the source and destination registers are shared between the
original and shadow instruction with Swap-ECC, making single-
register accumulation impossible. Careful compiler design is
required to ensure that dead code elimination does not remove
the apparently-dead original instruction.

Figure 3 shows code generated for executing and checking
a single add instruction with intra-thread duplication and
Swap-ECC. Intra-thread duplication maintains shadow register
state, inserting code to check for equivalence before memory
or control-flow instructions. This example assumes that some
non-duplicated instruction, such as a memory store, uses the
destination register in following code. Swap-ECC replicates
the add instruction (without single-register accumulation),
writing only the ECC check-bits with the shadow instruction.
Following uses of the Swap-ECC destination register (R3)
must wait for the shadow instruction to complete due to the
write-after-write dependency. Checking then occurs for R3
during any register file read without explicit code.

Register Bypassing. Because GPUs focus on thread-level
parallelism, CPU optimizations such as register bypassing are
less critical or even unnecessary. With many simultaneously
executing threads there is little or no performance benefit
to register bypassing—there are always threads ready to be
executed and peak throughput can be maintained despite the
register writeback latency. Accordingly, this work assumes
that the GPU pipeline does not employ register bypassing.
This is consistent with GPGPUSim, which is inspired by the
NVIDIA Fermi architecture [37]. We discuss the implications



9 9 9
CEVMM? B Data Input ﬁ ECC Check-Bitsl
1/1 1 (storage)
Otherwise 0 (pipe ‘
Conditions __ DUE’? Data Segment SEC or SEC-DED
CE/MM = 0/1 or | Parity Check Decoder
DUE? CE?|  DUE?
Otherwise 0 | ' .

DP Mismatch? (MM?) — [ O—>cE»

DUE’?
Fig. 5: SEC-DED-DP and SEC-DP use a data-parity check to
avoid miscorrecting single-bit compute errors.

RF Data
SRAM 0 Bank 0

RF ECC
SRAM 4 Bank 0

i

<—7bx16T=112b —>{ 16b exira

|€<-32bx4 Threads=128b—>>|

Fig. 6: GPU vector register files are implemented SRAM arrays.
One possible register file organization uses 128b-wide SRAMs;
such an organization may have room for 40b SEC-DED-DP
codewords due to internal fragmentation in the ECC SRAM.

DO

le————— (32+7)bx4 Threads =156b ————>]

Fig. 7: Codeword layout within the register file can space
the data and ECC check-bits so as to avoid any problematic
SEC-DP double-bit storage errors. D: data-bits; C: check-bits.

C2 D1 C3 D2 Co D3 Cl1

for theoretical GPUs with register bypassing in Section VL.

Debugability and Interrupts. As Figure 2b illustrates, Swap-
ECC writes the full destination register with the original
instruction but only the ECC with the shadow. This design
maintains the assembly-level debugability of Swap-ECC and it
simplifies the handling of GPU-based interrupts. Because the
original instruction produces a valid output codeword during
error-free operation, an intervening interrupt can read the value
in the register without triggering a false-positive DUE. The
most obvious example of a GPU-based interrupt that reads a
register at arbitrary points is assembly-mode Cuda—GDB.

Move Propagation. One small optimization we employ for
Swap-ECC is to propagate the full swapped ECC codeword
back to the register file upon register moves, as shown in
Figure 4, rather than decoding the moved register and encoding
it for writeback after it flows through the pipeline. Such move
propagation is a reasonable design choice as it may also
reduce register movement power; if it is employed in GPUs
already then Swap-ECC enjoys its benefits without hardware
changes. This optimization avoids the need to duplicate register
moves; a generalization of this concept (Swap-Predict) for other
operations is presented in Section III-C.

B. Maintaining Storage Error Correction with Swap-ECC

SwapCodes works without any changes to the ECC
decoder or error-reporting subsystem when employed with an
error-detecting register file. Retaining the ability to correct
storage errors without risking miscorrection for pipeline errors
is more challenging, however. No issues arise if the original

instruction is hit by a pipeline error, but if the ECC-producing
shadow instruction suffers from a single-bit pipeline error,
it will erroneously miscorrect the same bit in the actually-
error-free data unless further steps are taken. We describe two
algorithms below (SEC-DED-DP and SEC-DP) that maintain
storage correction for SEC-DED protected register files while
completely avoiding pipeline error miscorrection. SEC-DED-
DP works for any SEC-DED code while SEC-DP optimizes
parity-bit based SEC-DED to possibly lower overheads. We
envision that the designer will select between SEC-DED-DP
and SEC-DP based on the SEC-DED code in use and the
register file design, and we describe their trade-offs below.

SEC-DED with Data Parity (SEC-DED-DP). SEC-DED
with Data Parity (SEC-DED-DP) adds an extra data-parity bit
to the code, generating this parity bit from only the data-bits
(excluding the check-bits). Crucially, the data-parity bit is not
swapped, but rather it is generated by the original instruction.
SEC-DED-DP is able to distinguish between a single-bit storage
error, which is corrected, and a single-bit compute error, which
is flagged as a DUE. The intuition behind SEC-DED-DP is
that a single-bit error in the shadow instruction will manifest
as a miscorrection-causing error in the ECC check-bits of the
swapped codeword, but the data segment will remain untouched.
In contrast, a single-bit storage error will corrupt the data in a
manner that is detectable via the data-parity bit. SEC-DED-DP
allows data error correction only upon a mismatch between
the data parity bit and the data segment; otherwise it raises a
DUE.

This approach maintains the storage correction capabilities
of the un-augmented SEC-DED code, while providing triple-bit
error detection against compute errors and completely avoiding
the risk of miscorrecting compute errors. SEC-DED-DP can
augment any underlying SEC-DED ECC without code changes
or changes to the decoder hardware. Rather, it augments the
error reporting procedure as shown in Figure 5. The CE?
signal indicates that data error correction was attempted® and
DUE? indicates a detectable-uncorrectable error.

GPU vector register files are implemented with SRAMs [38],
and a reasonable organization is to use a separate SRAM
to hold the check-bits for many threads. Figure 6 shows a
register file that uses 128b-wide SRAMs for both data and
ECC. This register file organization already has 16b of internal
fragmentation per 16 threads, so the data parity bit might
be stored without introducing additional redundancy. Using
a separate SRAM for check-bits may be desirable in GPUs
that do not always require ECC protection, as it allows the
ECC SRAM to be power gated. If the GPU register file is not
organized in this way (e.g., if 156-bit wide SRAMs are used to
store both data and ECC), then SEC-DED-DP requires an extra
bit per register, an increase of 2.6%. Alternatively, a small code
change can provide SEC-DED levels of protection without any
added redundancy. We describe such a scheme below.

3Note that CE? should not raise if the decoder corrects an error in the
ECC check-bits and not the data; this case only arises for storage errors (not
pipeline errors) and the decoder will operate as intended.



SEC with Data Parity (SEC-DP). An alternative to adding
an extra data-parity bit for SEC-DED-DP is to downgrade the
register file error correcting code to a SEC code (using only 6
bits of ECC per 32b register) and then append the data parity
bit to fit within the original redundancy of SEC-DED ECC. We
call this scheme SEC-DP; its error reporting logic is the same
as SEC-DED-DP (Figure 5). It is well known that adding a
full parity bit to a SEC code (with parity generated across both
the data and check-bits) provides SEC-DED protection [15].
Accordingly, the SEC-DP data-parity bit can achieve almost
double-bit error detection, and we describe how its double-
bit coverage holes can be closed through careful register file
codeword layout.

The double-bit errors that are missed by SEC-DP are
those that affect a data-bit and an ECC check-bit—if such
an error occurs, SEC-DP will miscorrect an error-free data
bit, potentially causing silent data corruption. Fortunately, the
problematic data-bit and check-bit error pattern does not reduce
the SEC-DP pipeline error coverage, since by construction
a single pipeline error affects only the data or the ECC
check-bits. The problematic pattern can be avoided for storage
errors through careful codeword layout within the register file.
Because GPU vector register files store multiple codewords
to the same SRAM, it is possible to physically separate the
data and check-bits such that a single event is highly unlikely
to affect a data and ECC bit within any codeword, as shown
in Figure 7. Therefore, SEC-DP offers an alternative Swap-
ECC organization that uses careful code design and register
file layout to achieve the same pipeline error coverage as SEC-
DED-DP while fitting in the redundancy of SEC-DED ECC.

C. Swap-Predict: Swap-ECC with Check-bit Prediction

Swap-ECC provides a natural organization to leverage
specialized ECC prediction units in the datapath to oppor-
tunistically avoid shadow instructions for common operations.
Figure 8 shows this organization, which we call Swap-Predict.
Swap-Predict introduces a reduced-width ECC prediction
pipeline alongside the regular datapath. The name Swap-Predict
is inspired by check-bit prediction techniques (such as parity
prediction [39]) that generate the correct check-bits following
a logical transformation for concurrent checking without
wholesale duplication. Check-bit prediction is not speculative,
unlike similarly-named microarchitectural prediction structures.

GPUs execute a complex instruction set with many
variants, including specialized graphics instructions that can be
repurposed for compute workloads [40]. The major advantage of
Swap-Predict over prior concurrently-checked datapath organiza-
tions is that Swap-Predict need not protect all operations. Rather,
Swap-Predict opportunistically accelerates common operations
while relying on Swap-ECC to check difficult-to-predict or
rarely-used instructions. Also, unlike prior concurrent checking
organizations, Swap-Predict requires no new error checkers.

Using binary instrumentation, we observe that the most-
often used arithmetic instructions include fixed-point addition
and fixed-point multiply-add (MAD). Fixed-point addition
and multiply can be predicted using ECC-specific circuits.

Input RF Data 1 RF ECC 2
Main w
Unit
| Modified
"1 Encoder
\4 v
Output RF Datal |RF ECC 2

Fig. 8: Swap-Predict selectively avoids the need for duplication
using specialized ECC prediction units for common operations.
These units form the correct check-bits for the result of an
operation even upon an error in the arithmetic pipeline.

Low-cost residues are the most popular and best-studied code
for arithmetic prediction, and residue predictors are used
both in prior papers [18], [19], [32], [33] and mainframe
computers [29], [30], [32]. Accordingly, we focus on Swap-
Predict with residue codes in this work but discuss the
possibility of using SEC-DED codes later in Section VI. Prior
residue checking approaches assume a single uniform operand
length across all inputs and outputs, but GPU MAD can mix
32b and 64b inputs and it produces 64b outputs. To demonstrate
the full potential of Swap-Predict for GPU datapath protection,
we present a case study of residue prediction and describe
the innovations required to apply it to GPU MAD below.

Case Study: GPU Residue Code Prediction. Residue
codes are well suited for check-bit prediction because they
are closed under modular arithmetic and can be added and
multiplied directly [17]. Low-cost residues use a modulus that
is one less than a power-of-two (A =[2*-1; a€N]) to craft
efficient arithmetic units from the following building blocks.
A carry-save multi-operand modular adder (CS-MOMA) adds
many inputs, propagating each carry-out as the carry-in to the
next computation and outputting the result in the redundant
carry-save format. A logarithmic-delay CS-MOMA uses a
reduction tree of constant-delay end-around-carry carry-save
adders [41]. An end-around-carry carry-propagate adder (EAC
adder) adds two numbers, incrementing the end result if there
is a carry-out. An EAC adder can be crafted from a parallel
prefix adder using an additional level to internally re-propagate
the carry-out signal [42]. The low-cost residue of an N-bit
number can be generated by adding % non-overlapping bit-
slices of the number with a CS-MOMA and an EAC adder [17],
[43]. Residue addition can be performed with an a-bit EAC
adder. Residue multiplication uses a modified partial product
generation algorithm, an a-wide, a-deep CS-MOMA, and an
a-bit EAC adder [41], [42].

GPUs heavily use multiply-add (MAD), which has
sometimes-wider-than-32b inputs—a full 32b MAD multiplies
two 32b operands and adds a 64b addend. Problematically,
instead of having an input residue for the full 64b addend
(IC|p), the register file gives residues for the two 32b
halves (|Cyy|, and |Crow| A).4 This makes existing residue

4We use the established notation [17] x| A to denote x modulo A.
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Fig. 9: A residue arithmetic unit for fixed-point multiply-add
with mixed-width operands, and a modified encoder to generate
32b residues with a sometimes-wider-than-32b datapath. CS-
MOMA: a carry-save multi-operand modular adder tree; EAC
Adder: an end-around-carry carry-propagate adder. Zadj is the
bitwise inverse of Zadj.

TABLE III: Handling Cin and Cout in Figure 9b.

Cout  Cin Signal Adjustment
0 0 000...0 +0
0 1 000...1 +1
1 0 111...0 —1
1 1 111...1 —0

prediction algorithms inapplicable to the operation. To solve
this problem, we derive the proper full input residue from the
two partial residues using Equation 1, where ¢ and ® denote
low-cost residue addition and multiplication, respectively.

C=Cpqg X 2% +CrLow

|C|A=|CHI|A®’232)A®‘CLOW|A )

Correction from partial addend residues to the full value of
|C|, entails the residue multiplication of |Cyy|, with }232| A
and addition with |Cpow|,. Fortunately, 232| A is a perfect
power-of-two for all low-cost residues, making this computation
trivial—the low-cost residues with moduli 3, 7, 15, 31, 63, 127,
and 255 have corresponding correction factors of 1, 4, 1, 4,
4, 16, and 1. Thus, no correction is needed for the full residue
when A is 3, 15, or 255, and the correction for other moduli
can be implemented with wiring. Figure 9a shows a modular
multiply-add unit with addend correction highlighted in yellow.

Residue arithmetic produces the residue of the full output,
but it does not split this residue into the constituent 32b words
that are written back to the register file. We address this issue
by modifying the residue encoder as shown in Figure 9b.
With these modifications, the encoder now serves a dual
purpose—it either encodes the instruction output without
check-bit prediction (Pred? =0), or it recodes the output
into 32b codewords that are written back to the register file
(Pred?=1). For predicting operations with 64b outputs, Zadj
is set to the 32b output segment that is not being written back
at a given time; it is subtracted out to adjust the full predicted
residue (Rz). A second level of adjustment supports carry-out
and carry-in bits. Low-cost residues are encoded with a double
zero, such that the proper adjustment can be formed as shown

in Table III by adding a residue whose bottom bit is set to
the carry-in with every other bit set to the carry-out signal.

IV. SWAPCODES EVALUATION

Our goal is to evaluate the error coverage, performance,
power benefits, and hardware overheads of SwapCodes in a
GPU-based system. We describe our prototypes and methods of
investigation and then present their experimental results below.

A. Experimental Methodology

Modified GPU Runtime and Compiler. We modify
NVIDIA’s production backend compiler (ptxas) to perform
software-enforced intra-thread instruction duplication. Duplica-
tion is performed by doubling each arithmetic operation with
a shadow register space for duplicate instructions. The values
produced by the original and shadow instruction streams are
checked for equivalence before any control-flow instruction,
memory operation, or non-duplication-eligible instruction (e.g.,
atomic operations). This compiler pass is similar to the Base-
DRDYV algorithm from [4], and it is heavily inspired by similar
work on CPU-based systems [1], [2].

We develop specialized backend compilers that emit the
code that a SwapCodes-enabled GPU would run. For instance,
the Swap-ECC backend compiler does not have checking
code, and it respects the behavior and instruction dependencies
described in Section III-A. Swap-Predict builds upon the
Swap-ECC compiler, but it does not need to duplicate
predicted instructions. We do not expect the SwapCodes
hardware changes to dictate the system clock or require any
additional pipeline stages. Therefore, we directly observe
the performance and power of the SwapCodes variants by
running the SwapCodes proxy programs on GPU hardware.
We separate out several Swap-Predict organizations in our
evaluation to show the effect of different ECC predictors.

Data Collection Methodology. We use the Rodinia 2.3
benchmark suite [44], a DOE miniapp (“SNAP” [45]), and
matrix multiplication from the CUDA SDK [46] for eval-
uation.> To measure the performance of each resilience
scheme, we recompile each workload with the appropriate
backend compiler and measure performance directly on a 16GB
PCle-attached NVIDIA Tesla P100 GPU [7]. We obtain the
GPU run time by first executing several warm-up runs and
then extracting and analyzing a GPU execution trace (from
nvprof —--print-gpu-trace) with the kernel launch
times and durations.® We exclude the CPU time and the time
spent copying data between the GPU and host, because this
should not change across the duplication approaches.

We use nvprof --system-profiling on to
measure the power usage of each technique. nvprof averages
power readings over roughly 50 millisecond windows across
the full application—given that kernel run times are typically
shorter than this window and many benchmarks utilize the

3Streamcluster and srad v1 are omitted due to compilation failures, and
nn due to a runtime failure.

6We observe little run-to-run variability in GPU run time estimates so we
do not present confidence intervals for performance.
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Fig. 11: The pipeline error coverage of all SwapCodes variants us-
ing different error detecting codes, with 95% confidence intervals.

GPU for only a small part of the application, most of the
power readings contain little or no GPU activity. We estimate
the active GPU power using the 90th percentile power reading
(which is likely to be a mostly-active power estimation window)
and make rough energy estimates assuming that the GPU power
stays constant at this active power during each kernel execution.

GPU Binary Instrumentation. We use SASSI-like [47]
GPU binary instrumentation tools to observe program behavior
and extract arithmetic values for more accurate error injection.
Our binary instrumentation tools include:

e A duplicated code-mix profiler that accepts metadata from
our modified backend compiler to classify each instruction
and to examine the amount of checking code in the
software-only baseline.

o An arithmetic value tracer to extract realistic data inputs
for gate-level error injection.

Hardware Models and Error Injection. We estimate the
hardware overheads of SwapCodes (especially Swap-Predict) us-
ing Verilog designs synthesized with the Synopsys toolchain [48]
with a 16nm industrial technology library. Automatic register
retiming is used to target a two-stage pipeline with a 2GHz
clock (assuming 50% margin for uncertainty and unmodeled
control circuitry), which is an efficient operating point for the
multiply-add unit. Double-precision floating-point units are
synthesized with a similar two-stage pipeline, but with a halved
1GHz clock.

We perform gate-level error injection on the synthesized
arithmetic units to investigate the error coverage of SwapCodes.
The Hamartia framework [49] is used to flip the output of
a single gate or flip-flop per injection to estimate the effects

of transient errors in logic and pipeline state. We inject
an unmasked single-event error into each unit with 10,000
input pairs—that is, for every input pair, we randomly inject
single-event errors until one corrupts the unit output. We do
not inject errors in the SM control circuitry but note that the
majority of the datapath area is devoted to the arithmetic units
and prior work has shown control errors to generally result
in detectable crashes, not silent data corruption [50], [51].

The severity of arithmetic errors depends on the data inputs
to each unit. Accordingly, we use binary instrumentation to
extract representative input streams for error injection. The
tool traces the inputs of the different arithmetic operations that
we consider; to bound the trace size, we trace only the Rodinia
2.3 programs, target the 2048 lowest-numbered threads on
the GPU, and halt after 100,000 instructions. We then draw
10,000 random input pairs across the traces of all workloads
for error injection into each operation.

B. Pipeline Error Detection Coverage

To quantify the behavior of SwapCodes using different error
codes, we inject gate-level errors into six pipelined arithmetic
units synthesized with a 16nm industry technology library.
Figure 10 shows the error patterns we observe at the output of
the arithmetic units. The errors are classified into three patterns
in increasing order of SwapCodes detection complexity using
a SEC-DED protected register file. SwapCodes can provide
triple-bit error detection against pipeline errors using this
ECC code. Errors with greater than three bits in error are not
guaranteed to be detected, and such errors appear at the output
of some units—especially 64b floating point units—roughly
25% of the time. Despite the lack of detection guarantees,
we quantify the SDC risk of SwapCodes using several ECC
codes below and find it to be small.

Figure 10 shows that the majority of unmasked transient
errors affect only a single bit. This makes intuitive sense—any
error that affects an output register will affect a single bit,
as will any error in a sub-structure that shifts or buffers an
internal signal without transformation. Buffers are common for
the least-significant bits in the final pipeline stage, since these
arithmetic units proceed in a least-to-most significant order and
the least-significant output bits are often completely determined
before the final stage. Also, shifters are relatively prevalent
in the floating-point arithmetic units, which re-normalize the
output of the operation to be IEEE-754 compliant using a
series of shifters and incrementers [41].

Figure 11 shows the SDC risk when using SwapCodes to
detect an unmasked pipeline error with various error codes.
SDC risk denotes the probability that a pipeline error in a
duplication-eligible instruction goes undiagnosed—thus, a
system with no protection has 100% SDC risk and a system
using software-enforced duplication has 0% SDC risk. For
operations with 64b outputs, we consider an error detected if
either constituent output register produces a DUE. SwapCodes
generally has little SDC risk with all considered codes; even
a Mod-3 residue code pushes the SDC risk to <5%, meaning
a >?20x pipeline error rate reduction despite only having 2b
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Fig. 12: The performance of intra-thread instruction duplication and SwapCodes running on an NVIDIA Tesla P100 GPU. The

order of Rodinia programs is the same as in

Figure 13. SW-Dup:

Software-enforced intra-thread instruction duplication.
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Fig. 13: The dynamic instruction bloat of intra-thread instruction duplication and the SwapCodes variants, measured through binary
instrumentation. Programs are ordered by increasing checking bloat. SW-Dup: Software-enforced intra-thread instruction duplication.

redundancy per register. Mod-127 residue codes have the
strongest error detection capabilities, with a worst-case 95%
confidence interval SDC risk of just 0.7%. SEC-DED protected
register files provide triple-bit pipeline error detection using
SwapCodes, and the TED code shows the next-best performance
with an upper bound of 1.20% SDC risk. Neither the effects of a
pipeline error nor the behavior of the register file ECC decoder
depend on which SwapCodes variant is used. Thus the results
from Figure 11 hold for both Swap-ECC and Swap-Predict.

C. Performance, Code Properties, and Power

Performance and Code Properties. Figure 12 shows the
performance of the SwapCodes variants and intra-thread instruc-
tion duplication. Two Swap-Predict organizations are shown—
one with fixed-point add/subtract prediction (‘“Pre AddSub”),
and a more aggressive variant that predicts both fixed-point
add/subtract and multiply/MAD (“Pre MAD”). We also use a
GPU binary instrumentation tool to further investigate the code
properties of each technique. Figure 13 quantitatively evaluates
the dynamic instruction bloat required for each Rodinia 2.3
benchmark. Instructions are classified into those that are not
duplicated by construction (bottom), those that are predicted
and not duplicated (second to bottom), those that are duplicated
(third/horizontal stripes), compiler-inserted control instructions
(fourth/vertical stripes), and checking instructions (top).

The arithmetic mean slowdown for intra-thread instruction
duplication is 49%, with a worst-case slowdown of 99%
(b+tree). Swap-ECC reduces the mean slowdown to 21%
(worst-case 78%, lavaMD) by eliminating explicit checking
code, avoiding the need for shadow register space, and
propagating moved registers without a duplicate instruction.
On average, Swap-ECC reduces the total dynamic instruction
bloat from 91% to 63%. Eliminating checking code saves the
11-35% redundant instructions (relative to the un-duplicated
program) that are required for software-enforced intra-thread

duplication. The Rodinia 2.3 programs are sorted in both
figures according to their checking code bloat; many programs
that require the most checking code (such as srad_v2, pathf, and
needle) see large performance improvements over intra-thread
duplication. Swap-ECC shows a small number of predicted
(and not duplicated) instructions. These are the moves that
are not duplicated due to end-to-end move propagation.

The two Swap-Predict variants avoid the need to duplicate
some arithmetic instructions, reducing the mean slowdown to
16% (Pre AddSub, worst-case 74% for lavaMD) and 15% (Pre
MAD, worst-case 74% for lavaMD). Through prediction, Swap-
Predict reduces the total dynamic instruction bloat to 45%
(Pre AddSub) and 33% (Pre MAD). MAD prediction reduces
the average number of duplicated instructions significantly,
but Figure 12 shows that it only reduces the average
slowdown by 1% relative to AddSub prediction. In many cases
Swap-Predict with AddSub prediction already approaches the
same performance as the un-duplicated program, meaning
that the compiler can effectively schedule the additional MAD
operations and they affect the performance little. The largest
performance improvements from MAD prediction come from
hotspot, backprop, and b+tree, all of which progressively
benefit from more aggressive check-bit prediction.

The worst case slowdown of SwapCodes is for lavaMD,
where even Swap-Predict (Pre-MAD) runs 74% slower than
the un-duplicated program. Figure 13 shows little checking
code in this program, so Swap-ECC offers little benefit over
software-enforced duplication. Discussion in Section VI shows
lavaMD to be floating-point MAD limited and it describes
future work to accelerate programs like it.

Power. Figure 14 estimates the GPU power and energy used
by Swap-ECC for the two high-utilization workloads with 95%
confidence intervals across 66 program runs. Both intra-thread
duplication and SwapCodes have some power overheads, in
the worst case showing 15% increased GPU power. There
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is a relatively small power difference between intra-thread
duplication and SwapCodes, meaning that the energy benefits
of the SwapCodes variants are directly proportional to their
performance improvements. The more notable example of this
is SNAP, which suffers from >80% performance degradation
using intra-thread duplication, leading to >2x energy increases.
In contrast, the slowdown of SNAP with Swap-ECC is 6%,
leading to a worst-case energy increase of only 11%, and Swap-
Predict with MAD prediction has nominal performance and
energy overheads.

D. Hardware Overheads

The hardware-software collaborative nature of SwapCodes
makes its hardware modifications modest and its overheads
manageable. Swap-ECC requires a single-bit ECC write
enable and a 1b ISA field to control masked ECC register
writes. GPU register files use banked SRAM arrays with a
per-lane write-enable for control divergence [38], and masked
ECC-only register writes can be added to the GPU register file
with little additional complexity. GPUs also have a mutable
ISA that changes each generation, relying on just-in-time
compilation to maintain compatibility.

To estimate the logic overheads of the SwapCodes variants,
we synthesize a Verilog model of the necessary hardware
components. Table IV gives the circuit area estimates (in
NAND?2 gate-equivalents) and the relative overhead of the
SwapCodes logic. Overheads are given relative to the original
hardware structure that is augmented or predicted.

End-to-end move propagation (Figure 4) is a reasonable
way to perform moves in a GPU system. If moves are not
performed this way, the mechanism requires some pipeline
registers and multiplexers to propagate the ECC through
the datapath. The modified error reporting procedures for
Swap-ECC with storage error correction also introduce a

TABLE IV: The logic overheads of SwapCodes.

. . Pipe Flip- Area
Unit Bits Stages  Flops Area (NAND2) Overhead
Original Data Path
Add 32 1 96 715 -
MAD 32+64 2 513 9941 -
SECDED Dec. 7 0 0 296 -
Mod-3 Enc. 2 1 34 587 -
Mod-127 Enc. 7 1 39 392 -
Swap-ECC Modifications (Overheads Relative to SEC-DED Decoder)
Move-Propagate 7 0 14 81 +27.39%
SEC-(DED)-DP 2 0 0 67 +22.65%
Swap-Predict Residue Code Prediction Circuitry
Add 2 1 6 42 +5.91%
Add 7 1 21 154 +21.57%
MAD 2 2 12 98 +0.98%
MAD 7 2 49 584 +5.87%
Mod-3 Enc. 2 1 71 1016 +108.84%
Mod-127 Enc. 7 1 81 861 +119.86%

small amount of supplementary logic. The overheads of these
components are small relative to the SEC-DED decoder—taken
together, they use roughly 50% the area of the decoder.

Swap-Predict requires error-code-specific predictors and mod-
ified encoder circuits; we implement the changes required for
residue code prediction with the “Pre MAD” organization. The
Swap-Predict circuits are efficient, representing only a fractional
increase in the datapath area. The relatively large and heavily
utilized multiply-add unit can be predicted especially efficiently,
with < 1% area overheads for Mod-3 MAD prediction. The
modified residue encoder shows the largest relative hardware
overheads, but its absolute size is small such that this overhead
should be minor relative to the datapath as a whole.

There is some non-overlapped latency from the move
prediction muxes and Swap-Predict encoder changes. The
~ 1.5 GHz clock of a compute-class GPU in 16nm technology
is much longer than a cell-delay, and we do not expect
the SwapCodes hardware to have any negative impact on
the operating frequency of a GPU SM. All of our circuits,
including the modified encoders, fit easily within the aggressive
250ps clock period we use with a 50% timing margin.

V. COMPARISON TO INTER-THREAD DUPLICATION

While inter-thread duplication is not a transparent and
general error detection mechanism, it has been used for GPUs
in the past [24], [26], so we evaluate it as an alternative
baseline for those benchmarks where it will run without
programmer intervention.’

Methodology. To implement inter-thread duplication, we
double the number of executing threads using a CUDA runtime
library wrapper that modifies each kernel configuration and then
use a modified backend compiler pass. The modified compiler
adjusts thread-indexing special-register reads to make it appear
as if the original and shadow threads have the same index (and
therefore execute the same code). It also inserts shuffle-based

7We find that inter-thread duplication works for all Rodinia 2.3 programs
used in this paper. It fails on matrix multiply due to the number of threads per
CTA, and it fails on SNAP due to the program’s use of shuffle instructions.

10
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Fig. 16: Swap-Predict performance on an NVIDIA Tesla P100 GPU with plausible future check-bit predictors. The first bar

(“MAD”) is the most aggressive organization that is
and floating-point predictors (“Fp-AddSub”, “Fp-MAD”) follow.

checking instructions for the addresses and values at atomic
memory operations and global memory stores. This duplication
strategy is similar to the Intra-Group-LDS FAST configuration
from [24] and the Intra-Permute configuration from [26], which
is the most aggressive organization that they consider.

Performance. Figure 15 shows the performance of software-
managed inter-thread duplication as well as a theoretical
variant that eliminates checking instructions. In general, both
the maximum (241% vs 99%) and average (113% vs 49%)
slowdowns of inter-thread duplication are worse than our
intra-thread duplication baseline. Eliminating all checking
instructions still suffers worse maximum (114% vs 99%) and
average (57% vs 49%) slowdowns than intra-thread duplication,
ruling out the possibility that the performance of our inter-
thread prototype is limited by its checking implementation.
This shows that the intra-thread duplication baseline used by
this paper is competitive with prior work.

VI. DISCUSSION AND FUTURE WORK

Other Residue Predictors. Section IV-C shows Swap-
Predict to provide compelling average performance improve-
ments by avoiding the need to duplicate the most common
fixed-point operations. The worst-case Swap-Predict slowdown
remains at 74% for lavaMD, however, since this benchmark is
floating-point compute bound. Further innovation is possible
if check-bit prediction were implemented for floating-point
arithmetic. There is some prior work in this area using
residue codes [52], [53], [54], but substantial design effort
remains for SwapCodes adoption. Figure 16 projects Swap-
Predict performance with residue arithmetic units for fixed-
point logic and shift operations (which are predictable [55]) and
floating-point operations. The average and worst-case overheads
improve substantially with floating-point prediction (“Fp-MAD”)
to 5% and 28%, respectively, motivating future work into check-
bit predictors for a wider variety of instructions.

GPUs with Register Bypassing. This work assumes that
the GPU pipeline does not employ register bypassing. In a
theoretical GPU with register bypassing, either bypassing should
occur in a Swap-ECC-aware ECC-protected buffer or constraints
should be enforced to ensure full Swap-ECC error coverage.
One possible place for GPU register bypassing is in the operand
collector, which is a staging area near the register file [37],
[56]. If the operand collector stores ECC-protected data and
it is augmented with Swap-ECC-aware write coalescing, then
following reads could bypass the register file without issue.
Alternatively, if bypassing passes non-ECC-protected data, it

11

fully evaluated in Section IV-C. Other fixed-point predictors (“Other FxP”),

should be disabled for inputs to shadow instructions (and non-
duplicated instructions, such as loads or stores). This limits the
propagation of pipeline errors, maintaining SwapCodes error
coverage. The inputs to original instructions may be bypassed
without issue, because the same inputs will be checked by the
non-bypassed SwapCodes shadow.

Error Recovery. Swap-ECC provides pipeline error detec-
tion, and existing recovery schemes (e.g., checkpoint-restart)
work without change. Swap-ECC detects errors during register
reads, containing pipeline errors and not allowing them to leak
to memory. Such strict error containment may simplify the
design of an efficient higher-level recovery scheme [57].

Alternative Optimizations. SInRG [4] has several hardware
and software optimizations for intra-thread instruction duplica-
tion on GPUs. We leave direct comparison for future work, but
expect Swap-ECC to perform roughly as well as HW-Sig-SRIV
(the most aggressive SInRG organization for many benchmarks).
HW-Sig-SRIV optimizes instruction duplication, but sacrifices
error containment (allowing errors to leak to memory before
detection) and it uses new hardware checkers and buffers.
In contrast, Swap-ECC provides complete error containment
without new checkers or buffers. Swap-Predict maintains these
qualitative advantages with superior performance.

Swap-Predict with SEC-DED ECC. Our Swap-Predict
evaluation uses residue codes for their strong arithmetic error
coverage and efficient hardware implementations. It is also
possible to design SEC-DED prediction units [34], [35], [36],
but operations other than addition/subtraction tend to be
expensive to predict. Our analyses indicate that Swap-Predict
with SEC-DED and addition/subtraction prediction would be
viable, offering 16% average slowdown and sacrificing little
error coverage relative to a residue code.

VII. CONCLUSION

SwapCodes combines software-enforced intra-thread
instruction duplication with a novel error coding scheme
that leverages the register file ECC hardware to safely detect
pipeline errors without sacrificing storage error correction. We
describe SwapCodes variants that differ in complexity and
overheads. Swap-ECC avoids the need for shadow storage or
checking instructions with intra-thread duplication, reducing
average performance overheads to 21%. Swap-Predict adds
selective ECC prediction units to Swap-ECC to avoid the need
to duplicate common operations, resulting in 15% average
slowdown for the most performant organization we evaluate.
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