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Fig. 1. A rendered image of an inkwell. The cutouts demonstrate quality using, from left to right, GPU-based texture formats (BC high) at 1024 × 1024
resolution, our neural texture compression (NTC), and high-quality reference textures. Note that NTC provides a 4× higher resolution (16× texels) than BC
high, despite using 30% less memory. The PSNR and FLIP quality metrics, computed for the cutouts, are shown above the respective images. The FLIP error
images are shown in the lower right corners, where brightness is proportional to error. Bottom row: two of the textures that were used for the renderings.

The continuous advancement of photorealism in rendering is accompanied
by a growth in texture data and, consequently, increasing storage and mem-
ory demands. To address this issue, we propose a novel neural compression
technique specifically designed for material textures. We unlock two more
levels of detail, i.e., 16× more texels, using low bitrate compression, with
image quality that is better than advanced image compression techniques,
such as AVIF and JPEG XL. At the same time, our method allows on-demand,
real-time decompression with random access similar to block texture com-
pression on GPUs, enabling compression on disk and memory.
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The key idea behind our approach is compressing multiple material tex-
tures and their mipmap chains together, and using a small neural network,
that is optimized for each material, to decompress them. Finally, we use a
custom training implementation to achieve practical compression speeds,
whose performance surpasses that of general frameworks, like PyTorch, by
an order of magnitude.
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1 INTRODUCTION
In recent years, the visual quality of real-time rendering has been
approaching the levels of VFX and film productions, giving rise
to powerful new workflows, like virtual production [59], which
are transforming filmmaking. These improvements in quality have
been achieved through the adoption of methods used in cinematic
rendering such as physically-based shading for photorealistic mod-
eling of materials [10], ray tracing [56, 70] and denoising [24, 75]
for accurate global illumination, and technologies like Nanite [71]
that render compressed micropolygons, thus enabling a significant
increase in geometric detail.

Although there is a greater convergence of rendering techniques
between cinematic and real-time applications, content creation
workflows remain largely different. In order to limit storage size,
games often use specialized practices for texturing models, which
can require significant effort, for example, reusing content through
instancing, layering tiled materials, or using procedural effects. In
spite of these efforts, games typically present blurry, magnified tex-
tures close to the camera. Furthermore, some of these techniques
are not applicable to uniquely parametrized content, such as pho-
togrammetry, usage of which is a growing trend in games today.
One of the main obstacles for achieving the next level of realism in
real-time rendering is limited disk storage, download bandwidth,
and memory size constraints.

While texture storage requirements in real-time applications have
increased significantly, texture compression on GPUs has seen rela-
tively little change. GPUs still rely on block-based texture compres-
sion methods [45, 55, 82], first introduced in the late 1990s. These
methods have efficient hardware implementations and desirable
properties like random access and data locality. They can achieve
high, near lossless quality, but are designed for moderate compres-
sion ratios, typically between 4× and 8×. They are also limited to a
maximum of 4 channels, while the number of material properties
in modern real-time renderers commonly exceed this limit, thus
requiring multiple textures. The main improvement to texture com-
pression in recent years has been meta-compression for reduced
disk storage and faster delivery [30], but this requires transcoding
to GPU texture compression formats.
On the other hand, the field of natural image compression is

making significant strides in the lower bitrate regime. In recent years,
newweb image formats have been proposed [2, 13] that significantly
improve upon previous standards, like JPEG [80]. Meanwhile, the
scientific community has been developing neural image compression
methods [7, 14, 43], incorporating non-linear transformations in the
form of neural networks, to aid compression and decompression.
These methods significantly improve upon the perceptual quality
of compressed images at extremely low bitrates, but typically offer
modest distortion metrics improvements. They also require large-
scale image data sets and expensive training, and are not suitable
for real-time rendering due to their lack of important features, such
as random access and non-color material properties compression.
In this work, we tackle the problem of reducing texture storage

by integrating techniques from GPU texture compression as well as
neural image compression and introducing a neural compression
technique specifically designed for material textures.

Using this approach we enable low-bitrate compression, unlock-
ing two additional levels of detail (or 16× more texels) with similar
storage requirements as commonly used texture compression tech-
niques. In practical terms, this allows a viewer to get very close to
an object before losing significant texture detail. Our main contri-
butions are:

• A novel approach to texture compression that exploits redundan-
cies spatially, across mipmap levels, and across different material
channels. By optimizing for reduced distortion at a low bitrate,
we can compress two more levels of details in the same storage as
block-compressed textures. The resulting texture quality at such
aggressively low bitrates is better than or comparable to recent
image compression standards like AVIF and JPEG XL, which are
not designed for real-time decompression with random access.

• A novel low-cost decoder architecture that is optimized specifi-
cally for each material. This architecture enables real-time per-
formance for random access and can be integrated into material
shader functions, such as filtering, to facilitate on-demand de-
compression.

• A highly optimized implementation of our compressor, with fused
backpropogation, enabling practical per-material optimization
with resolutions up to 8192 × 8192 (8k). Our compressor can
process a 9-channel, 4k material texture set in 1-15 minutes on an
NVIDIA RTX 4090 GPU, depending on the desired quality level.

2 PREVIOUS WORK
In this section, we first review traditional texture compression (TC),
techniques used in contemporary GPUs. Subsequently, we present
a brief overview of natural image compression that uses entropy
coding and its recent development based on deep learning. Lastly,
we examine recent advances in neural rendering that are closely
related to our work.

2.1 Traditional Texture Compression
Delp and Mitchell [18] introduced block truncation coding (BTC),
which compresses gray scale images by storing two 8-bit gray scale
values per 4 × 4 pixels and having a single bit per pixel to select
one of these two gray scale values. Each pixel is stored using 2 bits
per pixel (BPP). This was modified by Campell et al. [11] who used
the 8-bit values as indices into a lookup table of colors, enabling
color image compression at 2 BPP. Their method is called color
cell compression (CCC). Knittel et al. [35] described hardware for
decompressing CCC textures, which was selected due its random-
access nature and simplicity, which made it affordable and fast in
hardware.
The S3 texture compression (S3TC) schemes [82] are clever ex-

tensions of the BTC and CCC and form the basis for most of the TC
methods found in DirectX [45]. The first method of S3TC, which
was later called DXT1 and then renamed to BC1 in DirectX, stores
two colors per 4 × 4 pixels. These are quantized to 5 + 6 + 5 (RGB)
bits. Two additional colors are created using linear interpolation
between the stored colors. Hence, there is a palette of four colors
available per 4 × 4 pixels and each pixel then points to one of these
using a 2-bit index.
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Today, there are seven variants of S3TC in DirectX. These are
called BC1-BC7 and handle alpha, normal maps, high-dynamic range
(HDR), and are using either 4 or 8 BPP. All of these have the ran-
dom access property, since each block of 4 × 4 pixels always are
compressed to the same number of bits.
Munkberg et al. [49] and Roimela et al. [62] presented the first

TC schemes for HDR textures, and both were inspired by the pre-
vious block-based schemes, but adapted those to HDR. BC6H is a
variant for HDR texture compression in DirectX. We omit many
other references on this topic, since HDR TC is not our focus.

Fenney [20] presented a different block-based compression scheme
called PowerVR texture compression (PVRTC), which is used on
all iOS devices. PVRTC decompresses two low-resolution images,
which are bilinearly magnified, and then uses a per-pixel index to
select a color in between the interpolated colors.
Ericsson texture compression (ETC1), which is part of OpenGL

ES, also compresses 4 × 4 pixels at a time but stores only a single
base color, which is then modulated using a trained table of offsets,
which is selected per block [66]. ETC2 is backwards compatible
with ETC1 by using invalid bit combinations, and improves image
quality [67]. ETC1/ETC2 are available in over 12 billion mobile
phones. ASTC [55] is currently themost flexible texture compression
scheme, since it supports low-dynamic range, HDR, and 3D textures,
with bitrates from 0.89 to 8 BPP. This is achieved using larger block
sizes, specific color spaces, and efficient bit allocation. ASTC is
supported on (at least) ARM’s GPUs, the most recent Apple GPUs,
as well as several desktop GPUs. However, there is no support in
DirectX.

2.2 Traditional and Neural Image Compression
Image compression formats that target storage on disk or network
transfer have less restrictive constraints than GPU texture com-
pression. Without the need for random access and strict bounds on
hardware complexity, they can utilize global transforms, as well as
entropy coding methods to target significantly lower bitrates.
Despite its widespread usage, JPEG [80] has been found to pro-

duce noticeable artifacts, such as detail loss, discoloration, and band-
ing, particularly at lower bitrates. This has led to the development of
alternative image compression formats, such as AVIF [13] and JPEG
XL [2], which incorporate algorithmic advancements and prioritize
alignment with human visual perception [1].
The tradeoff between objective distortion and perceptual mea-

surements has been well-studied [8], particularly in the context
of machine learning. Various methods have been proposed to im-
prove optimization for perceptual qualities, such as using features
extracted from a convolutional network [88], the network structure
itself [77], or another network [37]. Non-neural methods have also
been developed to localize perceptually-relevant errors for image
comparison [3].
In recent years, neural image compression methods [5, 61, 73]

have emerged as an alternative to traditional formats such as JPEG
2000 [65], offering improved perceptual quality. These techniques
often use encoder-decoder architectures to create an information
bottleneck, which is then quantized and entropy-coded based on
an entropy model. Rapid evolution has occurred in this area, with

diffuse/albedo normal map ARM displacement map

Fig. 2. An example texture set consisting of a diffuse map, normal map, an
ARM (ambient occlusion, roughness, metalness) texture, and a displacement
map, for a ceramic roof material. Our approach compresses these textures
together. Textures retrieved from https://polyhaven.com/.

advances such as the provision of sideband information to improve
the accuracy of the entropy model [7], the incorporation of gener-
ative models to achieve higher perceptual quality [43], and more
recently the use of attention based networks [14, 40] which were
the first to improve upon both PSNR and perceptual quality over the
new VVC-intra [9] standard, which uses traditional compression
methods.

2.3 Neural Rendering and Materials
Neural rendering [72] is a new field that has emerged recently and
includes approaches that leverage neural methods inside traditional
rasterization or ray tracing based renderers, which is particularly
relevant to our work. Thies et al. [74] proposed a method for higher
quality image synthesis from low quality 3D content, by storing
learned neural features in a texture, which are then sampled and ras-
terized into an off-screen buffer. The final images are then produced
using a jointly-optimized neural renderer.
The idea of using neural latent grids to store spatially-varying

appearance has been adopted by computer vision research, as well
as computer graphics, where it has been used to represent complex
materials and their mipmap chains [36]. Most of these works focus
on modeling materials and their appearance, using representations
that can be significantly larger than traditional 8-bit textures. While
our study focuses on practicality and cost-efficiency in traditional
rendering, it is important to note that our algorithm is also appli-
cable to neural rendering, where it could greatly reduce memory
consumption.
Neural networks have emerged as a popular alternative to dis-

crete grids for signal representation. The predominant architec-
tures are coordinate networks [46], which offer a fully differentiable
and smooth representation, advantageous for 3D computer vision
reconstruction tasks. Coordinate networks frequently employ po-
sitional encoding, a concept originating from language modeling
literature [79]. Instead of passing the input coordinates p directly
to the MLP, this method encodes it as a vector of sin(2ℎ𝜋p) and
cos(2ℎ𝜋p) terms, where ℎ represents an octave. Fourier encoding
has been shown to overcome the low-frequency bias of MLPs [69].
For improved computational efficiency, trigonometric functions can
be replaced by triangle waves [48]. As an alternative to positional en-
coding, trigonometric [64], Gaussian [15], or wavelet [63] activation
functions can be used to increase the bandwidth of each layer. This
property can be used to band limit network parts and interactively
stream only lower frequencies of the encoded content [38].
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Fig. 3. Singular value distribution representing cross-channel correlation
in 20 texture sets selected from diverse materials. The sharp falloff in the
singular values indicates a high degree of correlation across channels.

Storage size is often overlooked in neural representation literature,
with typical coordinate networks requiring more storage to repre-
sent discrete 2D signals than their uncompressed form. For instance,
on the task of image fitting, the original work on positional-encoded
coordinate networks [69] uses a network with 327K parameters to
represent 197K scalar values (a 256 × 256 RGB image). Similarly,
work on periodic activation functions [64] uses 329K parameters to
represent 786K scalar values (a 512 × 512 RGB image). For this rep-
resentation size, both approaches report only a PSNR under 30 dB.
Improving the storage efficiency of these coordinate-based networks
was a key motivation for subsequent work that used grid-based neu-
ral representations compressed using vector quantization [68] or
hash tables [47].

Finally, previous work on neural radiance caches [48] has shown
that it is possible to efficiently embed small neural networks inside
a renderer, enabling training and inference in real time, orders of
magnitude faster than traditional deep learning frameworks. We
build on this work and optimize it further.

3 MOTIVATION
Lossy image compression techniques typically exploit both spa-
tial and cross-channel correlations and, subsequently, quantize or
eliminate weakly correlated information. For example, the BC1 com-
pression format maps all RGB color triplets in a 4 × 4 texel tile to
a single line in RGB space, assuming perfect correlation between
all channels. Other BCx formats use similar assumptions but re-
lax some constraints, such as the allowed number of lines inside
a block. Block compression formats, however, can only compress
textures with up to four channels, while modern renderers typically
use several material properties, including diffuse color, normals
maps, height maps, ambient occlusion, glossiness, roughness, and
other BRDF information. These properties are typically stored as
multiple textures within a group, which we refer to as a texture
set (Figure 2). As seen in Figure 3, there is significant correlation
across the channels of different textures in a texture set. This can
be attributed to both the physical properties of real-world materials
(specularity and albedo are inversely correlated), geometric prop-
erties (displacement, normal maps, edges), as well as the material
authoring process, where an artist may layer, mask, and combine
multiple channels together [51].

Earlier work [84, 85] has noted this correlation, applying it to
dimensionality reduction of material inputs. Besides correlations
across pixels and channels, Zontak et al. [89] have also noted re-
dundancies across multiple scales. In this paper, we derive a neural
compression scheme that builds on these observations and exploits
redundancies spatially, across mip levels, and between all channels
of a texture set.

4 NEURAL MATERIAL TEXTURE COMPRESSION
We represent the texture set as a tensor with dimensions𝑤×ℎ×𝑐 and
our model compresses the tensor without making any assumptions
about the channel count or the specific semantics of each channel.
For example, the normals or diffuse albedo could be mapped to any
channels without affecting compression. This is possible because we
learn the compressed representation for each material individually,
effectively specializing it for its unique semantics. The only assump-
tion we make is that each texture in a texture set has the same width
and height. Some materials can have BRDF properties not present
in other ones, for instance, subsurface scattering color or thickness.
While an alternative approach using a pre-trained global encoder
could potentially achieve faster compression, it would also require
imposing globally pre-assigned semantics for each channel, which
can be impractical for a large set of diverse materials.

Figure 4 illustrates the decoding process, progressing from a com-
pressed representation, on the left, to a decompressed texel, on the
right. Our compressed representation is a pyramid of quantized
features levels, which are typically at a lower resolution compared
to the reference texture. To achieve decompression of a single texel,
feature vectors are sampled from a feature level and subsequently
decoded to generate all channels within the texture set. To facilitate
greater feature decorrelation, the decoder is modeled as a non-linear
transform [6], utilizing a multilayer perceptron (MLP) as a universal
approximator [28]. This MLP is shared across all the mipmap (mip)
levels, which enables joint learning of the compressed representa-
tion and the MLP’s weights, using an autodecoder framework [57].
Specifically, the compressed representation is directly optimized
through quantization-aware training and backpropagation through
the decoder, as opposed to using an encoder.
The following sections describe each stage of decompression in

detail. Later, in Section 6, we show how those assumptions hold
over a diverse set of materials and textures from different datasets,
different formats, and using different material semantics.

4.1 Feature Pyramid
As shown in Figure 4 (a), our compressed representation is a pyra-
mid of multiple feature levels 𝐹 𝑗 , with each level, 𝑗 , comprising a
pair of 2D grids, 𝐺 𝑗

0 and 𝐺
𝑗

1 . The grids’ cells store feature vectors
of quantized latent values, which are utilized to predict multiple
mip levels. This sharing of features across two or more mip levels
lowers the storage cost of a traditional mipmap chain from 33% to
∼ 6.7% or less. Furthermore, within a feature level, grid 𝐺0 is at
a higher resolution, which helps preserve high-frequency details,
while 𝐺1 is at a lower resolution, improving the reconstruction of
low- frequency content, such as smooth gradients.
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Fig. 4. Overview of our method. a) Our compressed representation comprises multiple feature levels, each having two feature grids; a high resolution grid
𝐺0 and a low resolution grid𝐺1 (Section 4.1). The solid circles represent the grid cells accessed for a target texel (in red). b) During training, we simulate
quantization through addition of noise and clipping (Section 4.2). c) During inference and training, we sample the four neighboring feature vectors (orange
circles) from the grid𝐺0 (Section 4.3.1) and bilinearly interpolate features from𝐺1 (hollow gray circle), concatenating them with local positional encoding
(Section 4.3.2) and a normalized level-of-detail (LOD) value for the target mip level. d) Finally, we use a neural network (Section 4.4) to decode the mip level (e).

Table 1 illustrates the feature levels and grid resolutions for a
1024 × 1024 texture set. The resolution of the grids is significantly
lower than the texture resolution, resulting in a highly compressed
representation of the entire mip chain. Typically, a feature level
represents two mip levels, with some exceptions; the first feature
level must represent all higher resolution mips (levels 0 to 3), and
the last feature level represents the bottom three mip levels, as it
cannot be further downsampled.

4.2 SimulatedQuantization
Since we do not use entropy coding, we enforce a fixed quantization
rate for all latent values in a feature grid and only optimize for
image distortion. We simulate quantization errors along the lines
of previous neural image compression techniques [5] by adding
uniform noise in the range

(
−𝑄𝑘

2 ,
𝑄𝑘

2

)
to the features, where 𝑄𝑘 is

the range of a quantization bin on grid 𝑘 . To limit the number of
quantization levels, we clamp features to the quantization range after
updating them in the backward pass. This ensures that both gradient
computations and feature updates are w.r.t. values strictly within
the quantization range. We observed that this approach produces
better results than clamping features in the forward pass, where the
learned features can drift outside the desired quantization range.

Table 1. Compressed representation of a mip chain through feature levels
and low resolution grids for a 1024 × 1024 texture set.

Feature level 𝐹 𝑗 𝐺
𝑗

0 grid resolution 𝐺
𝑗

1 grid resolution Predicted mip levels

0 256×256 128×128 0,1,2,3
1 64×64 32×32 4,5
2 16×16 8×8 6,7
3 4×4 2×2 8,9,10

For each feature grid 𝐺
𝑗

𝑘
, we use an asymmetric quantization

range of
[
−𝑁𝑘−1

2 𝑄𝑘 ,
𝑁𝑘

2 𝑄𝑘

]
, where 𝑁𝑘 = 2𝐵𝑘 is the desired number

of quantization levels. This quantizes a zero value with no errror
by aligning it with the center of a quantization bin [32]. In turn,
this produces better results especially when we quantize to four
levels or less. We set 𝑄𝑘 to 1

𝑁𝑘
and therefore 𝑁𝑘 is the only value

provided during training. Toward the end of the training process, we
stop adding noise to simulate quantization and explicitly quantize
the feature values. The feature values are frozen for the rest of
the training. Then, we continue to optimize the network weights
for 5% more steps, adapting them to the discrete-valued grids. We
also include a comparison between scalar quantization and vector
quantization [78] in our supplementary material (Appendix E).

4.3 Sampling and Concatenation
In this section, we describe the first stage of decompression, which
samples the grids of a feature level and prepares the input to the
MLP, as shown in Figure 4 (c). In this stage, we first select a feature
level based on the desired level of detail (LOD) (Table 1), and then
resample both the grids in the feature level to the target resolution.
In the next section, we describe how grids are resampled by inter-
polating the features at the target texel location. Following this, we
describe our positional encoding scheme that aids in interpolation
and preserving high-frequency details.

4.3.1 Feature Interpolation. Features may be upsampled or down-
sampled depending on the feature level and the target LOD. How-
ever, upsampling the first feature level 𝐹 0 alone presents the main
challenge for reconstruction quality, as it is typically at a much
lower resolution than the input texture. To a large extent, we rely
on the lower resolution of the grids for compression.
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Fig. 5. Positional encoding tiles of 8 × 8 texels. A single texel is represented
by 6+6 scalars, each encoding the horizontal and vertical texel position
inside the tile. The last value is constant in both the horizontal and vertical
encoding.

To achieve real-time decompression performance, we balance
complexity against reconstruction quality by using two different
approaches for resampling the grids. We use a learned interpolation
approach for the higher resolution grid𝐺0 and bilinear interpolation
for the lower resolution grid 𝐺1. In the case of learned interpola-
tion, we concatenate four neighboring feature vectors and rely on
phase information from the positional encoding (Section 4.3.2) to
reconstruct high-frequency details. Concatenation, as opposed to
summation of weighted features, allows the following MLP layers to
combine features differently depending on the texel location. How-
ever, the learned interpolation also increases the cost of the input
layer of the network. The bilinear interpolation of the low resolution
grid was chosen to limit this. We observed that the smooth output
of bilinear interpolation can compliment learned interpolation well
by suppressing banding artifacts resulting from heavily quantized
features.

4.3.2 Tiled Positional Encoding. To improve the fidelity of high-
frequency details, we condition our decoder on positional encod-
ing [46, 79]. We use a more computationally efficient variant of the
encoding [48], which is based on triangular waves, and observe no
quality loss.
Our architecture is not fully coordinate-based since we also use

features stored in low-resolution grids. Therefore, any low-frequency
information can be directly represented by the features and we only
need positional encoding to represent frequencies higher than the
Nyquist limit of the grids. The number of octaves for the encoding
is log2 8, as 8 is the maximum upsampling factor we encounter, i.e.,
when upsampling grid 𝐺1 to a target LOD of 0. Consequently, the
encoding is a tiled pattern that repeats every 8 × 8 texels, as shown
in Figure 5.

Fig. 6. With a low-bitrate model, the choice of loss function can improve
color fidelity or preservation of high-frequency details but typically not both.
Left: Original. Middle: L2. Right: Linear combination of L2 and 1 − SSIM.
Textures retrieved from https://ambientcg.com.

4.4 Network
Our network is a simple multi-layer perceptron with two hidden
layers, each of size 64 channels. The size of our input is given by
4𝐶0 +𝐶1 + 12 + 1, where 𝐶𝑘 is the size of the feature vector in grid
𝐺𝑘 . Note that we use 4× more features from grid 𝐺0 for learned
interpolation, 12 values of positional encoding and a LOD value.
We do not use any activation function on the output of the last

layer. We experimeted with several different activation functions for
the three remaining layers and observed best results with GELU [26].
To reduce the computation overhead of GELU functions, we derived
an approximation denoted “hardGELU”, which is similar to hard
Swish [29]. Our variant is given by

hardGELU(𝑥) =


0, if 𝑥 < − 3

2 ,

𝑥, if 𝑥 > 3
2 ,

𝑥
3 (𝑥 + 3

2 ), otherwise.

4.5 Optimization Procedure and Loss Function
We jointly optimize the feature pyramid and the decoder, using
gradient descent with the ADAM [34] optimizer. Unless stated oth-
erwise, our model is trained for 250k iterations. Our method can
use and minimize an arbitrary image loss function.

To optimize our compressed representation, we explored several
different loss functions, including SSIM [81], a version of VGG loss
that supports texture sets [12], adversarial as well as L1 and L2
losses, and combinations thereof. In general, we found that the loss
function presented a compromise betweenmaintaining color fidelity
and preserving high-frequency details – though we were unable
to find a loss function that did not show weaknesses in one or the
other. Figure 6 illustrates this behavior, where using only L2 results
in loss of high-frequency detail, while adding SSIM improves on
this but discolors the image. The choice of objective function can
thus be adapted based on the use case and when the application
only requires one of the two quality properties to be preserved. We
found the L2 loss to be a reasonable compromise. As it also trains
robustly and is the simplest and computationally fastest choice, we
use it throughout this paper.
We hypothesize that the observed behavior is a consequence of

information theoretical limitations, i.e., that we cannot preserve both
high-frequency detail and color fidelity at this low bitrate. Further
investigation of this hypothesis is left for future work. In addition,
we conducted initial experiments to explore potential benefits of
using different specialized objective functions for different texture
types. While these experiments did not indicate advantages of such
an approach, we believe it to be an interesting area of future research.

5 IMPLEMENTATION
As outlined in in Section 4, we decompress textures at a given texel
by sampling the corresponding latent values from a feature pyramid
and decoding them using a small MLP network. Our compressed
representation, as mentioned previously, is trained specifically for
each texture set. Specializing the compressed representation for
each material allows for using smaller decoder networks , resulting
in fast optimization (compression) and real-time decompression.
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Fig. 7. Bilinear and stochastic filtering.

5.1 Compression
Similar to the approach used by Müller et al. for training autode-
coders [47], we achieve practical compression speeds by using half-
precision tensor core operations in a custom optimization program
written in CUDA.We fuse all of the network layers in a single kernel,
together with feature grids sampling, loss computations, and the
entire backward pass. This allows us to store all network activations
in registers, thus eliminating writes to shared or off-chip memory
for intermediate data.
We process batches of eight randomly sampled 256 × 256 texel

crops, selected from the same level of detail. For each batch, we ran-
domly choose a level of detail proportionally to the mip level’s area
by sampling from an exponential distribution: LOD = ⌊− log4 𝑋 ⌋,
where 𝑋 ∼ 𝑈 (0, 1) . To mitigate undersampling of low-resolution
mip levels, 5% of the batches sample their LOD from a uniform dis-
tribution defined over entire range of the mip chain. We use a high
initial learning rate of 0.01 for the latent grids, and a lower value
of 0.005 for the network weights and apply cosine annealing [42],
lowering the learning rate to 0 at the end of training.

5.2 Decompression
Inlining the network with the material shader presents a few chal-
lenges as matrix-multiplication hardware such as tensor cores op-
erate in a SIMD-cooperative manner, where the matrix storage is
interleaved across the SIMD lanes [54, 86]. Typically, network inputs
are copied into a matrix by writing them to group-shared memory
and then loading them into registers using specialized matrix load
intrinsics. However, access to shared memory is not available inside
ray tracing shaders. Therefore, we interleave the network inputs
in-registers using SIMD-wide shuffle intrinsics.

We used the Slang shading language [25] to implement our fused
shader along with a modified Direct3D [44] compiler to generate
NVVM [52] calls for matrix operations and shuffle intrinsics, which
are currently not supported by Direct3D. These intrinsics are instead
directly processed by the GPU driver. Although our implementa-
tion is based on Direct3D, it can be reproduced in Vulkan [23]
without any compiler modifications, where accelerated matrix oper-
ations and SIMD-wide shuffles are supported through public vendor
extensions. The NV_cooperative_matrix extension [22] provides
access to matrix elements assigned to each SIMD lane. The mapping
of these per-lane elements to the rows and columns of a matrix
for NVIDIA tensor cores is described in the PTX ISA [54]. The
KHR_shader_subgroup extension [21] enables shuffling of values
across SIMD lanes in order to assign user variables to the rows
and columns of the matrix and vice versa. These extensions are not
restricted to any shader types, including ray tracing shaders.

Fig. 8. Filtering across the boundaries of a highly specular material. a)
Nearest-neighbor filtering. b) Trilinear filtering. c) Single frame of stochastic
filtering. d) Resolved stochastic temporal filtering. Trilinear texture filtering
causes specular lighting artifacts as the high specularity interpolates outside
the glossy material. Textures retrieved from https://ambientcg.com.

5.2.1 SIMD Divergence. In this work, we have only evaluated per-
formance for scenes with a single compressed texture-set. However,
SIMD divergence presents a challenge as matrix acceleration re-
quires uniform network weights across all SIMD lanes. This cannot
be guaranteed since we use a separately trained network for each
material texture-set. For example, rays corresponding to different
SIMD lanes may intersect different materials.
In such scenarios, matrix acceleration can be enabled by iterat-

ing the network evaluation over all unique texture-sets in a SIMD
group. The pseudocode in Appendix A describes divergence han-
dling. SIMD divergence can significantly impact performance and
techniques like SER [53] and TSU [31] might be needed to improve
SIMD occupancy. A programming model and compiler for inline
networks that abstracts away the complexity of divergence handling
remains an interesting problem and we leave this for future work.

5.3 Filtering
Our method supports mipmapping for discrete levels of minifica-
tion (Section 4.1), similar to BCx compression methods. For the best
quality and compression ratios, our compression approach relies
on overfitting the network only at the discrete texel locations in
the original texture. However, this does not guarantee smooth re-
construction in between these discrete texel locations and mipmap
levels. Therefore, we cannot rely on hardware acceleration for tri-
linear filtering and we implement it in software on the GPU. The
software implementation decompresses and combines four texels for
bilinear filtering, and eight texels for trilinear filtering, significantly
increasing decompression cost.
In order to decouple the decompression cost from filtering, we

propose a simple alternative to trilinear filtering based on stochastic
sampling [17, 19, 27], which we call stochastic filtering. We add ran-
dom noise to the (𝑢, 𝑣) position, followed by nearest neighbor sam-
pling. We can achieve different types of texture filtering by changing
the distribution of the noise, as shown in Figure 7. For example, a
uniform distribution in the range (−0.5, 0.5) of one texel produces
bilinear filtering, and a normal distribution produces Gaussian fil-
tering. In addition to jittering the (𝑢, 𝑣) coordinates, we also jitter
the LOD to enable a smooth transition between mip levels.

Stochastic filtering typically increases the amount of noise in the
rendered image, but we observed that modern post-process recon-
struction techniques [4, 33, 39] can effectively suppress this noise.

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://ambientcg.com


8 • Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Möller, Pontus Ebelin, and Aaron Lefohn

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bits per pixel per channel

25

30

35

40

45

50

55

60

PS
N
R
(d
B)

AVIF
NTC
JPEG XL
ASTC
Basis
BCx

0.2 0.4 0.6 0.8 1.0 1.2 1.4

25

30

35

40

45

1.5 2.0 2.5 3.0 3.5 4.030

35

40

45

50

55

60

Fig. 9. Quantitative results. Vertical axis: PSNR scores of different methods. The horizontal axis is bits per pixel per channel storage cost. The size of each
ellipse corresponds to the variation in PSNR and compressed material size due to different texture channel counts present in the data set. Table 3 contains the
explicit numbers for the markers in this figure, in addition to corresponding SSIM and LPIPS values.

Figure 8 shows a comparison of trilinear filtering and stochastic
filtering with reconstruction using DLSS [39]. We note that, while
traditional texture filtering filters the input material properties, sto-
chastic filtering filters the shading output, which produces more
accurate results, as shown in Figure 8.

6 RESULTS
Our neural compression method for material textures (NTC) is flex-
ible, allowing for adjustments in feature grids resolution, channel
counts, and bit depths to optimize the trade-off between compression
quality, storage, and inference performance. We use the four com-
pression profiles listed in Table 2, each targeting a different number
of bits per-pixel per-channel (BPPC), for our comparisons. Table 2
also shows the total storage cost including network weights and
feature levels. The cost of the network weights is roughly constant
across all profiles, and does not change with the texture resolution.
Please refer to Appendix F in the supplementary material for more
details of the NTC storage cost.

6.1 Evaluation Data Set
To evaluate different compression techniques, we selected 20 diverse
materials with texture sets varying in content, frequency character-
istics, resolution, and channel counts. The content includes natural
textures, human-made objects, character textures, and a synthetic
gradient, with attributes such as high-frequency repeating patterns,
noisy, and smooth. The texture sets have resolutions varying from
2048 × 2048 to 8192 × 8192 texels and channel counts ranging from
3 to 12. More details about the evaluation data set can be found in
our supplementary material (Appendix J).

6.2 Compared Methods
Our method can replace GPU texture compression techniques, such
as BC [45] and ASTC [55]. It is a common industry practice to use
different BC variants for different material texture types [16], but
there is no single standard. As such, we propose two compression
profiles for the evaluation of BC, namely “BC medium” and “BC
high.” The BC medium profile uses BC1 for diffuse and other packed
multi-channel textures, BC7 for normals, and BC4 for any remaining
single-channel textures. The BC high profile, on the other hand, uses
BC7 for three-channel textures and BC4 for one-channel textures.

Our method is not directly comparable with compression formats
using entropy encoding, as NTC is designed to support real-time
random access. However, to provide a frame of reference for stor-
age and quality at lower bitrates, we also evaluate methods using
entropy encoding, namely, the texture meta-compression algorithm
Basis Universal [30] and the recently standardized, high-quality im-
age compression formats AVIF and JPEG XL. We have not included
recent neural image compression techniques in our analysis as they
do not produce significantly better quantitative results compared
to traditional methods on metrics like MSE, despite typically offer-
ing better perceptual characteristics [14]. In addition, they do not
support random access, which is a key property for GPU texture
accesses. Details of the compression settings used for our evaluation
are included in our supplementary material (Appendix D).

Table 2. NTC profiles with different bits per-pixel per-channel (BPPC) and
total storage costs calculated using a 4096× 4096× 9 texture set as reference

BPPC Profile 𝐺0
0 grid resolution 𝐺

𝑗

0 grid channels 𝐺
𝑗

1 grid channels Total (MB)

NTC 0.2 1024×1024 8×2b 12×4b 3.52
NTC 0.5 1024×1024 12×4b 20×4b 8.53
NTC 1.0 2048×2048 12×2b 10×4b 17.03
NTC 2.25 2048×2048 16×4b 12×4b 38.03
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Table 3. Average PSNR, 1 − SSIM, and LPIPS values over the evaluation data set for the methods used in our comparison. The methods are grouped based on
their storage requirements. Algorithms marked in gray do not support random access. “BC M.” is short for “BC medium” and “BC H.” is for “BC high.”

Low (∼ 0.2 BPPC) Medium-low (∼ 0.5 BPPC) Medium (∼ 1.0 BPPC) Medium-high (∼ 1.5 - 3.0 BPPC) High (∼ 4.0 BPPC)
AVIF NTC JPEG XL ASTC 12 × 12 AVIF NTC ASTC 10 × 10 JPEG XL AVIF NTC JPEG XL AVIF Basis JPEG XL NTC BC M. BC H.

BPPC (mean) 0.20 0.23 0.27 0.43 0.49 0.56 0.61 0.66 1.03 1.13 1.16 2.02 2.24 2.33 2.51 3.12 3.94
PSNR (↑) 29.49 32.71 27.87 28.90 33.10 36.12 30.08 30.74 34.01 39.92 33.74 43.44 37.27 44.86 45.30 37.38 40.23

1 - SSIM (↓) 0.1138 0.0633 0.1377 0.1034 0.0586 0.0375 0.0788 0.0778 0.0380 0.0183 0.0451 0.0068 0.0219 0.0030 0.0076 0.0211 0.0099
LPIPS (↓) 0.1051 0.0660 0.1001 0.0722 0.0302 0.0364 0.0460 0.0272 0.0108 0.0176 0.0087 0.0013 0.0114 0.0003 0.0057 0.0133 0.0024

21.1 dB (0.2) 25 dB (0.11) 34.81 dB (0.06) 31.84 dB (0.058)

BC Medium  3.36 MB NTC 0.2  3.5 MB NTC 1.0  17 MB BC Medium   48 MB Reference

26.92 dB 34.43 dB34.58 dB21.86 dBPSNR↑

PSNR↑ (FLIP↓)

Fig. 10. Iso-storage and iso-quality comparison showing PSNR and FLIP scores for the diffuse and normal map textures in the Paving Stones texture set,
retrieved from https://ambientcg.com. For iso-storage comparisons, we use two higher mip levels for the BCx textures to match the storage size of NTC.

6.3 Quantitative Results
Figure 9 presents an overview of our compression results, showing
PSNR values for different compression methods, across a range of
BPPC rates as well as the variations across texture sets. The PSNR
values are computed over the entire texture set and all mip levels
down to resolution 4×4 (see Appendices I and J in our supplementary
material). The plot shows that our method significantly outperforms
GPU texture compression at high bitrates and surpasses advanced
compression methods at lower rates of less than 1.5 BPPC. We
attribute these improvements to significant cross-channel and cross-
mip-level correlations, not exploited in prior works.
Our compression method can significantly reduce texture sizes,

which can be leveraged in different ways. For example, the NTC 0.5
profile can be used to achieve iso-quality results as the BC medium
profile, at 1/5th of the storage cost. Alternatively, the NTC 0.2 profile
can be used to store two additional higher mip levels at a PSNR that
is slightly lower but still better quality than AVIF and JPEG XL. This
enables significantly higher detail, as demonstrated in Figure 1.

Although our compression is not optimized for perceptual quality,
we also include SSIM [81] and LPIPS [88] metrics in Table 3 for com-
parison. Even with these perceptual metrics, NTC provides better
results than all other compression methods at low and medium-low
rates, only trailing recent high-quality image compression tech-
niques at higher rates. Perceptual quality of our method can be
further improved by optimizing for perceptual metrics.

The quantitative results with our compression technique are also
consistent across different mip levels and different material tex-
tures. We include per-mip and per-texture-type PSNR results in our
supplementary material (Appendix C).

6.4 Qualitative Results
Previous work has noted that the PSNR metric is not sufficient for
image quality comparison and, furthermore, that objective distortion
metrics are at an inherent trade-off with perceptual quality [8]. Un-
fortunately, there is no single metric that would perfectly correlate
with human preferences, which might vary for different applica-
tions. We use qualitative, human analysis to evaluate image quality
in addition to the PSNR metric. We also include FLIP [3] values,
which are better aligned with perceptual quality.

6.4.1 Texture Quality. A key motivation for our work was to de-
termine the extent to which we could preserve image quality while
reducing the storage. Figure 10 provides an overview of this by
comparing the BC medium profile with NTC at different rates. We
present an approximately iso-quality comparison using the medium
rate NTC 1.0 profile and iso-storage comparison using the low rate
using NTC 0.2 profile. To evaluate BC medium at a low BPPC rate,
we excluded the two largest mip levels to achieve a comparable stor-
age size to NTC 0.2. For both comparisons, we used the 4096×4096
resolution Paving Stones texture set, which is one of the most chal-
lenging in our evaluation.

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://ambientcg.com


10 • Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Möller, Pontus Ebelin, and Aaron Lefohn

20s 1m 2m 5m 15m 30m 1h 2h 4h
Time (log)

26

28

30

32

34

36

38

PS
N
R
(d
B)

5k steps

10k steps

40k steps
320k steps

0.2 BPPC TIN
0.2 BPPC PyTorch
1.0 BPPC TIN
1.0 BPPC PyTorch

Fig. 11. PSNR vs. training time for a 4096×4096 texture set with 9 channels.
Our custom training implementation is an order of magnitude faster than
PyTorch, compressing the texture set in a few minutes.

In the iso-quality comparison, we see that the BC medium profile
consumes 48 MB of storage, while the NTC 1.0 profile exceeds its
quality with just 1/3rd of the size. We also see that the NTC 0.2
profile only consumes 3.5 MB of storage and has a significantly
higher quality that appears closer to the reference than the BC
medium profile at a comparable size.
Figure 13 presents a more extensive iso-storage comparison for

the NTC 0.2. We selected the 8192 × 8192, painted concrete texture
set for this comparison as it is close to the mean PSNR score re-
ported in Table 3. Overall, our method produces results that are
significantly better than BCx compression with the same storage.
We also observe better normal map quality compared to advanced
image compression techniques like AVIF and JPEG XL, while the
diffuse texture is slightly blurrier. We provide a more detailed qual-
itative analysis of this texture set in our supplementary material
(Appendix D) and cover a set of failure cases in Section 7.2.

6.4.2 RenderedQuality. Since our method is designed for compress-
ing material textures used in rendering, we demonstrate the results
with end-to-end rendered images in Figure 1. The figure compares
the NTC 0.2 profile, which uses 3.8 MB for the metal texture set, to
“BC high” with two mip levels removed and still using 39% more
storage. As depicted in the insets, the quality of the NTC 0.2 profile
is superior, which is also indicated by the better PSNR and FLIP
numbers. Our supplementary material includes additional exam-
ples, including a closed book and an open book with text, to further
demonstrate the effectiveness of our method.

6.4.3 Filtering Quality. In the supplementary video, we showcase
the quality of stochastic temporal filtering in motion. We use DLSS
for high-quality spatiotemporal reconstruction [39] as described
in Section 5.3. The use of temporal reconstruction techniques may
exhibit flickering or ghosting in certain scenarios. Our experiments
reveal minor specular flickering, but no ghosting, under fast motion.
A higher quality jitter sequence [83], or reconstruction techniques
optimized for stochastic filtering, could further improve quality.

Table 4. Decompression performance for a 4k material texture set (Paving
Stones). Performance is similar across all texture sets for a given profile.

BC High NTC 0.2 NTC 0.5 NTC 1.0 NTC 2.25
0.49 ms 1.15 ms 1.46 ms 1.33 ms 1.92 ms

6.5 Performance
In this section, we discuss compression performance as well as
decompression performance in a simple renderer.

6.5.1 Compression. As described in Section 5.1, we use a custom
CUDA-implementation to optimize our compressed representation.
Figure 11 shows our compression times for a single 4k material tex-
ture set with 9 channels, compared to a reference implementation in
PyTorch [58]. Both implementations were evaluated on an NVIDIA
RTX 4090 GPU for two different compression profiles.
Our custom implementation is approximately 10× faster than

PyTorch, which is crucial for achieving practical compression times.
We can generate a preview quality result in just under one minute
for both configurations, with a difference of less than 1.5 dB com-
pared to the maximum length of optimization (320k steps) in the
0.2 BPPC case. Moreover, for compression with the 1.0 BPPC profile,
our implementation uses less than 2 GB of GPU memory, whereas
PyTorch requires close to 18 GB, which is infeasible for many GPUs.
Traditional BCx compressors vary in speed, ranging from frac-

tions of a second to tens of minutes to compress a single 4096×4096
texture [60], depending on quality settings. The median compres-
sion time for BC7 textures is a few seconds, while it is a fraction of
a second for BC1 textures. This makes our method approximately
an order of magnitude slower than a median BC7 compressor, but
still faster than the slowest compression profiles.

6.5.2 Decompression. We evaluate real-time performance of our
method by rendering a full-screen quad at 3840 × 2160 resolution
textured with the Paving Stone set, which has 8 4k channels: diffuse
albedo, normals, roughness, and ambient occlusion. The quad is lit
by a directional light and shaded using a physically-based BRDF
model [10] based on the Trowbridge–Reitz (GGX) microfacet dis-
tribution [76]. Results in Table 4 indicate that rendering with NTC
via stochastic filtering (see Section 5.3) costs between 1.15 ms and
1.92 ms on a NVIDIA RTX 4090, while the cost decreases to 0.49 ms
with traditional trilinear filtered BC7 textures. The performance is
similar for all materials in our evaluation set, and independent of the
output channel count, ranging from three to twelve. On the other
hand, the varying number of features used across different compres-
sion profiles impacts the NTC performance. A higher number of
features increases the sampling cost and the size of the network’s
first, input layer. We also implemented trilinear filtering for NTC
by decompressing and filtering together eight texels and observed
an 8× slowdown.
Although NTC is more expensive than traditional hardware-

accelerated texture filtering, our results demonstrate that ourmethod
achieves high performance and is practical for use in real-time ren-
dering. Furthermore, when rendering a complex scene in a fully-
featured renderer, we expect the cost of our method to be partially
hidden by the execution of concurrent work (e.g., ray tracing) thanks
to the GPU latency hiding capabilities. The potential for latency
hiding depends on various factors, such as hardware architecture,
the presence of dedicated matrix-multiplication units that are oth-
erwise under-utilized, cache sizes, and register usage. We leave
investigating this for future work.
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Table 5. Texture set quality as a function of material channel count.

channels 1 2 3 4 5 6 7 8 9
PSNR 36.22 29.97 29.34 28.96 29.57 28.68 28.22 28.43 28.71
BPPC 2.19 1.1 0.73 0.55 0.44 0.36 0.31 0.27 0.244

7 DISCUSSION
In this section, we discuss various aspects of our compression. First,
we verify the original motivation for our work by analyzing com-
pression across channels and mipmap levels. Following this, we
present various limitations of our approach, including failure cases.
Finally, we discuss future work and potential applications.

7.1 Compression Across Texture Channels and Mip Levels
Texture Channels. Table 5 shows results from our compression on
a single texture set, with channel counts from 1 to 9. We selected
the Paving Stones set as it is one of the most challenging texture set
in our evaluation set. We keep the compressed representation size
fixed, expecting to observe a significant reduction in PSNR in case
of uncorrelated properties, due to entropy limitations imposed by
information theory. Above two channels, we observe roughly con-
stant quality, indicating the presence of significant cross-channel
correlations, and suggesting that our model is able to effectively
learn and exploit them. The quality is not monotonic with respect
to the channel count, because we report averaged PSNR across all
channels. Some channels are more challenging to compress than
others, which leads to a PSNR increase when the introduced addi-
tional channel is easier to compress and more highly correlated with
the previous ones. Overall, we achieve a similar low error across a
large number of channels.
Mipmap Levels. Since our method shares a single decoder for all

mipmap levels, we also analyzed the impact of compressing only
mipmap level 0 with the 0.2 BPPC profile, and observed that the
PSNR score was within 0.5 dB. This indicates a high level of feature
reuse across mip levels.

7.2 Limitations
Failure Cases. Every lossy image or texture compression algorithm
produces visual degradation at low bitrates. Typically, our method
only results in mild blurring and color shifts. However, there are a
few objectionable failure cases, which are presented in Figure 12.
We observed that two of the failure cases (c and d) result from poten-
tial material authoring errors, namely misaligned texture channels
and banding present in only a single channel, respectively, in the
reference uncompressed textures. Our method relies heavily on
channel correlation, and can be very sensitive to any alignment
errors. We include a more detailed discussion of these failure cases
in our supplementary material (Appendix D).
Uniform Resolution. Our method relies on storing all textures

within a single compressed material at the same resolution. It is
common practice for video game artists to store less visually impor-
tant textures at smaller resolutions. Our method can assign different
levels of importance to textures by weighting its contribution to the
loss, but otherwise requires all the single material input textures to
be resampled to the same resolution before compression.

Reference

NTC 0.2

a b c d

Fig. 12. Failure cases with our method. From left to right, a) removing fine
details and noise, b) strong color shift, c) leaking of features between the
texture channels, and d) removal of sharp staircase-like patterns.

Distance-Dependent Benefits. Our method operates at different
compression rate profiles, but one of the more interesting config-
urations is the one with lowest bitrate (NTC 0.2). It demonstrates
significantly more detail than BCx by enabling two higher resolution
mipmap levels with the same storage. However, this increase in de-
tail is not applicable at larger camera distances, when the additional
mipmaps are no longer used.
Benefits Proportional to the Channel Count. Our method shows

a high compression efficacy for materials with multiple channels.
However, for lower channel counts, e.g., just RGB textures, our
storage cost is similar at iso-quality (Table 5). This means that our
method would lose some of its advantage if it was to be applied to
single textures or regular images.

Decompression of All Channels. Our method always decompresses
all material channels. Only the last output layer can be simplified
for extraction of fewer textures, and it does not significantly reduce
cost. This can be a limitation if different parts of texture set are used
in different rendering contexts, for example, a partial depth prepass
that only requires opacity maps or tessellation that only accesses
a displacement map. In such cases, it might be a better choice to
compress these textures separately using traditional methods.
Filtering Cost. Unrolled filtering is computationally expensive,

and stochastic filtering can introduce flickering by increasing the
burden on spatiotemporal reconstruction [87]. Literature shows that
it is possible to create filterable neural representations directly [36],
but we leave this for the future work.
Anisotropic Filtering. GPU texture samplers support anisotropic

filtering, which improves the appearance of objects in the distance.
However, a software implementation of anisotropic filtering with
NTC would be prohibitively expensive for real-time rendering as it
requires a large number of taps, each of which needs to be decoded.

7.3 Future Work
More Texture Types. Traditional GPU compression can support many
types of textures, such as cube maps, 3D textures, and HDR textures.
We have not investigated the feasibility of application to those, and
leave it for future work.

Appearance-Based Training. Recently emerging inverse and neural
rendering techniques allow to use an appearance-based loss function.
Using the rendering error to drive the texture compression instead
of the BRDF property similarity could allow for even more efficient
content adaptation.
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Inlined Material Evaluation. Our method targets compression of
arbitrary, generic material textures that can be used by an analytical
or a neural renderer. For the latter, there is no need to unpack
materials to an intermediate representation. It is possible to fuse
together decompression and BRDF evaluation into a single MLP.
We leave this for future research.

Generative Textures andMaterials. In our work, we target a faithful
texture compression and preservation of existing detail. It is possible
to expand it further and use generative approaches, where new
plausible detail is generated upon zoom, despite not being present in
the original texture. Using some form of generative super-resolution,
it should be possible to generate multiple finer additional texture
mipmaps, without ever storing them on disk or in memory.

Further Optimizations. Further improvements to the compression
ratio and inference speed could be achieved through lower precision
intermediate computations.

8 CONCLUSION
We have introduced a novel texture compression algorithm, target-
ing the increasing memory and fidelity requirements of modern
computer graphics applications, and new, richer physically-based
shading models that require many properties, commonly stored
in textures. For high-performance texture accesses, it is of utmost
importance to be able to spatially access the textures anywhere at a
small cost, which is often referred to as the random access property.
We have shown that very high compression rates can be achieved
even without sacrificing local and random access.

By compressing many channels and mipmap levels together, the
quality of our algorithm’s low bitrate results surpasses that of state-
of-the-art industry standards, such as JPEG XL and AVIF that are
substantially more complex methods, without requiring entropy
coding.
By utilizing matrix multiplication intrinsics available in the off-

the-shelf GPUs, we have shown that decompression of our textures
introduces only a modest timing overhead as compared to simple
BCx algorithms (which executes in custom hardware), possibly
making our method practical in disk- and memory-constrained
graphics applications.

We hope our work will inspire the creation of highly compressed
neural representations for use in other areas of real-time rendering,
as a means of achieving cinematic quality.
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A HANDLING DIVERGENCE
Using matrix acceleration for the neural network requires all SIMD
lanes to be active and network weights to be uniform across the
SIMD lanes. However, in some scenarios like ray tracing, rays from
the same SIMD group may hit different materials or miss geometry
altogether. When querying ray-scene intersections from a compute
shader, users can control the execution mask, ensuring all SIMD
lanes are active during network evaluation. Conversely, in hit or
miss shaders, users lack control over the shader execution mask.
In these cases, the users can query the execution mask and enable
tensor acceleration when all lanes are active, otherwise a fallback
path without tensor acceleration is necessary.
The following example code shows how divergence can be han-

dled inside a hit shader by enabling matrix acceleration when all
lanes are active, and by iterating over unique sets of network pa-
rameter offsets, which are broadcast across all SIMD lanes to make
them uniform. SIMD occupancy in a complex scene with a large
number of materials can potentially be improved with techniques
like SER [53] and TSU [31]. We leave this evaluation for future work.

Outputs runNetwork(Inputs x, uint paramOffsets) {
// Check if all lanes are active.
if (WaveActiveCountBits(true) == WaveGetLaneCount()) {
uint mask = -1;
uint lane = 0;
// Iterate over unique network parameters in the SIMD group.
for (; mask ;) {
// Broadcast the parameter offset across SIMD lanes.
uint offset = WaveReadLaneAt(paramOffsets, lane);
bool matchingLanes = offset == paramOffsets;

// Evaluate the MLP with matrix acceleration.
Outputs y = MLP(x, offset);

// Store the outputs for matching lanes.
storeOutputs(y, matchingLanes);

// Clear the evaluated lanes.
mask -= WaveActiveBallot(matchingLanes).x;
lane = firstbitlow(mask);

}
} else {
// Fallback without matrix acceleration.

}
}
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Fig. 13. Comparison of different methods at 0.2 BPPC, where we selected to show the texture set for which NTC’s PSNR was closest to its average PSNR
over all texture sets in our evaluation dataset. Recall that neither AVIF nor JPEG XL provide random access to the texture data. Furthermore, to achieve an
approximately iso-storage comparison, mipmap level 0 images for BC high were created by bilinear upsampling of its mipmap level 2. The textures were
retrived from https://polyhaven.com/. Additional examples are available in our supplementary material.
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