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Fig. 1. We present a unified framework for real-time radiance field rendering on light field displays, supporting NeRFs (N2LF), 3D Gaussians (G2LF), and
sparse voxels (V2LF) via a single-pass plane sweep. (Left) Render time comparison across view counts on the MipNeRF-360 dataset [Barron et al. 2022],
measured at 512p on an RTX 5090. G2LF and V2LF maintain real-time performance (>60 FPS at N punk=64) beyond 90 views. (Right) Captured results from a
Looking Glass Go display, using a motorized rotational stage, confirm high-quality 3D reconstruction up to 22x speedup over per-view rendering.

Radiance fields have revolutionized photo-realistic 3D scene visualization
by enabling high-fidelity reconstruction of complex environments, making
them an ideal match for light field displays. However, integrating these tech-
nologies presents significant computational challenges, as light field displays
require multiple high-resolution renderings from slightly shifted viewpoints,
while radiance fields rely on computationally intensive volume rendering.
In this paper, we propose a unified and efficient framework for real-time
radiance field rendering on light field displays. Our method supports a wide
range of radiance field representations—including NeRFs, 3D Gaussian Splat-
ting, and Sparse Voxels—within a shared architecture based on a single-pass
plane sweeping strategy and caching of shared, non-directional components.
The framework generalizes across different scene formats without retraining,
and avoids redundant computation across views. We further demonstrate a
real-time interactive application on a Looking Glass display, achieving 200+
FPS at 512p across 45 views, enabling seamless, immersive 3D interaction.
On standard benchmarks, our method achieves up to 22x speedup compared
to independently rendering each view, while preserving image quality.

1 INTRODUCTION

Recent advancements in radiance fields have significantly improved
both the quantity and quality of 3D content. Radiance fields repre-
sent 3D scenes by encoding density and color values across spatial
coordinates and view directions, enabling photorealistic reconstruc-
tions of complex scenes. Neural Radiance Fields (NeRF) have enabled
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continuous view synthesis from sparse input images, making it pos-
sible to reconstruct complex 3D scenes with high precision [Milden-
hall et al. 2021; Miiller et al. 2022]. Radiance fields now encompass
a variety of representations for improving rendering efficiency for
real-time applications, including rasterization-based methods [Kerbl
et al. 2023; Sun et al. 2024] and explicit scene structures [Sun et al.
2022; Takikawa et al. 2021] that avoid dense sampling.

Like other 3D content, radiance fields are most effectively vi-
sualized using 3D displays. Their ability to represent complex 3D
structures aligns naturally with the capabilities of light field dis-
plays, which optically reconstruct the light rays of 3D scenes. Recent
commercially available light field displays offer high spatial and
angular resolution, enabling immersive 3D visualization ([Leia Inc.
2025], [Sony Electronics Inc. 2025], [Looking Glass Factory Inc.
2025]). These displays provide binocular disparity and motion paral-
lax, leveraging human depth perception to allow users to naturally
perceive 3D structures. This integration, however, introduces sig-
nificant computational challenges. First, light field displays require
high-resolution rendering from many (45+) slightly shifted view-
points. Second, generating views from radiance fields, even with
fast rasterization-based methods like Gaussian Splatting, remains
more computationally expensive than traditional graphics pipelines.

Light field displays fundamentally face substantial computational
overhead in rendering due to their unique optical design. Unlike
conventional single-view 2D displays, they require the generation
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of multiple perspective views to reconstruct the full light field, ne-
cessitating a dense array of rays projected at precise angles. This
significantly increases the computational burden compared to single-
view 2D displays. Furthermore, precise optical alignment between
the display panel and the lens array is critical; even minor angular
or spatial misalignment during manufacturing can lead to incorrect
ray-to-subpixel mappings, degrading visual quality (see section 3
for details). These misalignments demand a per-device calibration
process to ensure accurate ray alignment, further complicating the
rendering pipeline.

Radiance fields face inherent computational challenges, particu-
larly due to their reliance on volumetric rendering, where density
and color values must be evaluated along each ray. To reduce these
costs, recent approaches employ explicit/hybrid data structures and
rasterization-based pipelines to accelerate rendering, such as 3D
Gaussian Splatting (3DGS) [Kerbl et al. 2023] and sparse voxels
[Sun et al. 2024]. However, when targeting light field displays, these
methods still require rendering many slightly shifted viewpoints,
making repeated sampling inefficient and redundant. Addressing
this redundancy is essential to enabling real-time radiance field
rendering for light field applications.

In this paper, we present a unified framework for real-time radi-
ance field rendering on light field displays. Our framework supports
a wide range of radiance field representations—including NeRFs,
3DGS, and sparse voxels—within a unified rendering architecture.
The core of our method is a single-pass plane sweeping strategy
that enables efficient view synthesis while preserving image quality.
We implement this framework in three variants: NeRF-to-light-field
(N2LF), 3DGS-to-light-field (G2LF), and sparse-voxels-to-light-field
(V2LF), corresponding to different input representations. We demon-
strate the effectiveness of our approach through an interactive appli-
cation running on a commercial light field display, enabling smooth
and immersive real-time 3D visualization of radiance field. Our GL-
based interactive demo achieves 228 FPS (22x faster compared to
native quilt rendering, see section 5.3) for 45-view, 512x910 light
field images on the BICYCLE scene using a single NVIDIA RTX 5090
graphics card. (see supplementary video)

The contributions of this paper are as follows:

e We propose a unified and efficient multi-view rendering frame-

work for radiance fields for light field displays, supporting

both implicit (NeRF) and explicit/hybrid (3DGS, sparse voxel)
representations without retraining.

Our method achieves real-time performance (>60 FPS for 90+

views, up to 228 FPS for 45 views) by minimizing redundant

sampling through a single-pass plane sweeping strategy.

e We develop an OpenGL-based interactive 3DGS renderer for
a commercial light field display, enabling real-time 3D visual-
ization and achieving a 3.6X speedup over our Python/CUDA
baseline.

2 RELATED WORK

Multi-view rendering. Techniques such as multi-view point splat-
ting [Hitbner et al. 2006], single-pass multi-view rendering [Hiibner
et al. 2007], and unstructured lumigraph rendering [Buehler et al.
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2001], as well as hardware-level instancing methods [NVIDIA Cor-
poration 2025; Unterguggenberger et al. 2020], reduce rendering cost
across nearby views. However, these methods are tailored to tradi-
tional 3D content, such as meshes or point clouds, and are difficult to
apply to radiance fields, where sharing computation across nearby
views remains challenging. Our method addresses this by providing
a unified solution that supports both implicit and explicit represen-
tations, enabling single-pass rendering of high-quality multi-view
outputs.

Depth-guided view synthesis. Classical methods such as depth-
image-based rendering [Fehn 2004], layered depth images [Shade
et al. 1998], and multiplane images [Zhou et al. 2018] synthesize
novel views by projecting RGB-D inputs onto proxy geometry or
discrete depth layers. These efficient methods rely on given depth
and fixed textures, often leading to disocclusion artifacts and limited
geometric fidelity [Sun et al. 2010]. While our approach shares
structural similarities, we operate directly on learned volumetric
representations, enabling accurate reconstruction of complex view-
dependent effects without requiring explicit depth inputs.

Radiance field representations. NeRF introduced continuous volu-
metric scene encoding for novel view synthesis [Mildenhall et al.
2021], prompting numerous efforts to accelerate rendering. Tech-
niques include hash-based feature grids [Miiller et al. 2022], space
decomposition [Chen et al. 2022a; Reiser et al. 2021], and hierarchi-
cal training frameworks [Barron et al. 2022; Tancik et al. 2023]. More
recently, explicit and hybrid representations such as 3DGS [Kerbl
et al. 2023] and voxel-based rasterization [Sun et al. 2024, 2022;
Takikawa et al. 2021] have enabled real-time rendering through
rasterization-friendly pipelines. While these methods reduce the
cost of rendering a single view, they do not directly address the
inefficiency of rendering many closely related views, as required by
multi-view displays.

Multi-view radiance field rendering. Rendering multiple views
from radiance fields is computationally intensive due to high redun-
dancy between adjacent viewpoints. Existing methods typically ren-
der each view independently, leading to inefficiencies in multi-view
or light field applications [Rabia et al. 2024; Stengel et al. 2023; Tran
et al. 2024]. Volume rendering with precomputed ray-to-subpixel
mappings [Chen et al. 2022b; Ji et al. 2025; Yang et al. 2024] reduces
overhead but requires per-device calibration for accurate rendering.
In addition, these methods are not well suited to rasterization-based
pipelines such as 3D Gaussian Splatting, where sorting and blend-
ing overheads hinder real-time performance despite known ray
directions. Our method complements these efforts by minimizing
redundant sampling across slightly shifted views using a unified
framework that supports both implicit and explicit radiance field
representations.

3 LIGHT FIELD 3D DISPLAY

Multi-view displays are designed to deliver binocular disparities at
different viewpoints, providing motion parallax for viewer(s). The
light rays from each microlens converge to specific viewpoints (Fig.
2, left). Such view separation is commonly achieved through optical
elements, including parallax barriers [Lanman et al. 2010], lenticular
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Fig. 2. Ray diagrams of light field displays from the top. Left: Multi-view
display (9-view) and right: Dense-view display with a small manufacturing
misalignment (0.00884°) in the lens array. A 1080p liquid crystal display
paired with a non-slanted lens array is assumed for simplicity.

lenses [Ives 1931], or slanted lenticular lenses [Van Berkel 1999],
attached to the display panel. The rendering process of multiple
viewpoints involves placing perspective cameras in parallel at the
designated viewing distance. After rendering all views, the base
image (i.e., the encoded image shown on the panel) is interleaved
from the rendered views.

Recent commercially available light field 3D displays often trade
spatial resolution for higher angular resolution to achieve smoother
motion parallax (i.e., increased the number of viewpoints). However,
this design choice imposes a significant computational burden: while
more views must be rendered, the display resolution remains fixed,
resulting in substantial underutilization of the rendered data.

Additionally, manufacturing imperfections, such as angular and
spatial misalignments between the lens array and display panel,
further increase computational cost. Even a small angular misalign-
ment, such as a half-subpixel offset (only 0.00884° for a 1080p LCD),
can scramble all viewpoints (Fig. 2, right) [Kim et al. 2015]. Correct-
ing these errors requires a per-device calibration process to estimate
accurate view-to-subpixel mappings, ensuring geometrically correct
3D reconstruction. Although effective, this calibration further in-
creases the number of rendered views and amplifies computational
demands. As a result, modern light field displays often require 45
or more rendered views, posing significant challenges for real-time,
interactive 3D rendering, particularly when dealing with radiance
fields content.

Recent methods reduce the number of ray marches or rasteri-
zation steps by leveraging ray-to-subpixel mappings for efficient
multi-view rendering on light field displays [Chen et al. 2022b; Ji
etal. 2025; Yang et al. 2024]. While these approaches improve render-
ing efficiency, they still rely on per-device calibration and have yet
to generalize to diverse radiance field representations with real-time
performance.

To address these limitations, we propose a unified framework for
radiance field rendering on light field displays. Our method reduces
computational redundancy by minimizing repeated sampling across
minimally shifted viewpoints, while maintaining overall perceived
image quality, and is compatible with various radiance field rep-
resentations. Detailed algorithmic descriptions follow in the next
section.

Real-time 3D Visualization of Radiance Fields on Light Field Displays « 3

N

Focal plane —
A $\ / di

\ Y

v N4 D

/\ T focal D Reference
/ \ 0 / \ forward camera

Fig. 3. lllustration of the 3D display parameterization and the forward
sweeping planes. 0 is base camera field of view and ¢ is 3D display viewing
angle. The reference camera is positioned to cover the entire visible volume
behind the focal plane.

4 RADIANCE FIELDS TO LIGHT FIELD

We first give an overview of our efficient radiance fields to light fields
rendering pipeline in Sec. 4.1 and introduce the shared components
in Sec. 4.2 and Sec 4.3. Later, we adapt our algorithm to various 3D
representations commonly used in radiance fields reconstruction
and novel-view synthesis. The representation-specific adaptations
are described in Sec. 4.4, 4.5, and 4.6.

4.1 Rendering pipeline overview

Given a radiance field and a 3D display viewing setup, our goal is to
render a set of V = (V X Vy) perspective viewpoints derived from
the setup, called light field quilts as illustrated in Fig. 2. A conven-
tional method applies a radiance field renderer V times separately.
However, such a simple approach can slow down rendering up to
V times, which prevents interactive experiences even for a 200 FPS
renderer for a common V=45 light field display.

Our strategy is to reduce computation by approximating the
volume visible to the 3D display by a series of forward-sweeping
planes. Each plane represents a disjoint frustum of the original
volume. We can then composite the sweeping planes into the V
quilt views via an operation that we call swizzle blending, instead
of traversing through the original 3D representation. A single pixel
lookup on the planes corresponds to the rendering result of a ray
segment from the original radiance field, where the latter is more
expensive to compute. Thus the overall rendering time can be largely
reduced as long as we can also render the sweeping planes efficiently.
Next, we introduce the algorithm for sweeping planes in Sec. 4.2
and swizzle blending in Sec. 4.3.

4.2 Sweeping planes rendering

Let’s first define the volume of interest of a 3D display setup, which
is illustrated in Fig. 3’s left panel. We can imagine the 3D display
as a “window” (called focal plane) for the viewers to look into the
virtual world. The center location of the focal plane is defined by
a base camera and a camera-to-plane distance as Dgy¢,1. The size
of the focal plane is derived from the base camera’s field of view
O, Oy. The viewing angles of the the 3D display are defined by ¢x, ¢y
Finally, the visible volume to the 3D display is determine by the
maximum viewing angles.

To create a series of forward-sweeping planes, we use a perspec-
tive reference camera, which is adjusted to cover the maximum

, Vol. 1, No. 1, Article . Publication date: November 2025.



4« Jonghyun Kim, Cheng Sun, Michael Stengel, Matthew Chan, Andrew Russell, Jachyun Jung, Wil Braithwaite, Shalini De Mello, and David Luebke

viewing angle as shown in Fig. 3’s right panel. To this end, we move
forward from the base camera’s pose by a distance:

tan(0.5¢)

D = max D . s 1
forward ke tx.u} focal tan(0.5¢) + tan(0.50;) (1)
and set the field of view of the reference camera as:
D - tan(0.56,
GI,CE{X } = 2- arctan(focal—(k) (2)
Y focal — Dforward

By doing so, we ensure that the volume to display behind the focal
plane is all visible by the reference camera. One limitation is that
some area in-between the V viewing cameras and the focal plane are
ignored. As a workaround, we simply introduce a hyperparameter
Dgpif to move the camera backward: Dgyrward <= Dforward — Dshift-
Future work can improve this by adding another mirrored reference
camera behind the focal plane and rendering in the “backward”
direction, while we find our existing simple workaround can already
achieve satisfactory results.

Finally, the sweeping planes are generated by rendering the scene
primitive’s chunks or volume chunks into the perspective reference
camera. We detail the chunking and rendering methods of different
3D representations in the later sections. The rendered forward-
sweeping planes are denoted as C € R NehunkX (Ps-Ny) X (Ps-N) X3 g
RGB colors and T € RNehunkX(Ps-Ny)X(Ps-Nx) for transmittances,
where Npynk is the total number of chunks, Ny X Ny is a single-
view quilt resolution, and Ps is a resolution scaling hyperparameter
of the planes. The color planes imply that the view-directional color
is only accurate for the central view of the 3D display. We also
experiment with spherical harmonics instead, while we find the
improvement is marginal with much more compute and memory
usage.

4.3 Swizzle blending

We can now render the final quilts by alpha composition, efficiently
using the rendered planes. The quilts Q € RV *VxXNyXNxx3 g 4 oDy
array of perspective views formed by moving the base camera along
its horizon and vertical directions. The camera offsets (Ay, Ay) are
linearly interpolated in the angular domain of viewing angles, and
their principal points (cx, ¢y) always aim toward the focal plane’s
center such that the Ny X N rays from all quilt views converge at
the focal plane. The equations for the x component are given as:

j-1 1 tan(p;)
pi=y(Z——>), Ay =D ‘tan(p;), ¢y = —— 2
j = 9x (Vx—l ) Ax focal “tan(p;) ex tan(0.50y)

2
where j € [1, V4] is the column index to the quilt views, and ¢y
is in normalized image domain (i.e., image border at +1). Given
a normalized pixel x-coordinates u € [0,1] on the j-th column
of quilts, their projected coordinate to the k-th forward-sweeping
planes at distance dy is:

®)

Coordinate of the principal point. ~ Offset from the principal point.
— N —————

, (Dfocal — di) - tan(p;)  + dy - tan(0.560x) - u

W = , L@
(dx — Dforward) - tan(0.56)

The above equations can be extended to y component, similarly.

We use Eq. 4 to project a quilt pixel onto the sweeping planes and
sample C and T via either bilinear or nearest-neighbor interpolation.
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The sampled series of colors ¢, and transmittance values T are
blended into a final pixel color with:

Nehun j<k
c=zk:‘; . (ﬂ;zl Tj) o (5)
Note that the color cg here is already weighted by alpha opacity.
We also find using 8 bits unsigned integer to store C and T leading
to similar blending quality comparing to using 32 bits float. Thus
we use 8 bits by default, which leads to much less memory usage
and faster rendering.
In the following, we introduce the representation-specific adap-
tions of our algorithm.

4.4 G2LF - 3D Gaussians to Light Field

One advantage of a primitive-based representation is that we can
have a similar number of primitives inside each chunk by quantile
binning. For applying quantile binning with 3DGS, we filter Gaus-
sians inside the view frustum of the reference camera and set the
chunking distances at Ngpni+1 linearly spaced percentiles using
the distances of Gaussian centers to the reference camera. The plane
distance dj. of k-th plane is set to the median Gaussian distance of
that chunk. We extend the efficient CUDA rasterizer by [Kerbl et al.
2023] to perform 3D tiling instead of the original 2D tiling with an
additional dimension for the chunks. A Gaussian is assigned to a tile
by its patch index and chunk index. The Gaussians in each 3D tile
are sorted and rendered in parallel, which finally produces the color
and transmittance forward-sweeping planes: C and T. A pipeline
visualization and pseudocode of the entire rendering procedure is
given by Fig. 4 and Algo. 1.

The original 3DGS uses a hard-coded antialiasing filter in pixel-
size unit. Specifically, the variance of the projected 2D Gaussian
on the screen space is always dilated by 0.3 pixel. This causes a
mismatch between the conventional rendering and the sweeping-
planes-based rendering from our reference camera with different
plane resolution scaling factors Ps. We use an adaptive filtering
strength to align our rendering with the conventional rendering by:
2

, Drocal - tan(0.56x) AN ©)

P (Dfocal = Dforward) + tan(0.56%)
where s = 0.3 is the hard-coded number in the original 3DGS imple-
mentation. The equation yields larger filter strength (in the screen
space of the reference camera) when the pixel size of the reference
camera on the focal plane is smaller than the conventional one.

4.5 V2LF - Sparse Voxels to Light Field

The rendering of sparse voxels follow the same principle as the
rendering of 3DGS thanks to its primitive property. We also extend
the CUDA-based sparse voxel rasterizer (SVR) [Sun et al. 2024] in a
similar way as used for adapting to 3DGS. Instead of pre-filtering
the primitives, SVR employs supersampling with anti-aliased down-
sampling to tackle aliasing issue. However, resizing the sweeping
planes can be slow and double the GPU memory usage, especially
with large N¢punk or high Ps. As an alternative, we disable the su-
persampling and apply a low-pass Gaussian filter on the sweeping
planes instead, which is implemented in CUDA and performs filter-
ing inplace without allocating extra memory.
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Fig. 4. lllustration of the G2LF and V2LF algorithm. The Gaussians and
Voxels primitive are first sorted along cameras z-axis and grouped into
chunks such that each chunk has similar number of primitives. Primitives
in each chunk are rasterized onto their middle plane, producing a series of
transmittance and color planes. We use swizzle blending to accumulate the
plane values for each quilt pixel, enabling efficient rendering of the light
field quilt.

Algorithm 1 G2LF/V2LF

P - Input Gaussians or Voxels primitives

H - Quilts and camera parameters

Q, T - Output light field quilt rgb and transmittance buffer

1: d’ « CulledDepth(P) > GS/Voxels z distances to cam.
2: d « FindQuantile(d") > Nchunk plane distances
3 {P]’C} « Sort_and_Chunk(P, d) > Sort & Chunk GS/Voxels
4: Parallel for all k do > Rasterize chunks to midplane
5 Ty, Cr < Rasterize(H, PI’C) > Cache grid values
6: Q,T « Initialize_buffers()

7: for k in 1...N punk do > Swizzle blending
8 U « Quilt2PlaneCoordinate(H, dy) > Eq.4
9: ¢ « interpolate(U, Cy)

10: t « interpolate(U, Ty)

11 O.T— (Q+T0oc),(TOM) > Eq.5
12: end for

4.6 N2LF - NeRF to Light Field

We also adapt our rendering algorithm to fully volumetric repre-
sentations like NeRF. We use the same quantile binning strategy as
employed for 3DGS and sparse voxels to avoid the manual effort
to tune the chunking positions for different scenes and different
viewpoints. To this end, we use the coarse network in NeRF to ren-
der a roughly estimated depth map from the base camera view first
and quantile the depth points to determine the chunking positions.
To render sweeping planes from reference cameras, we ablate the
occlusion term when doing the hierarchical importance sampling
along a ray so that the occluded region can still be sampled. Points
colors and alphas from the final round of the sampling are accu-
mulated into different chunks based on their sampling positions.
Despite the effort, we still observe apparent degradation in qual-
ity of N2LF comparing to using the conventional quilts rendering
with NeRF. We hypothesize that the main reason is due to the fact
that the importance sampler is never trained to render sweeping
planes for quilts. As a result, the sampler parameterized by neural
networks encounters severe out of distribution issues in the case of
N2LF. Designing a specific training method to address this is out of
our current scope and we leave it for future work.
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Table 1. Light field quilt rendering results comparison on the Mip-NeRF360
dataset using various algorithms and their ablations. The results are av-
eraged on 9 scenes where we sample 4 viewpoints to render light field
quilts for each scene (quilt resolution set to V=45, V;,=1, Ny=Ny=512). Ner-
facto [Mildenhall et al. 2021], 3DGS [Kerbl et al. 2023], and SVR [Sun et al.
2024] are used for the baselines whose rendered quilts are served as the
ground truth for N2LF, G2LF, and V2LF, respectively. The FPS indicate the
rendering speed of the entire quilts measured on a NVIDIA RTX 5090.

Method FPST LPIPS| PSNRT SSIM?T
Nerfacto 0.1 serve as ground truth
N2LF (N i =64) 12 0360 2023  0.536
N2LF (N unk=256) 12 0324 2101 0577
N2LF (N yunk=64, Ps=1.5) 06 0280 2031 0545
N2LF (N punk=256, Ps=1.5) 0.6 0244 2113 0.589
3DGS 5.9 serve as ground truth
G2LF (Nunc=64) 127 0311 2489  0.749
G2LF (N_yunic=64, Ps=2) 109 0129 2696  0.820
G2LF (Nepyyni=512) 50 0277 2689  0.831
G2LF (Ngpunk=512, Bi.) 24 0156 2878 0875
G2LF (N uni=512, Ps=2) 34 0084 3071 0924

G2LF (Ngpunk=512, Ps=2, Bi.) 19 0.065 3331  0.950
G2LF (Nepunk=512, Ps=3, Bi.) 15 0053 3477 0958

SVR 8.2 serve as ground truth

V2LF (N junic=64) 133 0344 2363 0.673
V2LF (Ngpunk=64, Ps=2) 104 0153 2697 0793
V2LF (Nopuni=512) 48 0302 2557 0767
V2LF (N juni=512, Bi.) 26 0.182 2851  0.845
V2LF (Ngpunk=512, Ps=2) 26 0099 3106 0908

V2LF (Nepunk=512, Ps=2, Bi.) 17 0072 3387  0.938
V2LF (Nepunk=512, Ps=3, Bi.) 11 0.055 3554  0.950

5 RESULTS
5.1 Evaluation

Dataset. We use the four indoor and five outdoor unbounded real-
world scenes from the Mip-NeRF360 dataset for evaluation. We use
all the train-set cameras for training and sample four view points
from the test set for evaluating the rendering quality.

Base models reproduction. We used Nerfacto [Tancik et al. 2023],
3DGS [Kerbl et al. 2023], and SVR [Sun et al. 2024] as the baseline
models. We directly train with their default hyperparameters on the
Mip-NeRF360 dataset. The standard perspective novel-view results
are (LPIPS 0.379, PSNR 23.64, SSIM 0.678) for Nerfacto, and (LPIPS
0.215, PSNR 27.53, SSIM 0.816) for 3DGS, and (LPIPS 0.186, PSNR
27.36, SSIM 0.822) for SVR. The proposed N2LF, G2LF, and V2LF are
evaluated based on the trained models.

Results on light field quilt. In Fig. 1 (left), the render FPS for vary-
ing number of views is presented using different algorithms. Our
G2LF and V2LF algorithms achieve real-time performance (>30 FPS)
even for over 90 views, enabling an interactive 3D visualization of
the scene on light field displays.

Table 1 presents a quantitative comparison of light field quilts
(Vx=45,Vy=1, Nxy=Ny=512) rendered using various algorithms and
their ablations. As we do not have the ground truth images for the
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Fig. 5. Performance curves of G2LF under various N¢pynk (x-axis) and P
(colors). Some curves have fewer data points due to OOM. The black dash
lines are the FPS and memory usage of the conventional 3DGS render-
ing. More numbers of planes and higher plane resolution both consistenly
improve quality with the cost of more compute and memory usage. The
quality improvement is about saturated at around Np,x=400. Higher P
keep improving the quality but memory usage also increases faster.

quilts, we use the rendering results from the conventional method
to serve as the ground truth for N2LF, G2LF, and V2LF. As dis-
cussed, our method encounters severe out-of-distribution issues
with NeRF’s importance sampler, which is parameterized by an
MLP. This results in noticeable degradation of N2LF, despite being
several times faster. On the other hand, we demonstrate faithful
light field rendering results with G2LF and V2LF, comparable to
their slower conventional counterparts: 3DGS and SVR. The num-
ber of chunks N¢punk, plane resolution scale Pg, and interpolation
methods (nearest-neighbor as default; ‘Bi.’ for bilinear) are the most
important knobs, which trades speed for quality. With moderate
rendering quality drops of G2LF and V2LF, we achieve interactive
frame rates for light field quilts rendering.

Increasing the resolution in z (Ngpunk) and xy (Ps) camera axis can
approach baseline quality at increasing computational cost. As an
example, the rendered results in Fig. 12 confirm that our algorithms
produce accurate perspective views in real time (see supplemen-
tary materials for more rendered results). Increasing the number
of chunks trades FPS for improved render quality. Additionally,
sampling at a 1.5x higher grid resolution per plane (indicated as
‘highest’) improves image quality by reducing interpolation errors
during the Swizzle. Performance curves in Fig. 5 show extensive vari-
ations of G2LF with different number of chunks and plane resolution
scales, both of which consistently mitigate difference with the slow
conventional rendering. We show comprehensive ablation studies
of various important aspects using G2LF and discuss their results in
the captions—ablating spherical harmonic in Fig. 6, comparing uint8
and fp32 in Fig. 7, showing affect of adaptive anti-aliasing filter in
Fig. 8, comparing different interpolations in Fig. 9, and different
quilts setup in Fig. 10.

5.2 Captured Results

We captured the displayed light field results for several algorithm
variants using a Looking Glass Go display and a Google Pixel 9 Pro
(f/2.8, 1/50s, ISO 100), as shown in Fig. 14. The display was mounted
on a motorized rotational stage, and viewpoints were uniformly
sampled across the horizontal range (—18.5° to +17.5°) at 1.5° inter-
vals. The brightness of the captured images was adjusted linearly
for visualization. The video results confirm that our method enables
high-quality 3D reconstruction with accurate angular consistency
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Fig. 6. Comparison of swizzle blending with color or spherical harmonic
(SH) for more accurate view-dependent colors. The quality improvement is
relatively minor comparing to using more chunks or higher plane resolution
(Fig. 5). However, the FPS drop down and the increase in memory usage is
significant. We thus disable this feature as the default setup.
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Fig. 7. Comparison of using uint8 and fp32 to store the sweeping planes of
G2LF (Ps=2). The PSNR is almost identical while the run time and memory
usage is largely reduced. The uint8 have one more data point with more
Nchunk thanks to its less memory usage while fp32 encouters OOM.
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Fig. 8. Ablation of using adaptive filter strength or the original hard-coded
one in G2LF (Nchunk=256). The hard-coded one encounters a severe anti-
aliasing filter mismatch when changing the sweeping plane resolution. As a
result, the quality even degraded with higher Ps. The adaptive filter strength
solves this issue so the quality can keep improving with higher Ps. FPS and
memory usage is almost the same for the two version.

across views (see supplementary video). In practice, artifacts visible
in individual rendered views are less noticeable during actual use,
as multiple views blend perceptually within the viewer’s pupil. See
supplementary materials for more captured results.

5.3 Real-Time Interactive 3D Visualization Demo

We demonstrate the application of our method in a dynamic, inter-
active 3D visualization on a light field display. Fig. 11 showcases the
demo running on a desktop equipped with a single NVIDIA RTX
5090 and a Looking Glass 16" Light Field Display. In comparison to
a traditional 2D display, our real-time G2LF implementation allows
users to perceive depth directly through binocular cues, providing
a more intuitive and immersive interaction with 3DGS content. Our
interactive application is implemented in OpenGL/C++ to make use
of texture filtering and blending in hardware during the swizzle
operation. We use 8-bit RGBA framebuffers for both slice buffers
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Fig. 9. Comparing bilinear and nearest-neighbor interpolation on swizzle
blending with N¢punk=64 and Ps € [1, 6]. As expected, bilinear interpolation
achieves better quality but with slower FPS under the same amount of GPU
memory usage comparing to nearest-neighbor interpolation. There is a
crossover point in left figure at around 30.5 PSNR. To render in lower quality,
nearest-neighbor is faster while bilinear becomes faster for achieving higher
PSNR. This is because nearest-neighbor interpolation need higher Ps to
achieve the same quality as bilinear, which becomes the dominant factor of
computation with high Ps. Theoretically, both versions should achieve the
same PSNR with zero FPS with infinite P;.
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Fig. 10. Result of G2LF for different quilt setups. The default setup is
Ps=2, Nehunk=128, =35, ¢y:0, Nyx=Ny=512, Vx=45, V=1 with nearest in-
terpolation and uint8. (Top) For different viewing angles ¢y, the FPS and
memory usage difference is trivial, while the quality keep going down for
covering more extreme angles. (Middle) The FPS and memory is about pro-
portional to the resolution of each view on quilt. The quality difference is
relatively minor with slightly better results when rendering higher resolu-
tion quilt views. (Bottom) Similarly, increasing the number of quilt views
increases runtime and memory, while PSNR remains similar due to denser
sampling within the same viewing range.

and the 45-views 4K x 4K quilt. Our OpenGL implementation mostly
follows our description in Alg. 1. One difference is that we switch
the order of quantile computation and sorting to sort all primitives
in one pass upfront. From the rendered quilt we apply interlacing
provided by the LookingGlass Bridge SDK before sending the frame
to the swap chain.

The OpenGL implementation achieves comparable image qual-
ity to the Python/CUDA implementation presented in Tab. 1, but

Real-time 3D Visualization of Radiance Fields on Light Field Displays « 7

Fig. 11. Real-time interactive 3D radiance field demonstration on a Looking
Glass light field display, enabling users to dynamically change viewpoints
and visualize radiance fields in a 3D space (see supplementary video).

achieves better computational performance due to higher GPU uti-
lization. Compared to the Python/CUDA baseline, the speedup is ap-
proximately 3.6X on average across tested scenes (N punk=64, Ps=1,
measured on NVIDIA RTX 5090). Our GL implementation scales
well across varying number of chunks. In our tests N =64 to
Nchunk=128 provide a sweet spot in terms of performance. Although
higher numbers of chunks result in slightly higher image quality
metrics the quality increase diminishes when perceived on the light
field display (see supplementary video). Lower values than 32 slices
can result in noticeable discrete depth layers for surfaces close to
the camera and should be avoided.

6 DISCUSSION

Framework Versatility. Our unified framework supports a wide
range of radiance field representations, including all existing and
future NeRF variants, as well as explicit formats like 3D Gaussians
and voxels, without the need for retraining. It is compatible with all
types of light field displays, from 3D displays with head-tracked ren-
dering to integral imaging systems offering vertical parallax. Unlike
methods limited to a fixed set of view directions, our slice-based ap-
proach enables fast reconstruction from arbitrary viewpoints within
the supported viewing angle.

Limitations and Future Work. One of the main limitations of our
approach is the increased memory usage due to the intermediate
slice-based representation, which is more demanding than direct
rendering methods. Future work may explore reducing this memory
footprint, for example by employing hardware-accelerated compres-
sion or more compact data layouts. An alternative direction involves
investigating implicit representations of view-dependent slice in-
formation, which could further improve storage efficiency while
maintaining rendering quality. Additionally, blending performance
is inherently tied to the number and resolution of slice planes. While
more slices enable finer volumetric detail, they also incur higher
computational cost. Since the ultimate output is constrained by the
characteristics of physical light field displays (e.g., limited angular or
depth resolution), future optimization could benefit from adapting
the slice structure to better match the display-specific capabilities
and perceptual requirements.

, Vol. 1, No. 1, Article . Publication date: November 2025.
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Fig. 12. Evaluation of the rendered BicycLE scene from the MipNeRF-360 dataset [Barron et al. 2022]. (Top) Visual comparisons between the ground truth,
baseline models, and our proposed methods. (Bottom) Light field quilt rendering results using different algorithms.
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Fig. 13. Close-up comparison of the BoNsAl and GARDEN scene at the (top) left-most (View 45) and (bottom) right-most (View 1) viewing angle. Increasing the
number of chunks minimizes depth discontinuity errors.
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Fig. 14. Captured results of KiTcHEN scene from multiple algorithm variants on a Looking Glass Go display, demonstrating accurate multi-view consistency
and high-quality 3D reconstruction under real light field display conditions. Artifacts in individual views are less noticeable on the display, as multiple views
perceptually blend within the viewer’s pupil. More captured results are shown in the supplementary materials.

, Vol. 1, No. 1, Article . Publication date: November 2025.



	Abstract
	1 Introduction
	2 Related Work
	3 Light Field 3D Display
	4 Radiance Fields to Light Field
	4.1 Rendering pipeline overview
	4.2 Sweeping planes rendering
	4.3 Swizzle blending
	4.4 G2LF – 3D Gaussians to Light Field
	4.5 V2LF – Sparse Voxels to Light Field
	4.6 N2LF – NeRF to Light Field

	5 Results
	5.1 Evaluation
	5.2 Captured Results
	5.3 Real-Time Interactive 3D Visualization Demo

	6 Discussion
	References

