
High-Performance Graphics 2021
N. Binder and T. Ritschel
(Guest Editors)

Volume 40 (2021), Number 8

ReSTIR GI: Path Resampling for Real-Time Path Tracing

Y. Ouyang1, S. Liu1, M. Kettunen1, M. Pharr1, J. Pantaleoni1

1NVIDIA Corporation, Santa Clara, CA, USA

Figure 1: Equal-time comparison of two-bounce path tracing with our approach. Images are rendered at 1080p resolution with an NVIDIA
3090 RTX GPU without denoising. (Left) Path tracing with one sample per pixel in 8.0 ms. (Middle) ReSTIR GI using spatial and temporal
resampling and one sample per pixel in 8.9 ms. Mean squared error is improved by a factor of 15.1. (Right) Path traced reference image.
This is a challenging scene for path tracing, as direct lighting is concentrated in small regions, making it difficult to find indirect lighting
paths. ReSTIR GI is much more effective thanks to sample reuse in both space and time.

Abstract
Even with the advent of hardware-accelerated ray tracing in modern GPUs, only a small number of rays can be traced at each
pixel in real-time applications. This presents a significant challenge for path tracing, even when augmented with state-of-the
art denoising algorithms. While the recently-developed ReSTIR algorithm [BWP∗20] enables high-quality renderings of scenes
with millions of light sources using just a few shadow rays at each pixel, there remains a need for effective algorithms to sample
indirect illumination.
We introduce an effective path sampling algorithm for indirect lighting that is suitable to highly parallel GPU architectures.
Building on the screen-space spatio-temporal resampling principles of ReSTIR, our approach resamples multi-bounce indirect
lighting paths obtained by path tracing. Doing so allows sharing information about important paths that contribute to lighting
both across time and pixels in the image. The resulting algorithm achieves a substantial error reduction compared to path
tracing: at a single sample per pixel every frame, our algorithm achieves MSE improvements ranging from 9.3× to 166× in
our test scenes. In conjunction with a denoiser, it leads to high-quality path traced global illumination at real-time frame rates
on modern GPUs.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing;

1. Introduction

The flexibility and generality offered by path tracing [Kaj86] is
highly desirable for real-time rendering, offering the promise of
a single unified algorithm that renders photorealistic imagery of
scenes with complex lighting, materials, and geometry. However,
path tracing has long seemed out of reach for real-time applications
due to its substantial computational requirements; even with the ad-
vent of hardware-accelerated ray tracing [McC13, NVI18], at best
a few tens of rays can currently be traced at each pixel at real-time

framerates. While high quality denoising algorithms (e.g. Scheid
et al.’s SVGF algorithm [SKW∗17, SPD18] or neural approaches
such as Munkberg and Hasselgren’s [MH20]) can improve the ap-
pearance of noisy imagery, it is still important to sample rays ef-
fectively so they provide as much information as possible about the
scene lighting.

Our work focuses on maximizing the quality of path traced im-
ages with multi-bounce global illumination (GI), before denoising.
We aim to improve the efficiency of sampling indirect lighting to

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

make path traced global illumination possible in real-time. To do
so, we employ the combination of resampled importance sampling
(RIS) [TCE05] and reservoir resampling [Vit85, Cha82], that was
introduced in the form of the ReSTIR algorithm by Bitterli et al.
for sampling direct illumination [BWP∗20].

In contrast to ReSTIR, which places initial samples in a global
light space, our algorithm places initial samples in the space of the
local sphere of directions around shading points. Tracing the corre-
sponding rays gives points on surfaces in the scene; the amount of
light that they scatter back toward the ray origin determines their
RIS weights. Resampling these points both in space and time al-
lows us to generate weighted samples from a distribution approxi-
mating the indirect illumination in the scene, leading to substantial
error reduction.

In our test scenes, we see improvements from 9.3× to 166× in
mean squared error (MSE) compared to path tracing thanks to the
massive resampling possible due to reservoirs. Because the vari-
ance of an unbiased Monte Carlo estimator decreases linearly with
sample count, these results imply that path tracing requires 9.3 to
166 times more paths to achieve the same MSE.

One notable property of our approach is that all data structures
required for storing reservoirs and samples are simple screen-space
buffers that are independent of the spatial extent of the scene. Un-
like for example, path guiding algorithms, which generally require
maintaining complex world-space data structures, our approach
uses a fixed amount of memory and is easily updated in parallel;
each pixel only modifies its own reservoir, and it is not difficult
to ensure that no reservoirs are being modified when reservoirs at
nearby pixels are accessed. Thus, performance is high in a GPU
implementation; our ReSTIR GI implementation in Unreal Engine
4 adds from 8 ms to 18 ms per frame when rendering at 1080p
resolution with an NVIDIA 3090 RTX GPU.

2. Previous Work

There is a wide plethora of existing techniques targeting real-time
simulation of indirect diffuse global illumination (e.g. [MMSM21,
HKL16]). Since most of them are heavily biased in a not so eas-
ily quantifiable manner, while ours can be made either unbiased or
very low bias, here we will focus only on the techniques which are
most closely related.

Building on the resampled importance sampling technique de-
veloped by Talbot et al. [TCE05], Bitterli et al. presented the Re-
STIR algorithm, which applies screen-space and temporal resam-
pling to light source samples for direct illumination [BWP∗20].
Their approach maintains a small reservoir of one or more light
samples at each pixel and then applies reservoir sampling [Vit85,
Cha82] to generate samples from a distribution that approximates
the product of BSDF, light source, and a binary visibility term.
They showed both biased and unbiased variants of their algorithm,
both of which gave substantial reductions in error compared to pre-
vious state-of-the-art light sampling algorithms, thanks to sample
reuse and sharing information among pixels.

Indirect lighting poses more challenges than direct lighting, as
the integration domain is intrinsically much more complex and

higher-dimensional. In standard path tracing, a widely used ap-
proach is to importance sample directions at each vertex along a
path, according to a distribution that well matches the local BSDF.
Many such BSDF sampling algorithms have been developed; see
Pharr et al. [PJH16] for more information. While BSDF sampling
works well if the indirect light is slowly varying, it is not effective
in the presence of strong, off-peak indirect illumination.

In the presence of non-uniform indirect lighting, error can be
significantly reduced by using path guiding algorithms that at-
tempt to sample according to either the incident indirect light-
ing, or the product of the BSDF and the indirect lighting. Early
work in this area includes that of Lafortune and Willems [LW95],
who built a 5D spatio-directional tree based on a path tracing pre-
process, and Jensen’s use of photon maps [Jen96] for path guid-
ing [Jen95], which Hey and Purgathofer made a number of im-
provements to [HP02]. These approaches are two-pass methods, in
which a preprocess builds a data structure that is then used during
rendering. While these data structures are read-only during render-
ing, and thus suitable for highly-parallel architectures like GPUs,
their parallel construction is more time-consuming and they deliver
inferior error reduction compared to more recent approaches.

More recently, Vorba et al. [VKŠ∗14] and Herholz et
al. [HEV∗16] applied Gaussian mixture models to learn a repre-
sentation of incident illumination during rendering. Müller and col-
leagues developed a widely-used approach based on an adaptive
spatial decomposition of the scene into an octree and an adaptive di-
rectional decomposition based on a quadtree [MGN17, VHH∗19].
This approach has been extended to account for the product of il-
lumination and the BSDF by Diolatzis et al. [DGJ∗20]. Ruppert
et al. further accounted for the effect of parallax within cells of the
spatial decomposition [RHL20] and Deng et al. applied path guid-
ing to rendering participating media [DWWH20]. While these ap-
proaches can provide substantial error reduction, constructing these
structures in parallel with thousands of threads on a GPU incurs
a significant amount of overhead, that does not seem suitable for
real-time applications [Pan20]. Dittebrandt et al. recently presented
cheaper and more scalable methods for path guiding [DHD20].

Deep learning has also been applied to path guiding, including
work by Müller et al. [MMR∗19], Zheng and Zwicker [ZZ19], and
Bako et al. [BMDS19]. These approaches demonstrated substan-
tial reduction in error due to more effective path sampling, though
their performance is insufficient for real-time applications, both for
training and inference.

Other forms of online learning have also been applied to path
guiding, including Dahm and Keller’s use of reinforcement learn-
ing [DK16]. Pantaleoni built on this work to show online learning
can successfully learn high-dimensional control variates and radi-
ance caches in real-time using spatio-directional hashing [Pan20].

Instead of directly guiding paths, our work reuses sample paths
across time (frames) and space (pixels). Early forms of path
reuse in global illumination are based on Virtual Point Lights
(VPLs) [Kel97, DKH∗14]. These methods sample light subpaths
from the sources and reuse their vertices as virtual light sources to
illuminate the points visible from the camera. This approach was
later extended by employing more sophisticated many-light meth-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

ods [HPB07] and full bidirectional path tracing variants [PRDD15,
CBH∗18, TH19].

A more general, seminal approach based on reusing subpaths
starting from the camera was described by Bekaert et al. [BSH02].
Our work draws many ideas from this approach, employing vir-
tually the same vertex reconnection strategy, while adapting the
ReSTIR reservoir resampling and merging algorithms to select
and weight reused subpaths without using complex auxiliary data
structures. The result is a much more flexible algorithm: whereas
Bekaert et al.’s original algorithm required an O(M2) multiple im-
portance sampling (MIS) evaluation in the number M of reused
samples, that could only be reduced to O(M) by using a fixed
tiled reuse pattern (amortizing some of the costs shared among all
pixels), our ReSTIR based algorithm requires O(M) computations
for arbitrary reuse patterns, and allows temporal as well as spatial
reuse.

More recently, Bauszat et al. have improved the efficiency
of path reuse by applying ideas from gradient domain render-
ing [BPE17] and West et al. [WGGH20] have shown that Continu-
ous MIS can be applied to to reduce the bias of path space filtering
algorithms [KDB14]. Unlike West et al.’s algorithm, ours employs
a more general spatio-temporal reuse, can be made fully unbiased,
and explicitly targets real-time rendering and GPU acceleration.

3. Background

The fundamental problem in real-time rendering is to solve the ren-
dering equation [Kaj86], which gives the outgoing radiance at a
point x in direction ωo for a purely reflective surface as

L(x,ωo) = Le(x,ωo)+
∫

Ω

Li(x,ωi) f (ωo,ωi)〈cosθi〉dωi, (1)

where L is the outgoing radiance, Le is the emitted radiance, Ω

is the hemisphere of directions around the surface normal, Li is
the incoming radiance, f is the BSDF, 〈cosθi〉 is the cosine of the
angle between the direction ωi and the surface normal with negative
values clamped to zero, and dω is the solid angle measure.

Under the assumption that there is no participating media, the in-
cident radiance Li can be written in terms of the outgoing radiance
at the first visible surface along a ray from x in the direction ωi:

Li(x,ωi) = Lo(TRACE(x,ωi),−ωi), (2)

where the TRACE function returns the point on the closest surface
from x in direction ωi. The traditional Monte Carlo method uses
the estimator

L̂ = Le(x,ωo)+
1
N

N

∑
j=1

Li(x,ω j) f (ωo,ω j)cosω j

p(ω j)
, (3)

where N independent samples are taken and p(ω j) is the proba-
bility density function (PDF) from which the samples were drawn.
As long as p(ω) > 0 whenever the integrand is non-zero, the es-
timator gives an unbiased estimate of the integral. (See e.g. Pharr
et al. [PJH16] for more information about the Monte Carlo method
and its application to rendering.)

The more closely that the PDF p matches the integrand, the

lower the error in the Monte Carlo estimator. Resampled impor-
tance sampling [TCE05] is an effective approach for sampling from
complex distributions that cannot be sampled directly. It uses a
two-pass algorithm to generate samples. First, M candidate sam-
ples y = y1, . . . ,yM are sampled from a source distribution p(y).
Then a target PDF p̂ is used to resample one sample z from y with
probability

p(z|y) = w(z)

∑
M
j=1 w(y j)

, (4)

where

w(y) =
p̂(y)
p(y)

(5)

is the sample’s relative weight. As M increases, the distribution of
samples z more closely matches p̂. For the purposes of resampling,
p̂ can be replaced with an unnormalized target function that is only
proportional to the target PDF. In the following, we will take ad-
vantage of this and will also use p̂ to denote target functions.

Given such a z resampled from y, then as long as p̂ > 0 where the
integrand is non-zero, an unbiased estimate of the integral

∫
f (x)dx

is given by the RIS estimator:

L̂ =
f (z)
p̂(z)

1
M

M

∑
j=1

p̂(y j)

p(y j)
. (6)

If the target PDF is a better match to the integrand than p then RIS
reduces error.

As shown by Bitterli et al. [BWP∗20], weighted reservoir sam-
pling (WRS) [Vit85, Cha82] leads to an efficient GPU implemen-
tation of RIS. For reference, the WRS algorithm is shown in Al-
gorithm 1, including both a function to update the reservoir with
a single sample and to merge another reservoir, yielding a sample
drawn from the candidate samples considered by both reservoirs.
Following Bitterli et al., our reservoir also stores a weight W for
the sample z that is stored in the reservoir and is given by

W (z) =
1

p̂(z)M

M

∑
j=1

p̂(y j)

p(y j)
. (7)

Thus, the RIS estimator is easily evaluated by

L̂ = f (z)W (z). (8)

4. ReSTIR GI

The original ReSTIR algorithm [BWP∗20] places initial samples
using light sampling where the source PDF p(x) samples uniformly
on the surfaces of lights that are themselves sampled according to
their emitted power. The target function p̂(x) is then given by the
unshadowed reflected radiance due to the light sample, which is
given by the product of emitted radiance, the BSDF, and the geo-
metric coupling term.

To apply ReSTIR to sample indirect illumination, we must rep-
resent directions that contribute to indirect illumination. Because
this representation must support both spatial and temporal reuse at
different points in space, unit vectors on the local hemisphere of

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

Initial Sampling Reuse Samples

Light sourceInitial Samples

Fail to reuse
due to

occlusion

Discard invalid
samples

Reused sample

Initial Sampling Reuse Samples

Fail to reuse

Discard
invalid

samples

Reused
samples

Initial
Samples

2-Bounce
Sample

Visible
points

(a) (b) (c) (d)

Figure 2: Original ReSTIR and ReSTIR GI. (a) The original ReSTIR algorithm [BWP∗20] starts by generating random samples on the lights
in the scene. (b) After resampling, the original samples with no contribution are discarded; the useful samples are shared spatially and tem-
porally and are used with probability based on their contribution. (c) Our approach generates initial samples by sampling random directions
and tracing rays to find the closest intersections. Reflected radiance is computed at these intersections with path tracing. (d) Spatial and
temporal resampling is applied in a similar manner. Doing so makes it possible to find directions that give meaningful indirect illumination,
which is not handled by ReSTIR.

Algorithm 1 Weighted Reservoir Sampling

1: class RESERVOIR

2: SAMPLE z
3: w← 0
4: M← 0
5: W ← 0 . Equation 7
6: procedure UPDATE(SAMPLE Snew, wnew)
7: w← w+wnew
8: M←M+1
9: if random()< wnew/w then

10: z← Snew

11: procedure MERGE(RESERVOIR r, p̂)
12: M0←M
13: UPDATE(r.z, p̂ · r.W · r.M)
14: M←M0 + r.M

directions are an inconvenient representation. We therefore asso-
ciate points on surfaces with the radiance they scatter back along
an incident ray.

We will say that the visible points are the positions on surfaces
in the scene that are visible from the camera at each pixel. At each
visible point, a direction is randomly sampled and a ray is traced to
find the closest surface intersection; these intersections are called
sample points. Sample generation is described in more detail in
Section 4.1. After sample points have been generated, resampling
is performed and shaded values are computed at each visible point
(Section 4.2). Figure 2 compares ReSTIR for direct lighting to Re-
STIR GI and Figure 4 summarizes the algorithm.

The algorithm maintains three image-sized buffers that store the
following values at each pixel:

• Initial sample buffer: a buffer of initial samples of type SAMPLE

(Figure 3).
• Temporal reservoir buffer: a buffer of RESERVOIRs that accept

struct SAMPLE

float3 xv, ~nv . Visible point and surface normal
float3 xs, ~ns . Sample point and surface normal
float3 L̂o . Outgoing radiance at sample point in RGB
float3 Random . Random numbers used for path

Figure 3: Sample Representation. Each SAMPLE stores both the
local geometry and outgoing radiance at the sample as well as the
local geometry at the original visible point that generated the sam-
ple. The visible point geometry and the random numbers used for
path tracing are used for the sample validation algorithm that is
described in Section 4.3.

samples from applying WRS to the previous samples generated
in the pixel.

• Spatial reservoir buffer: a buffer of RESERVOIRs that accept
samples from applying WRS to samples from nearby pixels.

4.1. Sample Generation

The first phase of our algorithm generates a new sample point for
each visible point. Our implementation takes as input a G-buffer
with the visible point’s position and surface normal in each pixel,
though it could also easily be used with ray-traced primary visibil-
ity.

For each pixel q with corresponding visible point xv, we sample
a direction ωi using the source PDF pq(ωi) and trace a ray to obtain
the sample point xs. The source PDF may be a uniform distribution,
a cosine-weighted distribution, or a distribution based on the BSDF
at the visible point. (Section 6 has comparisons among them.) See
Algorithm 2 for pseudo-code.

At each sample point, we need to compute the outgoing radi-
ance Lo(xs,ωo), where ωo is the normalized direction to the visible
point. This radiance value can be computed in a variety of ways,
though we apply Monte Carlo path tracing using next event esti-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

Initial Sample
Buffer

Temporal Reservoir
Buffer

Spatial Reservoir
Buffer

Emissive AreaArea with scattered radiance Invalid sample

Valid sample

Visible point

Figure 4: Algorithm workflow. In each frame, we perform the following steps for each pixel: Initial sampling: we trace a ray from each visible
point (red dots) with a random direction and record the closest intersection in a screen-space initial sample buffer. The position, normal and
radiance of the intersection, the random numbers used in next event estimation, as well as the position and normal of the pixel, are recorded.
Temporal reuse: we use the sample from the initial sample buffer to update temporal reservoir buffer by randomly choosing between the one
created in current frame and the existing one in the buffer. Temporal reprojection is applied to find the corresponding temporal reservoir from
the last frame. Spatial reuse: we use randomly-chosen temporal reservoirs from neighborhood pixels to update spatial reservoir. To suppress
bias, we choose neighborhood pixels with similar geometric features by comparing their depth and normal with the current pixel’s.

Algorithm 2 Initial Sampling

1: for each pixel q do
2: Retrieve visible point xv and normal ~nv from GBuffer
3: Sample random ray direction ωi from source PDF pq
4: Trace ray to find sample point xs and normal ~ns
5: Estimate outgoing radiance L̂o at xs
6: InitialSampleBuffer[q]← SAMPLE(xv, ~nv,xs,~ns, L̂o)

𝑥1
𝑟𝑥1

𝑞

𝑥2
𝑞 𝑥2

𝑟

𝑥1
𝑟𝑥1

𝑞

𝑥2
𝑞

Figure 5: Multi-bounce GI. At each sample point x∗2 , we estimate
the radiance scattered to the corresponding visible point using path
tracing. By connecting to the last path vertex, other visible points
are able to reuse the contribution from the entire path.

mation (NEE) and multiple importance sampling at each vertex. If
only direct lighting is included in the radiance estimate, then our al-
gorithm computes one-bounce global illumination. In general, fol-
lowing n path-traced bounces corresponds to n+ 1 bounce global
illumination; see Figure 5.

4.2. Resampling and Shading

After the fresh initial sample is taken, spatial and temporal resam-
pling is applied. The target function

p̂ = Li(xv,ωi) f (ωo,ωi)〈cosθi〉= Lo(xs,−ωi) f (ωo,ωi)〈cosθi〉
(9)

includes the effect of the BSDF and cosine factor at the visible
point, though we have also found that the simple target function

p̂ = Lo(xs,−ωi) (10)

works well. While it is a suboptimal target function for a single
pixel, we have found that it is helpful for spatial resampling in that
it preserves samples that may be effective at pixels other than the
one that initially generated it.

After initial samples are generated, temporal resampling is ap-
plied. In this stage, for each pixel, we read the sample from the ini-
tial sample buffer, and use it to randomly update temporal reservoir,
computing the RIS weight following Equation 5 with the source
PDF as the PDF for the sampled direction pq(ωi) and p̂ as defined
in Equation 10. The pseudo-code for temporal resampling is shown
in Algorithm 3.

Algorithm 3 Temporal Resampling

1: for each pixel q do
2: S← InitialSampleBuffer[q]
3: R← TemporalReservoirBuffer[q]
4: w← p̂q(S)/pq(S) . Equations 5 and 9 or 10
5: R.UPDATE(S,w)
6: R.W ← R.w/(R.M · p̂(R.z)) . Equation 7
7: TemporalReservoirBuffer[q]← R

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

𝑥1
𝑟 𝑥1

𝑞

𝑥2
𝑞

𝜙2
𝑟 𝜙2

𝑞

Camera

Figure 6: If a visible point xq
1 generates a sample point xq

2 that is
reused at another visible point xr

1, then the Jacobian determinant
in Equation 11 accounts for the fact that xr

q would have itself gen-
erated the sample point xq

2 with a different probability.

After temporal use, spatial reuse is applied. Samples are taken
from the temporal reservoirs at nearby pixels, and resampled into
a separate spatial reservoir. (See Algorithm 4 for pseudo-code.)
With spatial reuse, it is necessary to account for differences in the
source PDF between pixels that are due to the fact that our sampling
scheme is based on the visible point’s position and surface normal.
(Such a correction was not necessary in the original ReSTIR al-
gorithm since it sampled lights directly without considering each
pixel’s local geometry.) Therefore, when we reuse a sample from a
pixel q at a pixel r, we must transform its solid angle PDF to current
pixel’s solid angle space by dividing it by the Jacobian determinant
of the corresponding transformation [KMA∗15, Equation 13]:

|Jq→r|=
|cos(φr

2)|
|cos(φq

2)|
·
‖xq

1− xq
2‖

2

‖xr
1− xq

2‖2 (11)

where xq
1 and xq

2 are the first and second vertex of the reused path, xr
1

is the visible point from the destination pixel, and φ
q
2 and φ

r
2 are the

angles formed by the vectors xq
1− xq

2 and xr
1− xq

2 with the normal
at xq

2 (Figure 6). Figure 7 shows the importance of this factor.

Pseudocode for our spatial resampling algorithm is shown in Al-
gorithm 4. It includes a geometric similarity test following Bitterli
et al.’s [BWP∗20], requiring that the surface normals be within 25◦

and the two normalized depths to be within 0.05.

After both stages of reuse, the final scattered radiance at a visible
point xv due to indirect illumination is given by the RIS estimator,
Equation 6, where the spatial reservoir’s W weight gives all of the
factors other than f (y), which is evaluated as the product of the
BSDF, cosine factor, and the reservoir sample’s outgoing radiance.

4.3. Bias

Similar to the original ReSTIR algorithm, the ReSTIR GI algorithm
has both biased and unbiased forms. Some sources of bias are easily
corrected, while others may require more work (e.g. tracing a ray).
Depending on performance requirements, biased variants may be
desirable in order to trade off bias for improved performance. Bias
can be introduced from both spatial and temporal sample reuse; we
will consider each in turn.

As with ReSTIR for direct lighting, spatial resampling can in-
troduce bias due to the fact that different source PDFs are used at

Figure 7: Effect of the Jacobian determinant, Equation 11, in spa-
tial resampling. The wall receives sunlight and indirectly illumi-
nates the floor. Top: ignoring the Jacobian results in lighting dis-
continuities on the floor and overestimated lighting at the base of
the wall. Middle: including the Jacobian corrects these artifacts.
Bottom: path traced ground truth.

Algorithm 4 Spatial Resampling

1: for each pixel q do
2: Rs← SpatialReservoirBuffer[q]
3: Q← q
4: for s=1 to maxIterations do
5: Randomly choose a neighbor pixel qn
6: Calculate geometric similarity between q and qn
7: if similarity is lower than the given threshold then
8: continue
9: Rn← TemporalReservoirBuffer[qn]

10: Calculate |Jqn→q| . Equation 11
11: p̂′q← p̂q(Rn.z)/|Jqn→q|
12: if Rn’s sample point is not visible to xv at q then
13: p̂′q← 0

14: Rs.MERGE(Rn, p̂′q)
15: Q← Q∩qn

16: Z← 0
17: for each qn in Q do
18: if p̂qn(Rs.z)> 0 then
19: Z← Z +Rn.M . Bias correction
20: Rs.W ← Rs.w/(Z · p̂q(Rs.z)) . Equation 7
21: SpatialReservoirBuffer[q]← Rs

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

Figure 8: Comparison between direct light, 1-bounce and 2-bounce GI rendered with our algorithm. Top row, left to right: scene rendered
with direct lighting, one-bounce, and two-bounce global illumination. Bottom row: the indirect illumination alone, left to right: two-bounce
path tracing, one-bounce, and two-bounce ReSTIR GI result. Rendered at 1920×1050 resolution on an NVIDIA RTX 3080 GPU, for ReSTIR
GI, initial sampling takes 3.2 ms for one bounce and 4.2 ms for two. Sample reuse uses 4.6 ms in both cases. The 2-bounce path tracing takes
6.9 ms.

Figure 9: Bias caused by spatial reuse. Left: Unbiased result. Middle: Biased result. Right: 10× difference. Note that bias is mainly in
shadow areas due to visibility changes. The glossy floor worsens bias around the chair legs because the target function includes glossy
reflection and tends to place more samples around the specular reflection direction.

Temporal Reservoir Spatial Reservoir

Temporal Reservoir

Temporal Reservoir

Spatial Reservoir

Spatial Reservoir

When sample count is low,
reuse spatial reservoirs

𝑥2
𝐴

𝑥2
𝐵

𝑥2
𝐶

𝐿𝑜

Figure 10: Data flow of ReSTIR GI. In each frame, each pixel’s
temporal reservoir accepts newly generated samples. Instead of al-
ways reusing other spatial reservoirs, each spatial reservoir only
reuses temporal reservoirs from neighboring pixels in order to sup-
press bias. When sample count is low, each spatial reservoir reuses
other spatial reservoirs in order to boost convergence.

different pixels. If samples are reused from another pixel’s reservoir
where that pixel’s source PDF does not cover the domain of the cur-
rent pixel, bias occurs in the estimate results. This bias can be fully

corrected by tracing a visibility ray to check which source distribu-
tions can sample the final chosen sample and then weight the result
accordingly [WP21]. (This test is in line 18 of Algorithm 4.) Al-
ternatively, it can be reduced without tracing a ray by including a
geometric similarity test between pixels.

Figure 9 shows the comparison between biased and unbiased
sample reuse. In this figure, we set the target function to be the
outgoing light radiance, with the BSDF term including both diffuse
and specular components. Bias is mainly in shadow area due to vis-
ibility change. Note that the glossy floor makes bias worse because
the target function with glossy component tends to place more sam-
ples around the reflection direction, where unfortunately a complex
visibility change occurs.

Another way to reduce the bias from spatial reuse is for spa-
tial reservoirs to only operate on temporal reservoirs from nearby
pixels and not spatial reservoirs, as was done in Algorithm 4. In
this way, bias does not accumulate due to multiple passes of re-
sampling biased samples. However, newly disoccluded pixels may
not be able to collect enough samples if only temporal reservoirs

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

are used, which results in visible noise. In this case, we allow spa-
tial reservoirs with low input sample counts to reuse nearby spa-
tial reservoirs to improve convergence speed. Figure 10 shows the
whole dataflow.

As discussed in Section 4.2, ReSTIR GI can also suffer from bias
because by using BSDF sampling, the source distribution depends
on each pixel’s local geometry. The same distribution with respect
to area measure has different shapes in different pixel’s solid angle
space. Reusing samples from other pixels without considering this
difference causes bias. This bias is easily corrected by evaluating
Equation 11; there is no reason not to include this factor, given its
minimal computational expense.

If lighting or the scene geometry is changing from frame to
frame, then temporal reuse may cause bias if the outgoing radiance
values stored at the sample points become inaccurate. This prob-
lem is exacerbated by ReSTIR’s characteristic of tending to keep
relatively bright samples in the reservoirs for many frames before
they are replaced; the result may be a noticeable lag in updates
to the indirect illumination. To mitigate this problem, we apply a
sample validation mechanism inspired by the A-SVGF denoising
filter [SPD18]. Every few frames we re-trace the rays to recompute
the outgoing radiance for all reservoir samples and check if the re-
sulting radiance is in a given tolerance range, clearing the reservoir
if it is not. (In this stage it is important that the same random num-
bers are used for random sampling as were used when the samples
were originally generated.) The frame interval for sample verifica-
tion can be adjusted depending on how dynamic the scene is.

Another source of temporal bias in dynamic scenes can come
from an occluder that blocks the ray between visible point and sam-
ple point after the sample point was first generated. This bias can
be corrected by tracing a shadow ray to the sample point from the
visible point during sample verification.

5. Implementation

We have implemented our algorithm in Unreal Engine 4 and Fal-
cor [BYC∗20]. In Unreal Engine 4 implementation, the initial G-
buffer is generated using rasterization before a full-screen pass gen-
erates the new samples for each visible point. The Falcor imple-
mentation is similar, though it uses ray tracing to generate G-buffer.
Both temporal and spatial resampling are handled in a subsequent
full-screen pass. Temporal resampling uses reprojected pixels ac-
cording to their motion vectors from the previous frame. If temporal
reprojection fails, we reset both the spatial and temporal reservoirs
before performing spatial resampling.

For efficiency, our implementation neglects the directional varia-
tion in scattered radiance at the sample point. Instead, the scattered
radiance in the direction to the original visible point is used for all
directions, corresponding to Lambertian scattering. Thus, when a
sample point is connected to a visible point that is different than
the visible point that originally generated it, error may be intro-
duced if the sample point’s BSDF is not purely diffuse. Note that
this simplification does not require that the visible point’s BSDF be
Lambertian, nor does it require Lambertian scattering at subsequent
vertices of the indirect path.

We use double-buffering for both the temporal and spatial reser-
voir buffers so that spatial resampling can access other pixels’ tem-
poral buffers without data races. This introduces a one-frame lag in
the indirect lighting, which is not problematic at high frame rates.

For storage in off-chip memory, surface normals in the SAM-
PLE structure are compressed to four bytes and half-precision float-
ing point is used for the outgoing radiance; each reservoir then re-
quires 48 bytes of storage. With one initial reservoir and two for
both spatial and temporal reservoirs due to double-buffering, the
total memory requirements at 1080p resolution (excluding the G-
buffer, which we assume is required for other uses) are 475 MB.
Approximately 570 MB of bandwidth is used for reading data from
reservoirs each frame and 285 MB for writing updated reservoirs
to memory.

In practice, sampling long paths in every pixel of every frame
may cause a significant performance impact. As a result, we only
follow multi-bounce paths in 25% of the pixels; doing so gives
good results with a much lower performance cost. Randomly
choosing pixel for these paths can hurt performance because of
low thread coherency. Therefore, we divide the screen into tiles of
64×32 pixels and apply Russian roulette at the tile level. Tiles that
fail the Russian roulette test are rendered using single-bounce indi-
rect paths, just computing direct illumination at the sample point.
Those that pass follow multi-bounce paths, but are reweighted us-
ing the Russian roulette probability. In this way, the expected value
of all paths is that of a multi-bounce path. In practice, the stochas-
tic nature of temporal and spatial resampling hides the tile pattern
well.

We clamp the value of M in the temporal reservoirs to 30 and in
the spatial reservoirs to 500 so that the reservoirs do not become
stuck with a particular sample and be unlikely to replace it as M
grows large.

We validate all output samples from the spatial reservoir buffer
in a given frame interval. We reuse the initial sampling pass to per-
form sample validation so that it does not have extra performance
cost. In the sample validation frame, the initial sampling pass reads
sample information and traces the same rays to validate radiance
values. By default, we validate samples every 6 frames.

The maxIterations parameter of the spatial resampling algo-
rithm has a significant effect on performance: higher values lead to
faster convergence but also increase the algorithm’s cost. In prac-
tice, reservoirs that have considered few samples generally exhibit
higher levels of noise and may cause artifacts, so we set maxItera-
tions according to the sample count in each pixel’s spatial reservoir.
When the sample count is below half of the maximum M value in
spatial reservoir, we set maxIterations to 9 and otherwise, we set it
to 3.

The search radius used for spatial resampling algorithm also af-
fects the image quality. Setting its value too high may cause a low
acceptance rate for scenes with high geometric complexity, while
setting it too low can introduce low frequency noise. Because the
optimal value largely depends on scene depth complexity, we use
an adaptive search strategy. Specifically, we set the initial radius as
10% of the image resolution. During spatial reuse, the radius is left
unchanged if another pixel’s sample can be reused and is provided

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

Figure 11: Sample validation can effectively suppress bias caused by temporal reuse in dynamic scenes. Top left: original lighting. Top right:
without sample validation, visible bias still remains after 12 frames of sudden change of sunlight—note the illumination on the wall on the
left. Bottom left: with sample validation, the result rapidly adapts to changes in lighting. Bottom right: converged result.

Figure 12: ReSITR GI can produce superior results with popular spatio-temporal denoiser. The scene is a small room with sunlight only
coming through a half-opened door on the left. 2-bounce GI is used in all shots and the Unreal Engine 4 default spatio-temporal denoiser
is used for denoised results. Upper Left: Path traced result with 2 samples per pixel, rendered in 20.1 ms. Due to difficult lighting condition,
the result is almost black with a small number of pixels containing super bright samples. Upper Right: Denoised path tracing result. Lower
Left: Unbiased ReSTIR GI with 1 sample per pixel. The initial sampling pass uses 7.6 ms and spatio-temporal reuse pass uses 9.2 ms. Note
that contact shadow details are well preserved. Lower Right: Denoised ReSTIR GI result.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

to the spatial reservoir. Otherwise, the radius is halved, down to a
minimum search radius of 3 pixels, and kept at that value.

6. Results

We have evaluated ReSTIR GI with a variety of scenes to measure
its effectiveness. All measurements were taken using an NVIDIA
RTX 3090 GPU and none of the images have been denoised other
than where explicitly noted. No post-processing effect except tone
mapping has been applied. Timing measurements are reported as
the time spent for the ReSTIR GI algorithm; other passes occupy
less than 30% of the total time and G-buffer generation uses less
than 1 ms per frame. The path tracer used for comparison is a stan-
dard path tracer that uses next event estimation for direct lighting
and BSDF sampling to generate indirect rays. Reference images
were computed using that path tracer with 8,192 samples per pixel.

Figure 8 shows the difference between single and multiple
bounce global illumination. Multiple bounces can substantially im-
prove lighting results for indoor scenes illuminated by strong sun
light. Here multiple bounces are only computed in 25% of the
tiles, following the approach described in Section 5. For this scene,
which is rendered at 1920× 1080 resolution, only considering 1-
bounce global illumination uses 3.2 ms to trace rays and store ini-
tial samples, while the 2-bounce case costs 4.2 ms, an increased
cost of 32%. Both cases use 4.6 ms for resampling. Total frame
time including resampling is 14 ms.

Sample validation can effectively suppress temporal bias in
scenes with dynamic lighting. In Figure 11, after a sudden change
of sunlight, the algorithm without sample validation still keeps stale
samples on the wall, causing incorrect lighting. With sample vali-
dation, all stale samples are discarded and the algorithm adapts to
new lighting quickly. However, bias still exists due to overestimated
lighting using new samples.

Figure 12 shows the effect of denoising with regular path tracing
and ReSTIR GI using the default spatio-temporal denoiser in Un-
real Engine 4.25, which performs temporal accumulation followed
by spatial filtering and post filtering. The path traced image ex-
hibits significant low-frequency noise even after denoising, while
ReSTIR GI has much less noise and preserves contact shadow de-
tails.

Figure 13 compares the convergence of our algorithm to standard
path tracing in roughly equal time for a variety of complex scenes
that range from 1.8 million to 8.3 million triangles. Our approach
successfully captures abundant lighting details, while standard path
tracing gives noisy results. For ReSTIR GI, the images shown are
captured after 32 frames of temporal resampling. ReSTIR GI pro-
vides a reduction in MSE ranging from 14.6× to 141× for the bi-
ased variant, and 9.3× to 166× for the unbiased version of it. The
accompanying video demonstrates the improvements for sequences
showing dynamic lights and moving cameras.

The bias of the ReSTIR GI algorithm is mainly caused by visibil-
ity changes in neighborhood pixels. Figure 9 shows the results from
biased and unbiased spatial reuse. However, the spatial reuse result
shows bias in shadow areas, which is caused by reusing reservoirs
outside the shadow area. Comparing geometric similarity cannot

discard these reservoirs. Besides, the glossy reflection component
also worsens bias on the floor.

The choice of initial sampling method and target PDF also af-
fects the result. We found that using uniform hemisphere sampling
for initial samples causes lower variance than cosine-weighted
sampling, especially for light from grazing angles. In that case,
extra variance is caused by low sampling probability in light di-
rections; see Figure 14. We further found that only using outgoing
radiance (Equation 10) rather than the scattered radiance of Equa-
tion 9 gives a more stable result, though with higher variance.

6.1. Limitations

The cost of ReSTIR GI may still be too high for some real-time
applications, especially with lower-end GPUs. For example, most
video games expect >30 fps performance, which usually allows less
than a 2 ms computational budget for global illumination. In such
cases, the resolution of the reservoir buffers can be decreased in or-
der to reduce computation. However, in this case, spatial reuse may
be unstable when there are detailed normal maps. To improve sta-
bility while preserving lighting details, we have performed early
experiments with computing geometric normals from the depth
buffer, using spherical harmonics to record the lighting and finally
recover details at full resolution using the original normals.

While using screen space buffers to store sample reservoirs gives
a data structure that is easily sampled from and updated, this repre-
sentation does have shortcomings. If the camera is moving quickly,
newly visible pixels may be insufficiently sampled to give good re-
sults, which in turn leads to high noise. Furthermore, screen space
may not be the best representation if there are perfectly specular
objects in the scene. If a perfectly specular object is directly visible
to the camera, the visible point should be at the first non-specular
object that is visible along the ray path from the camera (similarly
to as is commonly done in denoisers). In this case, spatial reuse is
likely to be less effective as the visible points at nearby pixels may
not be nearby in the scene.

Our approach is also not effective with multi-bounce global illu-
mination with highly glossy surfaces. Not only is our assumption
of Lambertian scattering at sampled points inaccurate in that case,
but spatial sample reuse will be much less effective since a sample
point that makes a large contribution at one pixel may be outside the
peak specular lobe of another. If indirect lighting is concentrated in
a small set of directions, it may be difficult to sample effectively,
even with spatial and temporal reuse.

Finally, due to temporal and spatial reuse, the ReSTIR GI al-
gorithm outputs correlated samples. That means that each frame’s
sample is to some extent similar to the previous frame’s. However,
many spatio-temporal denoisers assume their input to be indepen-
dent. For example, the popular SVGF denoiser [SKW∗17] calcu-
lates first and second moments for each pixel and then uses them to
estimate variance, which is used to steer the bandwidth of spatial
filter. Correlated input may cause artifacts due to an inexact esti-
mate of variance and the resulting bandwidth.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

M
O

D
E

R
N

O
FF

IC
E

Path Traced
(1spp) 8.0 ms
0.265 MSE

ReSTIR GI
(biased) 8.9 ms

0.0175 MSE (15.1x)

ReSTIR GI
(unbiased) 9.6 ms

0.0224 MSE (11.8x)
Reference Path Traced

(1spp)
ReSTIR GI

(biased)
ReSTIR GI
(unbiased) Reference

H
O

U
S

E
IN

T
E

R
IO

R

Path Traced
(1spp) 10.4 ms

3.10 MSE

ReSTIR GI
(biased) 11.2 ms

0.0599 MSE (51.7x)

ReSTIR GI
(unbiased) 11.4 ms
0.118 MSE (26.3x)

Reference Path Traced
(1spp)

ReSTIR GI
(biased)

ReSTIR GI
(unbiased) Reference

C
L

U
T

T
E

R
E

D
H

A
L

LW
A

Y

Path Traced
(2spp) 18.9 ms

3.25 MSE

ReSTIR GI
(biased) 16.0 ms

0.0230 MSE (141x)

ReSTIR GI
(unbiased) 18.0 ms
0.0195 MSE (166x)

Reference Path Traced
(2spp)

ReSTIR GI
(biased)

ReSTIR GI
(unbiased) Reference

B
A

T
H

R
O

O
M

Path Traced
(1spp) 8.2 ms
0.449 MSE

ReSTIR GI
(biased) 8.8 ms

0.0260 MSE (17.3x)

ReSTIR GI
(unbiased) 9.6 ms

0.0306 MSE (14.7x)
Reference Path Traced

(1spp)
ReSTIR GI

(biased)
ReSTIR GI
(unbiased) Reference

Figure 13: Comparison of roughly equal time renderings of standard path tracing and ReSTIR GI, with two-bounce indirect illumination.
Over a variety of scenes, ReSTIR GI exhibits a 9.3× to 166× improvement in mean squared error compared to path tracing at a similar
computational cost.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

Figure 14: Effect of the primary sampling technique. The scene is illuminated only by a light on the left. All samples are generated by BSDF
sampling and no light sampling technique is used. (Left) Using cosine-weighted BSDF sampling leads to a noisy result due to a low sampling
probability at grazing angles. (Right) Using uniform hemisphere sampling leads to a much better result.

7. Conclusion and Future Work

We have shown that spatio- and temporal resampling using reser-
voirs leads to a highly effective algorithm for sampling indirect
lighting. Our approach substantially reduces error for path traced
indirect lighting, making it feasible for complex scenes at real-time
frame rates on current GPUs. Compared to path tracing, we have
shown reductions in MSE of up to 166× with our technique, with
limited impact in frame time.

As discussed in Section 6.1, screen-space spatial resampling in-
troduces a number of challenges. The first and most important to
address is the ability to more effectively deal with non-Lambertian
scattering events along light transport paths. Another interesting
direction for future work is to consider other ways of generating
sample points. Our approach finds them by randomly sampling di-
rections from visible points, though another possibility could be to
find them by tracing paths starting from light sources. For some
scenes, this sampling approach may be more effective. Combining
techniques such as those based on virtual point lights [DKH∗14]
with our resampling technique may lead to yet more ways of sam-
pling indirect lighting.

Acknowledgements

Thanks to Aaron Lefohn, David Luebke and Calvin Lin for sup-
porting this work. Unreal Engine 4 scenes in Figure 7, 8, 11, 12
and the third scene in Figure 13 are from Quixel Megascans, while
the one in Figure 1 and other scenes in Figure 13 are from Evermo-
tion. Unreal Engine 4 scene in Figure 14 is from Matima Studio.
All of them can be found from Unreal Marketplace. The scene in
Figure 9 is from [Ast16], rendered by NVIDIA Falcor [BYC∗20].

References
[Ast16] ASTUFF: Burger restaurant, 03 2016. URL:
https://www.turbosquid.com/3d-models/
burger-restaurant-3d-model/1021436. 12

[BMDS19] BAKO S., MEYER M., DEROSE T., SEN P.: Offline deep im-
portance sampling for Monte Carlo path tracing. In Computer Graphics
Forum (2019), vol. 38, Wiley Online Library, pp. 527–542. 2

[BPE17] BAUSZAT P., PETITJEAN V., EISEMANN E.: Gradient-
domain path reusing. ACM Trans. Graph. 36, 6 (Nov. 2017).

URL: https://doi.org/10.1145/3130800.3130886, doi:
10.1145/3130800.3130886. 3

[BSH02] BEKAERT P., SBERT M., HALTON J.: Accelerating path trac-
ing by re-using paths. In Proceedings of the 13th Eurographics Workshop
on Rendering (Goslar, DEU, 2002), EGRW ’02, Eurographics Associa-
tion, p. 125–134. 3

[BWP∗20] BITTERLI B., WYMAN C., PHARR M., SHIRLEY P.,
LEFOHN A., JAROSZ W.: Spatiotemporal reservoir resampling for real-
time ray tracing with dynamic direct lighting. ACM Trans. Graph. 39,
4 (July 2020). URL: https://doi.org/10.1145/3386569.
3392481, doi:10.1145/3386569.3392481. 1, 2, 3, 4, 6

[BYC∗20] BENTY N., YAO K.-H., CLARBERG P., CHEN L., KALL-
WEIT S., FOLEY T., OAKES M., LAVELLE C., WYMAN C.: The Fal-
cor rendering framework, 08 2020. URL: https://github.com/
NVIDIAGameWorks/Falcor. 8, 12

[CBH∗18] CHAITANYA C. R. A., BELCOUR L., HACHISUKA T., PRE-
MOZE S., PANTALEONI J., NOWROUZEZAHRAI D.: Matrix bidirec-
tional path tracing. In Eurographics Symposium on Rendering - Experi-
mental Ideas & Implementations (2018), Jakob W., Hachisuka T., (Eds.),
The Eurographics Association. doi:10.2312/sre.20181169. 3

[Cha82] CHAO M.-T.: A general purpose unequal probability sampling
plan. Biometrika 69, 3 (1982), 653–656. 2, 3

[DGJ∗20] DIOLATZIS S., GRUSON A., JAKOB W., NOWROUZEZAHRAI
D., DRETTAKIS G.: Practical product path guiding using linearly trans-
formed cosines. In Computer Graphics Forum (2020), vol. 39, Wiley
Online Library, pp. 23–33. 2

[DHD20] DITTEBRANDT A., HANIKA J., DACHSBACHER C.: Tempo-
ral sample reuse for next event estimation and path guiding for real-
time path tracing. In Eurographics Symposium on Rendering (2020),
Dachsbacher C., Pharr M., (Eds.), The Eurographics Association. doi:
10.2312/sr.20201135. 2

[DK16] DAHM K., KELLER A.: Learning light transport the reinforced
way. In International Conference on Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing (2016), Springer, pp. 181–195.
2

[DKH∗14] DACHSBACHER C., KŘIVÁNEK J., HAŠAN M., AR-
BREE A., WALTER B., NOVÁK J.: Scalable realistic ren-
dering with many-light methods. Computer Graphics Forum
33, 1 (2014), 88–104. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.12256, doi:https://
doi.org/10.1111/cgf.12256. 2, 12

[DWWH20] DENG H., WANG B., WANG R., HOLZSCHUCH N.:
A practical path guiding method for participating media. Com-
putational Visual Media 6, 1 (2020), 37–51. URL: https:
//doi.org/10.1007/s41095-020-0160-1, doi:10.1007/
s41095-020-0160-1. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://www.turbosquid.com/3d-models/burger-restaurant-3d-model/1021436
https://www.turbosquid.com/3d-models/burger-restaurant-3d-model/1021436
https://doi.org/10.1145/3130800.3130886
https://doi.org/10.1145/3130800.3130886
https://doi.org/10.1145/3130800.3130886
https://doi.org/10.1145/3386569.3392481
https://doi.org/10.1145/3386569.3392481
https://doi.org/10.1145/3386569.3392481
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.2312/sre.20181169
https://doi.org/10.2312/sr.20201135
https://doi.org/10.2312/sr.20201135
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12256
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12256
https://doi.org/https://doi.org/10.1111/cgf.12256
https://doi.org/https://doi.org/10.1111/cgf.12256
https://doi.org/10.1007/s41095-020-0160-1
https://doi.org/10.1007/s41095-020-0160-1
https://doi.org/10.1007/s41095-020-0160-1
https://doi.org/10.1007/s41095-020-0160-1

Y. Ouyang & S. Liu & M. Kettunen & M. Pharr & J. Pantaleoni / ReSTIR GI

[HEV∗16] HERHOLZ S., ELEK O., VORBA J., LENSCH H., KŘIVÁNEK
J.: Product importance sampling for light transport path guiding.
In Computer Graphics Forum (2016), vol. 35, Wiley Online Library,
pp. 67–77. 2

[HKL16] HEDMAN P., KARRAS T., LEHTINEN J.: Sequential Monte
Carlo Instant Radiosity. In Proceedings of the ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games (2016), ACM. 2

[HP02] HEY H., PURGATHOFER W.: Importance sampling with hemi-
spherical particle footprints. In Proceedings of the 18th spring confer-
ence on Computer Graphics (2002), pp. 107–114. 2

[HPB07] HAŠAN M., PELLACINI F., BALA K.: Matrix row-column
sampling for the many-light problem. In ACM SIGGRAPH 2007 Papers
(New York, NY, USA, 2007), SIGGRAPH ’07, Association for Com-
puting Machinery, p. 26–es. URL: https://doi.org/10.1145/
1275808.1276410, doi:10.1145/1275808.1276410. 3

[Jen95] JENSEN H. W.: Importance driven path tracing using the pho-
ton map. In Eurographics Workshop on Rendering Techniques (1995),
Springer, pp. 326–335. 2

[Jen96] JENSEN H. W.: Global illumination using photon maps. In Pro-
ceedings of the Eurographics Workshop on Rendering Techniques ’96
(Berlin, Heidelberg, 1996), Springer-Verlag, p. 21–30. 2

[Kaj86] KAJIYA J. T.: The rendering equation. SIGGRAPH Comput.
Graph. 20, 4 (Aug. 1986), 143–150. URL: https://doi.org/10.
1145/15886.15902, doi:10.1145/15886.15902. 1, 3

[KDB14] KELLER A., DAHM K., BINDER N.: Path space filtering. In
ACM SIGGRAPH 2014 Talks (New York, NY, USA, 2014), SIGGRAPH
’14, Association for Computing Machinery. URL: https://doi.
org/10.1145/2614106.2614149, doi:10.1145/2614106.
2614149. 3

[Kel97] KELLER A.: Instant radiosity. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques (USA,
1997), SIGGRAPH ’97, ACM Press/Addison-Wesley Publishing Co.,
p. 49–56. URL: https://doi.org/10.1145/258734.258769,
doi:10.1145/258734.258769. 2

[KMA∗15] KETTUNEN M., MANZI M., AITTALA M., LEHTINEN J.,
DURAND F., ZWICKER M.: Gradient-domain path tracing. ACM Trans.
Graph. 34, 4 (July 2015). URL: https://doi.org/10.1145/
2766997, doi:10.1145/2766997. 6

[LW95] LAFORTUNE E. P., WILLEMS Y. D.: A 5d tree to reduce the
variance of Monte Carlo ray tracing. In Eurographics Workshop on Ren-
dering Techniques (1995), Springer, pp. 11–20. 2

[McC13] MCCOMBE J.: Low power consumption ray tracing. SIG-
GRAPH 2013 Course: Ray Tracing Is the Future and Ever Will Be, 2013.
1

[MGN17] MÜLLER T., GROSS M., NOVÁK J.: Practical path guiding for
efficient light-transport simulation. Comput. Graph. Forum 36, 4 (July
2017), 91–100. URL: https://doi.org/10.1111/cgf.13227,
doi:10.1111/cgf.13227. 2

[MH20] MUNKBERG J., HASSELGREN J.: Neural denoising with layer
embeddings. Computer Graphics Forum 39, 4 (2020), 1–12. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.14049, doi:https://doi.org/10.1111/cgf.14049.
1

[MMR∗19] MÜLLER T., MCWILLIAMS B., ROUSSELLE F., GROSS M.,
NOVÁK J.: Neural importance sampling. ACM Trans. Graph. 38, 5 (Oct.
2019). URL: https://doi.org/10.1145/3341156, doi:10.
1145/3341156. 2

[MMSM21] MAJERCIK Z., MARRS A., SPJUT J., MCGUIRE M.: Scal-
ing probe-based real-time dynamic global illumination for production.
Journal of Computer Graphics Techniques (JCGT) 10, 2 (May 2021),
1–29. URL: http://jcgt.org/published/0010/02/01/. 2

[NVI18] NVIDIA I.: NVIDIA Turing GPU architecture. NVIDIA
Whitepaper, 2018. 1

[Pan20] PANTALEONI J.: Online path sampling control with progressive
spatio-temporal filtering. SN Computer Science 1 (08 2020). doi:10.
1007/s42979-020-00291-z. 2

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory To Implementation. Morgan Kaufmann,
Burlington, Massachusetts, 2016. 2, 3

[PRDD15] POPOV S., RAMAMOORTHI R., DURAND F., DRETTAKIS
G.: Probabilistic connections for bidirectional path tracing. Com-
puter Graphics Forum (Proceedings of the Eurographics Symposium
on Rendering) 34, 4 (2015). URL: http://www-sop.inria.fr/
reves/Basilic/2015/PRDD15b. 3

[RHL20] RUPPERT L., HERHOLZ S., LENSCH H. P.: Robust fitting of
parallax-aware mixtures for path guiding. ACM Transactions on Graph-
ics (TOG) 39, 4 (2020), 147–1. 2

[SKW∗17] SCHIED C., KAPLANYAN A., WYMAN C., PATNEY A.,
CHAITANYA C. R. A., BURGESS J., LIU S., DACHSBACHER C.,
LEFOHN A., SALVI M.: Spatiotemporal variance-guided filtering: Real-
time reconstruction for path-traced global illumination. In Proceed-
ings of High Performance Graphics (New York, NY, USA, 2017), HPG
’17, Association for Computing Machinery. URL: https://doi.
org/10.1145/3105762.3105770, doi:10.1145/3105762.
3105770. 1, 10

[SPD18] SCHIED C., PETERS C., DACHSBACHER C.: Gradient esti-
mation for real-time adaptive temporal filtering. Proc. ACM Comput.
Graph. Interact. Tech. 1, 2 (Aug. 2018). URL: https://doi.org/
10.1145/3233301, doi:10.1145/3233301. 1, 8

[TCE05] TALBOT J. F., CLINE D., EGBERT P.: Importance resampling
for global illumination. In Proceedings of the Sixteenth Eurographics
Conference on Rendering Techniques (Goslar, DEU, 2005), EGSR ’05,
Eurographics Association, p. 139–146. 2, 3

[TH19] TOKUYOSHI Y., HARADA T.: Hierarchical Russian roulette
for vertex connections. ACM Trans. Graph. 38, 4 (July 2019).
URL: https://doi.org/10.1145/3306346.3323018, doi:
10.1145/3306346.3323018. 3

[VHH∗19] VORBA J., HANIKA J., HERHOLZ S., MÜLLER T.,
KŘIVÁNEK J., KELLER A.: Path guiding in production. In ACM
SIGGRAPH 2019 Courses (New York, NY, USA, 2019), SIGGRAPH
’19, Association for Computing Machinery. URL: https://doi.
org/10.1145/3305366.3328091, doi:10.1145/3305366.
3328091. 2

[Vit85] VITTER J. S.: Random sampling with a reservoir. ACM Transac-
tions on Mathematical Software (TOMS) 11, 1 (1985), 37–57. 2, 3

[VKŠ∗14] VORBA J., KARLÍK O., ŠIK M., RITSCHEL T., KŘIVÁNEK
J.: On-line learning of parametric mixture models for light transport
simulation. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–11.
2

[WGGH20] WEST R., GEORGIEV I., GRUSON A., HACHISUKA T.:
Continuous multiple importance sampling. ACM Transactions on
Graphics (TOG) 39, 4 (July 2020). doi:10.1145/3386569.
3392436. 3

[WP21] WYMAN C., PANTELEEV A.: Rearchitecting spatiotemporal re-
sampling for production. In Proceedings of ACM/EG Symposium on
High Performance Graphics (2021), HPG ’21. 7

[ZZ19] ZHENG Q., ZWICKER M.: Learning to importance sample in
primary sample space. In Computer Graphics Forum (2019), vol. 38,
Wiley Online Library, pp. 169–179. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/1275808.1276410
https://doi.org/10.1145/1275808.1276410
https://doi.org/10.1145/1275808.1276410
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/2614106.2614149
https://doi.org/10.1145/2614106.2614149
https://doi.org/10.1145/2614106.2614149
https://doi.org/10.1145/2614106.2614149
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/2766997
https://doi.org/10.1145/2766997
https://doi.org/10.1145/2766997
https://doi.org/10.1111/cgf.13227
https://doi.org/10.1111/cgf.13227
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14049
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14049
https://doi.org/https://doi.org/10.1111/cgf.14049
https://doi.org/10.1145/3341156
https://doi.org/10.1145/3341156
https://doi.org/10.1145/3341156
http://jcgt.org/published/0010/02/01/
https://doi.org/10.1007/s42979-020-00291-z
https://doi.org/10.1007/s42979-020-00291-z
http://www-sop.inria.fr/reves/Basilic/2015/PRDD15b
http://www-sop.inria.fr/reves/Basilic/2015/PRDD15b
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3233301
https://doi.org/10.1145/3233301
https://doi.org/10.1145/3233301
https://doi.org/10.1145/3306346.3323018
https://doi.org/10.1145/3306346.3323018
https://doi.org/10.1145/3306346.3323018
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.1145/3386569.3392436
https://doi.org/10.1145/3386569.3392436

