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Abstract—Many recent programming systems for both su-
percomputing and data center workloads generate task graphs
to express computations that run on parallel and distributed
machines. Due to the overhead associated with constructing
these graphs the dependence analysis that generates them is
often statically computed and memoized, and the resulting graph
executed repeatedly at runtime. However, many applications
require a dynamic dependence analysis due to data dependent
behavior, but there are new challenges in capturing and re-
executing task graphs at runtime. In this work, we introduce
dynamic tracing, a technique to capture a dynamic dependence
analysis of a trace that generates a task graph, and replay it.
We show that an implementation of dynamic tracing improves
strong scaling by an average of 4.9× and up to 7.0× on a suite
of already optimized benchmarks.

I. INTRODUCTION

Programming large distributed systems is a challenging
problem in both high performance computing (HPC) and
data center environments today. To address this problem,
there has recently been a resurgence of programming systems
that target these machines by expressing computations as
task graphs [1]–[7]. The nodes in a task graph represent
opaque computations and edges represent either control or
data dependences constraining the execution order of the graph.
Many problems in parallel programming such as mapping [1],
scheduling [8], load balancing [9], fault tolerance [10], and
resource allocation [1], [7] have been successfully addressed
using task graphs.

While tasks graphs are useful tools for programming systems,
they can be difficult to work with directly for application
developers as they can be challenging to correctly generate
and compose by hand. For this reason, many systems provide
higher-level abstractions and rely on an additional translation
layer to perform a dependence analysis that constructs an
underlying task graph [1], [3]–[5], [11]. In some cases the task
graph is static and can be constructed once at the beginning of
an application [5]–[7]. However, in more dynamic applications,
the computation can be dependent on application data and
therefore dependence analysis and the shape of the task graph
must also be computed at runtime. Systems such as Legion [1],
StarPU [3], and PaRSEC [4] are built around a continuously

running dependence analysis that constructs a task graph on
the fly, enabling them to adapt to applications with changing
requirements.

While a fully dynamic dependence analysis is very flexible,
it also incurs runtime overhead that can limit performance.
The cost of dynamic dependence analysis can be hidden (by
running the analysis in parallel with the application) only if
the cost of analyzing a task is on average less than the task’s
execution time [1]. Therefore the cost of dynamic dependence
analysis places a lower bound on the granularity of tasks that
can be handled efficiently and how well applications strong
scale. Consequently dynamic dependence analysis must be as
efficient as possible to avoid limiting system performance.

The crucial insight of this work is that, while some applica-
tions require a fully dynamic dependence analysis, they often
have traces of repetitive tasks for which we can memoize the
results of the dynamic dependence analysis and therefore reduce
the overhead of executing tasks in a trace. While similar in spirit
to trace-based JIT-compilation systems [12]–[17], specializing
dynamic dependence analysis for parallel and distributed
systems raises new correctness and performance issues, because
unlike programming systems for shared-memory machines,
distributed task graphs must express both parallelism and the
coherence of data. For example, dynamic dependence analyses
for distributed systems can generate different subgraphs for
the same trace based on the location(s) of the most recent
version of data. Therefore every replay of a specialized trace
needs to maintain the coherence of data, an issue that does not
arise in shared-memory environments where data coherence is
maintained by the underlying hardware.

To address these issues, we present dynamic tracing, a
technique to efficiently and correctly memoize a dynamic
dependence analysis and generate a task graph semantically
equivalent to (but also often syntactically different from) the
original. Dynamic tracing achieves this goal in three steps. First,
it records the analysis of a trace as a sequence of graph calculus
commands; graph calculus is a simple imperative language with
commands that directly construct task graphs. The recorded
graph calculus commands are associated with a precondition
that must be satisfied for the commands to correctly replay
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1 task F(x) reads(x),writes(x)
2 task G(x) reads(x),writes(x)
3

4 while * do
5 for i = 0,2 do F(A[i]) end
6 for i = 0,2 do G(A[h(i)]) end
7 end

(a) Example program

F0(A[0]α); F0(A[1]β); G0(A[1]α); G0(A[0]β);
trace 1︷ ︸︸ ︷

F1(A[0]α); F1(A[1]β); G1(A[1]α); G1(A[0]β); · · · ;

trace k︷ ︸︸ ︷
Fk(A[0]α); Fk(A[1]β); Gk(A[1]β); Gk(A[0]α);

Fk+1(A[0]α); Fk+1(A[1]β); Gk+1(A[1]β); Gk+1(A[0]α)︸ ︷︷ ︸
trace k+1

; · · ·

(b) Task stream

G0(A[1]α) G0(A[0]β)

copy(A[1]β , A[1]α) copy(A[0]α, A[0]β)

F1(A[0]α) F1(A[1]β)

copy(A[0]β , A[0]α) copy(A[1]α, A[1]β)

G1(A[1]α) G1(A[0]β)

(c) Task graph for trace 1

Gk−1(A[1]α) Gk−1(A[0]β)

copy(A[1]β , A[1]α) copy(A[0]α, A[0]β)

Fk(A[0]α) Fk(A[1]β)

Gk(A[0]α) Gk(A[1]β)

(d) Mapping change in trace k

Gk(A[1]β)Gk(A[0]α)

Fk+1(A[0]α) Fk+1(A[1]β)

Gk+1(A[0]α) Gk+1(A[1]β)

(e) Task graph for trace k + 1

Fig. 1: Example program and task graphs for traces

the task graph, and a postcondition that must be applied to
make the dependence analysis state consistent with the replayed
graph. Second, it optimizes the commands to minimize the
cost of replay and eliminate unnecessary synchronizations in
the replayed subgraph. Third, whenever a previously recorded
trace appears during program execution, the recorded graph
calculus commands are replayed to replace the dependence
analysis as long as the trace’s precondition is satisfied.

This paper makes three contributions:
• To the best of our knowledge, dynamic tracing is the

first technique to just-in-time specialize task graphs in
distributed task-based runtimes with dynamic dependence
analysis. We present a complete design of dynamic tracing
with several key optimizations.

• We describe an implementation of dynamic tracing em-
bedded in the Legion runtime system.

• For five already optimized applications, we demonstrate
that dynamic tracing improves strong scaling performance
up to 7.0×, and by 4.9× on average, when running on
up to 256 nodes.

The rest of this paper is organized as follows. In Section II,
we give an informal overview of dynamic tracing. Section III
describes our programming model and defines basic concepts.
Then, we present dynamic tracing in Section IV. Section V
discusses the implementation of dynamic tracing in Legion
and Section VI presents experiment results. We survey related
work in Section VII and conclude in Section VIII.

II. OVERVIEW

We briefly motivate the need for dynamic tracing with
a small example designed to illustrate the salient issues.
The program in Figure 1a issues four tasks F(A[0]), F(A[1]),
G(A[h(0)]), G(A[h(1)]) for every iteration of the while loop.
Static dependence analyses will give imprecise results because

of the indices computed using the opaque function h. In contrast,
precise dynamic dependence analysis is straightforward. For
example, if h(0) = 1 and h(1) = 0, dynamic dependence
analysis shows there are dependences between F(A[0]) and
G(A[h(1)]), and between F(A[1]) and G(A[h(0)]).

In a distributed system, data dependences may require data
movement. For example, if F(A[0]) and G(A[0]) execute on
different nodes of the machine, and since F(A[0]) writes to
A[0], the updated value of A[0] must be copied to the node
where G(A[0]) will run. We use node identifiers α, β, etc. as
superscripts to data elements to distinguish different instances
of the same data on different nodes. In Figure 1c, for example,
the upper left operation copies an instance of A[1] on node α
to an instance of A[1] on node β. Tasks execute on the node
where their arguments are placed.

Figure 1b shows some traces, which are sequences of
tasks issued by the program. The dependence analysis of
trace 1, which corresponds to the while loop’s second iteration,
generates the task graph in Figure 1c. To ensure correctness,
copy operations are added to the task graph where necessary.
During task graph generation, dynamic tracing memoizes
the task graph using graph calculus commands (discussed
in Section IV-B) so the graph can be regenerated for later
executions of the same trace.

Dynamic tracing detects when recorded commands can be
reused using two criteria. First, the subsequent trace must be
exactly the same as the one from the second iteration; this
requires that the tasks have the same data dependences and
the choice of data placement is the same so that the set of
required copies is the same. Second, the set of instances that
hold the most recent version of input data to the trace must be
the same; in this example A[1]

α and A[0]
β are the input data

during trace 1 when the graph is captured. For this example,
dynamic tracing can replace the dynamic dependence analysis



for each trace from iteration 2 to k−1 using the graph calculus
commands captured during trace 1.

Suppose now that during trace k the choices of nodes for
the data of tasks G(A[h(0)]) and G(A[h(1)]) are swapped as
shown in Figure 1b. (While this change of data placement is
not a realistic scenario, it illustrates the issues that arise in real
applications.) Trace k then looks different from the first k − 1
traces because the location of the instances for tasks G(A[h(0)])
and G(A[h(1)]) have changed, leading dynamic tracing to reject
replaying the capture of trace 1 and instead capture a new
trace. However, there is an important subtlety that occurs when
dynamic tracing encounters trace k+1. Dynamic tracing cannot
replay the commands from trace k for trace k+ 1 because the
location of the input instances are different; trace k has input
instances A[1]α and A[0]

β while trace k+1 has input instances
A[1]

β and A[0]
α necessitating input copy operations. Therefore

dynamic tracing will also need to capture commands for trace
k+1 and will be able to replay them starting with trace k+2,
assuming the instance placement remains stable.

III. PROGRAMMING MODEL

We consider a task-based programming model where a
program is decomposed into tasks. A task is a unit of
computation that runs to completion once scheduled on a
processor. Tasks store data in regions; a region is simply a
named collection of data used by a task. For dynamic tracing
the concept of a region is flexible and can be used to name any
arbitrary collection of data including, but not limited to, opaque
serialized data, an array, an arena, a relation, etc. The example
in Figure 1a has four regions: A[0], A[1], B[0], and B[1]. Tasks
declare permissions on regions (line 1–2 in Figure 1a), which
describe how they access data. For simplicity, we consider only
read and write permissions, though some systems [1], [18]
provide a reduction permission for updates with commutative
and associative operators.

A region can be represented by multiple region instances in
different memories. In Figure 1a, region A[0] has two region
instances A[0]

α and A[0]
β .

When a program is executed, it makes a sequence of task
calls, each of which goes through a standard pipeline of phases
[1], [4], [19]. First, regions are mapped to region instances
(assigned to physical memories). An invocation of a task whose
regions are mapped is a task instance. The mapping does not
change during execution of a task instance, but can be different
in different task instances of the same task. In Figure 1b, region
A[1] for task G(A[1]) is mapped to A[1]

α in trace k−1, whereas
it is mapped to A[1]

β in trace k. The mapper is the pipeline
stage that makes mapping decisions for tasks according to
some (possibly dynamic) policy.

The next stage in processing a task is dependence analysis.
Two task instances have a dependence when they access
the same region instance and at least one of them has
write permissions on the region. In Figure 1e, task instances
F(A[0]α) and G(A[0]α) are dependent because both write to the
same region instance A[0]

α, while F(A[0]α) and F(A[1]β) are

independent, and thus can run in parallel, as they write to two
different region instances.

Any access to a region in a task must be coherent. If a
task instance updates a region instance, any subsequent task
instances reading region instances of the same region must
see the update. In our model maintaining coherence is the
responsibility of the system. The program specifies what data is
to be used, and the programming system manages coherence by
automatically generating copies and inserting synchronization
to ensure the data is current when and where it is needed.

Once dependence analysis is complete for a task instance,
the task instance and any required copies are inserted into the
task graph, a DAG where nodes are operations (task instances
and copies) and edges are dependences between operations.
The runtime’s execution of the graph is concurrent with the
graph generation. The runtime finds operations that have no
predecessors in the task graph, and schedules their execution
on processors. The mapper’s choice of instances for regions
constrain a task instance to only run on processors that are
able to directly access those instances.

We assume that traces are explicitly delimited in a program.
A trace is a sequence of task instances that are issued between
a begin_trace and a matching end_trace statement.
At least some of the places that tracing can be beneficial
are obvious, such as around important loops. Consider the
following example from Figure 1a, which delimits all traces
in Figure 1b:

4 while * do
5 begin_trace
6 for i = 0,2 do F(A[i]) end
7 for i = 0,2 do G(A[h(i)]) end
8 end_trace
9 end

IV. DYNAMIC TRACING

In this section, we describe dynamic tracing, a technique
to JIT specialize dependence analysis for traces. Dependence
analysis “interprets” a trace to generate a task graph. For
each task instance in the trace, this interpreter analyzes its
dependences on previous task instances and updates the graph.
If instead our goal is to build a specific graph, we can specialize
the interpreter’s analysis to a process that builds just that
one graph. Dynamic tracing achieves this specialization by
recording the dependence analysis of a trace and replaying it
whenever the recorded trace appears again during execution to
replace the dependence analysis.

A. Baseline Dependence Analysis

Dynamic tracing can specialize any correct dependence
analysis that generates a task graph as its result. A correct
dependence analysis satisfies the following two conditions.

First, a task graph from a correct dependence analysis of
tasks captures all dependences between them. Specifically, if
task instances T1 and T2 are dependent and T2 is issued after
T1, there must be at least one path from T1 to T2 in the task
graph. However, task graphs may have edges for transitive
dependences, i.e, dependences that are transitively expressed



Tasks: task T1(R, S) reads writes(R),writes(S)
task T2(R, S) reads(R),reads(S)
task T3(R, S) writes(R),reads(S)

Task Instance Valid Instances Task Graph

T1(R
α, Sα)

R 7→ Rα

(rule R1,W)
S 7→ Sα

(rule W)

copy1(Rβ , Rα) T3(Rα, Sα)T1(Rα, Sα)

T2(R
β , Sα)

R 7→ {Rβ , Rα}
(rule R2)
S 7→ Sα

(rule R1)

T3(Rα, Sα)T1(Rα, Sα)

copy1(Rβ , Rα) T2(Rβ , Sα)

T3(R
α, Sα)

R 7→ Rα

(rule W)
S 7→ Sα

(rule R1)

T1(Rα, Sα)

copy1(Rβ , Rα) T2(Rβ , Sα)

T3(Rα, Sα)

Fig. 2: Dependence analysis of a trace

by other dependences. For example, the task graph is permitted
to have an edge between task instances T1 and T3 even if it
already has edges between T1 and T2, and between T2 and
T3. Transitive dependences are not harmful for parallelism,
because they impose no additional constraints, and dependence
analysis algorithms often include them in the result as additional
analysis would be required to remove them.

Second, a correct dependence analysis guarantees coherence.
Each region instance used in a task instance must be valid, i.e.,
containing the latest updates to the region. We assume that
a correct dependence analysis algorithm keeps track of valid
instances of each region using the following rules:
R1 If the task has read permission on the region and the

region instance is already valid, no data movement is
necessary for coherent read access.

R2 If the task has read permission on the region and the
region instance r is not valid, then r is made valid by
issuing a copy from an existing valid instance to r. The
issued copy is treated as a task that reads from the source
instance and writes to r, except it does not invalidate valid
instances.

W If the task has write permission on the region, all other
valid instances are invalidated and the written region
instance becomes the sole valid instance of the region.

Figure 2 illustrates one possible dependence analysis of
three task instances. For each task instance, the figure shows
changes in the list of valid instances and the resulting task
graph. The line under each valid instance denotes the coherence
rule applied. Note that task graphs contain edges for transitive
dependences between T1(R

α, Sα) and T2(R
β , Sα), and between

T1(R
α, Sα) and T3(R

α, Sα).

B. Recording Dependence Analysis

Dynamic tracing starts with the recorder recording the
dependence analysis of a trace. A recording for a trace is
initiated in two cases: when a trace has appeared for the first
time, or when no recording of a trace passes the precondition
check described in Section IV-D.

T ∈ TaskId I ∈ RegionInstance
e ∈ Event op ∈ Operation c ∈ Command
c::= e := op(op, e) | e := merge(e) | e := fence | c; c

op::= T (I ) | copy(I , I ) | · · ·

Fig. 3: Syntax of graph calculus

The recorder uses graph calculus, whose syntax is shown
in Figure 3, to express task graphs. Graph calculus uses events
that signal the termination of operations. An op command has
the form e2 := op(o, e1). The operation o begins execution
after the event e1 triggers, and the event e2 triggers when o
terminates. To express multiple predecessors for an operation,
the merge command merges a set of events into an event that
is triggered when the events being merged are all triggered. A
fence command creates a fence, an operation that finishes only
after all preceding operations terminate. Fences allow graph
calculus commands to work correctly with earlier untraced
parts of the execution, as the previous dependent operations
potentially include operations not in the trace. Finally, the
calculus has command sequencing.

The recorder generates graph calculus commands from
a dependence analysis of a trace as follows. Each trace
operation o has a corresponding command e2 := op(o, e1).
The termination event e2 is unique (is not used on the left-
hand side of any other op command). The event e1 is the
merge (using a merge command) of the termination events
of o’s dependence predecessors in the trace. For example,
in Figure 4, task instance T2(R

β , Sα) has two predecessors
T1(R

α, Sα) and copy(Rβ , Rα), whose events e2 and e3 are
merged into e4. If there is no predecessor (e.g., because this
is the first operation of the trace), a fence is introduced to
safely capture any dependences on those operations that are
not recorded. Task instance T1(R

α, Sα) in Figure 4 uses fence
e1 as it has no predecessor in the trace.

When the recorder reaches the end of the trace, the recorder
inserts an op statement for a summary operation, a task instance
that writes to all region instances used in the trace. The
key difference between a fence and a summary operation
is that a fence waits on all the preceding operations, both
within and out of the current trace, whereas the summary
operation has dependences only on operations within the trace.
Any subsequent operation that has dependences on any of
the replayed operations can safely catch the dependences
transitively through the summary operation.

The recorder also computes the precondition and postcondi-
tion of recorded commands, which are used in the replaying
stage; the precondition is a set of region instances that must be
valid for recorded commands to replay the same subgraph as
the original dependence analysis; the postcondition is a set of
region instances that become valid after recorded commands
replay a subgraph. The precondition and postcondition are
computed by processing trace operations in order, beginning
with empty pre and postconditions, and applying the following
rules:
• If rule R1 was applied to the region instance and the



Task Instance Task Graph Recorder State Recorded Commands

T1(R
α, Sα) copy1(Rβ , Rα) T3(Rα, Sα)T1(Rα, Sα)

Events: T1(R
α, Sα) 7→ e2

Preconditions: R 7→ Rα

Postconditions: R 7→ Rα , S 7→ Sα

Region Instances: Rα , Sα

e1 := fence;
e2 := op(T1(R

α, Sα), e1);

T2(R
β , Sα)

T3(Rα, Sα)T1(Rα, Sα)

copy1(Rβ , Rα) T2(Rβ , Sα)

Events: T1(Rα, Sα) 7→ e2

copy1(R
β , Rα) 7→ e3

T2(R
β , Sα) 7→ e5

Preconditions: R 7→ Rα

Postconditions: R 7→ {Rβ , Rα}, S 7→ Sα

Region Instances: Rβ , Rα, Sα

e3 := op(copy(Rβ , Rα), e2);
e4 := merge(e2, e3);
e5 := op(T2(R

β , Sα), e4);

T3(R
α, Sα)

T1(Rα, Sα)

copy1(Rβ , Rα) T2(Rβ , Sα)

T3(Rα, Sα)

Events: T1(Rα, Sα) 7→ e2
copy1(R

β , Rα) 7→ e3
T2(R

β , Sα) 7→ e5
T3(R

α, Sα) 7→ e7
Preconditions: R 7→ Rα

Postconditions: R 7→ Rα , S 7→ Sα

Region Instances: Rβ , Rα, Sα

e6 := merge(e2, e3);
e7 := op(T3(R

α, Sα), e6);

(End of the trace) Insert a summary operation:
e8 := merge(e2, e3, e5, e7);
e9 := op(Tsummary(R

β , Rα, Sα), e8);

Fig. 4: Recording of the dependence analysis in Figure 2

Original Dataflow Analysis Transitive Reduction Copy Propagation
e1 := fence; e1 := fence; e1 := fence;
e2 := op(T1, e1); e2 7→ e1 e2 := op(T1, e1); e2 := op(T1, e1);
e3 := op(copy, e2); e3 7→ e1, e2 e3 := op(copy, e2); e3 := op(copy, e2);
e4 := merge(e2, e3); e4 7→ e1, e2, e3 e4 := merge(e3);
e5 := op(T2, e4); e5 7→ e1, e2, e3, e4 e5 := op(T2, e4); e5 := op(T2, e3);
e6 := merge(e2, e3); e6 7→ e1, e2, e3 e6 := merge(e3);
e7 := op(T3, e6); e7 7→ e1, e2, e3, e6 e7 := op(T3, e6); e7 := op(T3, e3);
e8 := merge(e2, e3, e5, e7); e8 7→ e1, e2, e3, e4, e5, e6, e7 e8 := merge(e5, e7); e8 := merge(e5, e7);
e9 := op(Tsummary, e8); e9 7→ e1, e2, e3, e4, e5, e6, e7, e8 e9 := op(Tsummary, e8); e9 := op(Tsummary, e8);

Fig. 5: Optimizations on the commands in Figure 4 (region instances in operations are elided.)

region instance is not in the postcondition, that region
instance is added to the pre and postcondition.

• If rule R2 was applied to the region instance and the source
instance of the copy is not in the postcondition, that source
instance is added to the pre and postcondition. The target
instance of the copy is added to the postcondition.

• If rule W was applied to the region instance, the postcon-
dition of that region is cleared and that region instance is
added to the postcondition.

C. Optimizing Graph Calculus Commands

After a trace is recorded, and before it can be used, we apply
two standard compiler passes to optimize the trace: transitive
reduction and copy propagation.

Transitive reduction optimizes graph calculus commands by
removing transitive dependences. We run a dataflow analysis
that discovers all transitive predecessors for each event and then,
among the events being merged by each merge command, we
remove those that are transitive predecessors of any other event.
In Figure 5, event e2 is removed in the first and second merge
commands because it is a transitive predecessor of event e3, and
e2 and e3 are removed from the third merge command because
they are transitive predecessors of e5. Removing transitive
dependences reduces the cost of replaying the graph.

Transitive reductions sometimes leave only a single event in
a merge command, which is equivalent to a copy assignment.
We run copy propagation to eliminate those unnecessary copies.
For example, in Figure 5, the merge command e4 := merge(e3)
is removed and all occurrences of event e4 are replaced by e3.

D. Replaying Dependence Analysis

The next component of dynamic tracing is to replay depen-
dence analysis for a trace. Figure 6 illustrates how the replayer
replays dependence analysis for the second appearance of trace
T1(R

α, Sα); T2(R
β , Sα); T3(R

α, Sα) using a recording from the
first appearance of the trace. First, the replayer checks that
each region instance in the precondition is currently valid
(Step 1). If any region instance in the precondition is not valid,
the replayer cannot reuse recorded commands, because the
original dependence analysis of the trace would issue a copy to
make that region instance valid, which is not replayed by the
commands. If all recordings fail to pass the precondition check,
the replayer stops the current replay and the recorder starts a
new recording session. Otherwise, the replayer proceeds with
a recording whose precondition is satisfied. In Figure 6, the
set of valid instances after task instance T2(R

γ , Sα) is analyzed
subsumes the precondition and therefore the recording can be
replayed.



Task stream: begin_trace; T1(Rα, Sα); T2(Rβ , Sα); T3(Rα, Sα);end_trace; T2(Rγ , Sα);
begin_trace; T1(Rα, Sα); T2(Rβ , Sα); T3(Rα, Sα);end_trace; T2(Rγ , Sα);

Step 0: Record subgraph Step 2: Replay subgraph

T1(Rα, Sα)

copy1(Rβ , Rα) T2(Rβ , Sα)

T3(Rα, Sα)

copy2(Rγ , Rα) T2(Rγ , Sα)

fence T1(Rα, Sα)

copy1(Rβ , Rα) T2(Rβ , Sα)

T3(Rα, Sα) Tsummary(Rβ , Rα, Sα)

copy3(Rγ , Rα) T2(Rγ , Sα)

Step 1: Check precondition

R 7→ Rα v

Valid instances after
the first T2(Rγ , Sα) is analyzed

R 7→ {Rγ , Rα}, S 7→ Sα

Step 3: Apply postcondition

u R 7→ Rα, S 7→ Sα = R 7→ Rα , S 7→ Sα

Valid instances after
the second T2(Rγ , Sα) is analyzed

R 7→ {Rγ , Rα}, S 7→ Sα

Fig. 6: Replay of dependence analysis using the recording in Figure 4

Next, the replayer runs recorded commands to reconstruct
a subgraph (Step 2). Any explicitly parallel runtime system
that supports a synchronization primitive such as an event or
stream that can be used to express dependences between tasks
and data movement operations can implement graph calculus.
Many common runtime APIs support the requirements for graph
calculus. For example, both CUDA [20] and OpenCL [21] can
support graph calculus via their use of streams and events
respectively to mediate dependences between kernels and copy
operations. Furthermore, for distributed memory cases, systems
like Realm [2] and OCR [22] have event primitives that can
be used on any node to handle distributed execution of graph
calculus commands for computation and data movement.

When replaying a trace, graph calculus commands execute
sequentially to construct a subgraph equivalent to the one
produced by the original dependence analysis. The semantics
of graph calculus commands is straightforward, except for the
fence command. A fence command creates a new fence with
dependences on all operations that use any region instance
used by commands in the trace. However, the fence is not
connected to operations that do not access any region instances
used in the trace. This is to prevent those operations, which are
independent of the replayed subgraph, from being unnecessarily
blocked by that fence. In Figure 6, all users of region instances
Rα, Rβ , and Sα, which are the ones used in the recorded
commands, are connected to the new fence fence. Note that
the replayed subgraph does not contain transitive dependences
between T1(R

α, Sα) and T2(R
β , Sα), and between T1(R

α, Sα)
and T3(R

α, Sα), unlike the subgraph for the first trace, due to
the optimizations in Section IV-C.

Finally, the replayer updates the list of valid instances using
the postcondition (Step 3). The known valid instances after a
replay of a subgraph may be incorrect because the replayed
commands are not analyzed again by dependence analysis. The
replayer ensures the system has the correct set of valid instances
after replay by tagging region instances in the postcondition as
valid and invalidating all other instances. In Figure 6, region
instance Rγ is invalidated after the replay.

Before restarting dependence analysis, the replayer reinitial-

izes the dependence analysis state using the summary operation.
This makes the dependence analysis aware of the net effect of
the replayed operations; any subsequent operation can catch
its dependences on any of the replayed operations transitively
through this summary operation. For example, the dependence
between task instance T3(R

α, Sα) in the replayed graph and the
subsequent copy copy3(R

γ , Rα) is captured by those between
T3(R

α, Sα) and the summary operation Tsummary(R
β , Rα, Sα),

and between Tsummary(R
β , Rα, Sα) and copy3(R

γ , Rα).
Algorithm 1 shows the complete dynamic tracing algorithm.

The algorithm has two modes: analysis mode (DEP) and tracing
mode (TRACE). If it is in analysis mode, the algorithm maps
each task call to a task instance that goes through the normal
dependence analysis. Otherwise, the algorithm builds a trace
of task instances until it hits the end of that trace (line 11),
and it either records or replays the trace (RecordOrReplay),
based on the criteria described in this section. The algorithm
changes from analysis mode to tracing mode when it sees the
beginning of a trace (line 9), and from tracing mode to analysis
mode once it finishes either a recording or a replay (line 13).

E. Optimizing Replay Using Idempotent Recordings

Recognizing idempotent recordings is crucial to providing
an optimized implementation of dynamic tracing. A recording
of a trace is idempotent when its postcondition implies its
precondition. For example, the recording in Figure 4 is
idempotent as its postcondition R 7→ Rα, S 7→ Sα contains its
precondition R 7→ Rα.

The most important property of idempotent recordings is that
once an idempotent recording is replayed for a trace, it becomes
replayable without having to apply its postcondition and check
its precondition again for another replay that immediately
follows. In other words, a list of valid instances that satisfies the
precondition of an idempotent recording once will still satisfy
that precondition no matter how many times the recording is
replayed. This allows two further optimizations:
• Once the precondition of an idempotent recording passes,

the algorithm never checks the precondition for future
consecutive replays of the same trace.



• The algorithm can delay applying the postcondition of an
idempotent tracing until it gets a different trace or a task
that is not in any trace.

Algorithm 2 shows a modified algorithm to incorporate these
optimizations. There are several differences in Algorithm 2
from Algorithm 1. First, Algorithm 2 keeps the previous
trace and recording to check that the same trace is repeatedly
replayed (line 30–31). Next, it replays a recording without
any check when it realizes it is replaying an idempotent
recording repeatedly (line 18–19). Finally, it applies the pending
postcondition in cases when the current trace is different from
the previous one (line 21–22) or when the task does not belong
to any trace (line 5–6).

F. Fence Elision

Another important optimization that idempotent recordings
allow is fence elision. Although the fence and the summary
operation safely connect a subgraph replayed by graph calculus
commands to that generated by dependence analysis and
vice versa, they may introduce spurious dependences between
operations because they are a join point in the task graph. For
example, in Figure 7c, the summary operation Ts(R

α, Sα) and
the fence fence add spurious dependences between the first
B(Rα) and the second A(Sα), and between the first B(Sα) and
the second A(Rα). In case of repeatedly replaying the same
trace with an idempotent recording, the replayer can keep
appending the subgraph from each replay without needing
to issue a fence and register the summary operation as these
replays do not require precondition checks.

Figure 7 illustrates fence elision. First, we “extend” the trace
by unrolling the recorded commands in Figure 7b once, as in
Figure 7d. Events that belong to the second trace are renamed
to those with a prime, to distinguish them from those in the

Algorithm 1: Dynamic tracing algorithm
Data: A tracing state ST ∈ {DEP,TRACE}, initially DEP
Data: A current trace TR, initially ∅

1 Procedure DynamicTracing(call):
2 if call is a task :
3 T ← Map(call)
4 if ST is DEP :
5 AnalyzeDependence(T)
6 elseif ST is TRACE :
7 TR ← TR;T
8 elseif call is begin_trace :
9 ST ← TRACE

10 TR ← ∅
11 elseif call is end_trace :
12 RecordOrReplay()
13 ST ← DEP

14 Procedure RecordOrReplay():
15 if ∃ recording R for TR that passes precondition check :
16 Replay(R)
17 ApplyPostcondition(R)
18 else:
19 R ← Record(TR)
20 register R to the runtime system

first trace. Second, dependences on the fence in the second
trace are replaced with the actual dependences on operations in
the first trace. In the unrolled commands, each operation that
belongs to the second trace either immediately or transitively
depends on fence e′1 that blocks operations in the first trace.
After we remove that fence, each operation individually waits
for dependent operations in the first trace. For each region
instance of a task instance, the predecessors from the first trace
are identified as follows:

• If the task instance can write to the region instance r, all
readers and writers of r are added to the predecessors.

• If the task instance only reads from r, only the writers of
r are added to the predecessors.

For example, the original predecessor event e′2 of task instance
B(Rα) is merged with event e2, which is the writer of Rα in
the first trace, to get a new predecessor event eB1 in Figure 7e.
Once all uses of the fence are replaced with individual events,
transitive reduction and copy propagation are applied to the
commands. (The result is in 7f.) Finally, we generalize the
optimized commands to get the final commands in Figure 7g

Algorithm 2: Dynamic tracing algorithm with opti-
mizations for idempotent recordings

Data: A tracing state ST ∈ {DEP,TRACE}, initially DEP
Data: A current trace TR, initially ∅
Data: A previous trace TR′, initially ∅
Data: A previous recording R′, initially ∅

1 Procedure DynamicTracing(call):
2 if call is a task :
3 T ← Map(call)
4 if ST is DEP :
5 if R′ is idempotent :
6 ApplyPostcondition(R′)
7 R′ ← ∅
8 AnalyzeDependence(T)
9 elseif ST is TRACE :

10 TR ← TR;T
11 elseif call is begin_trace :
12 ST ← TRACE
13 TR ← ∅
14 elseif call is end_trace :
15 RecordOrReplay()
16 ST ← DEP

17 Procedure RecordOrReplay():
18 if TR = TR′ ∧ R′ is idempotent :
19 Replay(R′)
20 else:
21 if R′ is idempotent :
22 ApplyPostcondition(R′)
23 if ∃ recording R for TR that passes precondition

check :
24 Replay(R)
25 if R is not idempotent :
26 ApplyPostcondition(R)
27 else:
28 R ← Record(TR)
29 register R to the runtime system
30 R′ ← R
31 TR′ ← TR



Tasks: task A(x) reads writes(x) task B(x) reads(x) Trace: A(Rα); A(Sα); B(Rα); B(Sα);

A(Rα)

A(Sα)

B(Rα)

B(Sα)

(a) Task graph of the trace

I1 =



e1 := fence;
e2 := op(A(Rα), e1);
e3 := op(A(Sα), e1);
e4 := op(B(Rα), e2);
e5 := op(B(Sα), e3);
e6 := merge(e4, e5);
e7 := op(Ts(R

α, Sα), e6);

(b) Recorded commands

A(Rα)

A(Sα)

B(Rα)

B(Sα) Ts(Rα, Sα)

fence A(Rα)

A(Sα)

B(Rα)

B(Sα)

(c) Task graph from two replays without fence elision

e′1 := fence;
e′2 := op(A(Rα), e′1);
e′3 := op(A(Sα), e′1);
e′4 := op(B(Rα), e′2);
e′5 := op(B(Sα), e′3);
e′6 := merge(e′4, e

′
5);

e′7 := op(Ts(R
α, Sα), e′6);

(d) Unroll trace once

eA1 := merge(e2, e4);
e′2 := op(A(Rα), eA1 );
eA2 := merge(e3, e5);
e′3 := op(A(Sα), eA2 );
eB1 := merge(e′2, e2);
e′4 := op(B(Rα), eB1 );
eB2 := merge(e′3, e3);
e′5 := op(B(Sα), eB2 );
e′6 := merge(e′4, e

′
5);

e′7 := op(Ts(R
α, Sα), e′6);

(e) Replace fence e′1 with readers
and writers in I1

e′2 := op(A(Rα), e4 );
e′3 := op(A(Sα), e5 );
e′4 := op(B(Rα), e′2 );
e′5 := op(B(Sα), e′3 );
e′6 := merge(e′4, e

′
5);

e′7 := op(Ts(R
α, Sα), e′6);

(f) Transitive reduction and copy
propagation

// only in the first replay:

e4 := fence;
e5 := e4;

e′2 := op(A(Rα), e4);
e′3 := op(A(Sα), e5);
e′4 := op(B(Rα), e′2);
e′5 := op(B(Sα), e′3);
e4 := e′4;
e5 := e′5;

// only in the last replay:

e′6 := merge(e′4, e
′
5);

e′7 := op(Ts(R
α, Sα), e′6);

(g) Final commands

Region Instance Readers Writers
Rα e2, e4 e2
Sα e3, e5 e3

(h) Readers and writers of region instances

A(Rα)

A(Sα)

B(Rα)

B(Sα)

A(Rα)

A(Sα)

B(Rα)

B(Sα)

(i) Task graph with fence elision

Fig. 7: Fence elision

for repeated replays. Note that these commands can be used
in both one-time replay and repeated replays. Figure 7i shows
a task graph from two replays with fence elision.

We can also concatenate two different traces in a similar
way when one’s postcondition subsumes the precondition of
another. However, concatenating two different traces is of less
use than unrolling the same trace as the latter appears more
frequently in real applications.

V. IMPLEMENTATION

We have implemented dynamic tracing in Legion, a C++
runtime system for task parallelism [1]. Legion has a de-
pendence analysis pipeline similar to the one described in
Section III and builds a task graph using Realm [2], a
low-level system for building and executing distributed task
graphs. We augment Legion’s existing dependence analysis to
generate graph calculus programs for traces. Graph calculus
is implemented as a set of commands that internally call the
Realm API to construct task graphs.

In the rest of this section, we briefly discuss the ways in
which our implementation for Legion extends the algorithm
presented in this paper.

A. Overlapping Regions

For simplicity of exposition, we have assumed that regions
and region instances are unique and each region instance
represents only one region. In the Legion programming model,
regions can be partitioned into subregions, and thus can overlap
with each other in non-trivial ways. This complicates the

dependence analysis, but has no fundamental impact on how
dynamic tracing generates graph calculus commands.

B. Fills and Reductions

Legion provides fills, which are lazy copies from a constant
value. We incorporate fills as another kind of operation that
can be used in the op command.

As discussed in Section 3, Legion tasks can request reduction
permission on regions. Reduction tasks are parallelized by
summarizing the update from each task into a temporary
instance and lazily aggregating such instances to compute
the final value when it is requested in subsequent tasks.

C. Parallel Dependence Analysis

A task can launch subtasks, and thus tasks that run in parallel
can generate their own streams of tasks. The programming
model guarantees the children of independent tasks are also
independent and thus concurrent task streams are independent
of each other [1]. We have extended dynamic tracing to
support concurrent, distributed task streams by taking separate
recordings per stream and replaying them independently.

The Legion runtime also pipelines dependence analysis
of task streams. The recording procedure of graph calculus
commands is divided into several steps, one for each pipeline
phase.

D. Parallel Trace Replay

As sequential replay of a trace can become a performance
bottleneck, we implemented parallel replay of a trace. Figure 8



Extended graph calculus c ::= · · · | e := event | trigger(e, e)

Original trace:
e2 := op(A, e1);
e3 := op(B, e2);

=⇒

e2 := event;
↙ ↘

Slice 1: Slice 2:
et := op(A, e1); e3 := op(B, e2);
trigger(e2, et);

Fig. 8: Transformation for parallel trace replay

illustrates the key transformation for parallel replay. A trace
is split into slices. Commands appear in slices in the same
order as the original trace and any events that are created in
one slice and referenced in other slices are connected using
the graph calculus extension shown in the figure. A command
e := event creates a new untriggered event and assigns it to
an event variable e. A command trigger(e1, e2) registers an
event dependence such that event e1 is notified as soon as e2 is
triggered, which simply corresponds to adding an edge between
the operations represented by e2 and e1. Slices generated from
a trace can be replayed in parallel.

Minimizing events that “cross” the slice boundary is impor-
tant for reducing the number of intermediate events for parallel
replay, for which we exploit the implicit knowledge encoded
in an application’s task mappings: We put tasks mapped to
the same processor in the same slice as much as possible
because in a well-mapped program they are more likely to
have dependences on one another.

VI. EVALUATION

We evaluate dynamic tracing on five programs ranging
from quite small and regular and static, to full applications
that are complex and irregular: Stencil [23], a 9-point stencil
benchmark on 2D grids; Circuit [24], a circuit simulator for
unstructured circuit graphs; PENNANT [25] and MiniAero [26],
proxy applications for unstructured meshes from Los Alamos
and Sandia National Laboratories; and Soleil-X [27], [28],
a compressible fluid solver on 3D grids developed to study
turbulent fluid flow in channels. All programs are written in
Regent [29], a high-level programming language that targets
Legion, and were run with control replication [24], an optimiza-
tion that is orthogonal to dynamic tracing. These programs have
competitive or better weak scaling performance than reference
implementations [30], where reference implementations are
available. Table I shows benchmark metrics, the number of
the tasks and copies each node must analyze per iteration.
Programs using unstructured meshes have indirect indexing on
regions, which require dependences be resolved dynamically.
For the two biggest programs, MiniAero and Soleil-X, Legion’s
dynamic task scheduling plays a crucial role in overlapping
communication with computation as their tasks have parallelism
due to field non-interference [31]; i.e., a task accessing field

Stencil Circuit PENNANT MiniAero Soleil-X
Num. tasks 16 27 67 288 448

Num. copies 31 49 54 552 928

TABLE I: Number of tasks and copies per iteration

f of a region can run in parallel with a copy for field g of
the same region initiated by another task. For three programs
(Stencil, PENNANT, and MiniAero), we are able to compare
with publicly available reference MPI versions.

Due to their iterative nature, all five programs have a “main”
loop where they spend most of their execution time. For Stencil,
Circuit, and PENNANT, we annotate the body of this main loop.
For MiniAero and Soleil-X, which implement a fourth-order
Runge-Kutta time marching scheme, we set the annotation on
the body of this time marching loop nested within the main
loop. Each application has only one trace because there is no
change in the task mapping and dynamic tracing is able to
find one idempotent recording of the trace. Identifying loops
that merit annotation was trivial for these programs and could
easily be automated.

We measured performance when the program reached steady
state; i.e., the state where the program starts replaying a
recording repeatedly.

We use GCC 5.3 to compile the Legion runtime and
the MPI reference implementations. Regent uses LLVM for
code generation; we use LLVM 3.8. We report performance
for each application on up to 256 nodes of the Piz Daint
supercomputer [32], a Cray XC50 system; nodes are connected
by an Aries interconnect and each node has 64 GB of memory
and one Intel Xeon E5-2690 CPU with 12 physical cores.

For strong scaling measurements, we chose problem sizes for
which runs stop scaling ideally without dynamic tracing at 32
or fewer nodes. Table II summarizes the results as throughput
normalized by single node throughput without dynamic tracing.
Dynamic tracing improves the speedup of applications by 4.2×
or more, except for PENNANT, which is improved by 2.8×.
Unlike the other programs, the main loop in PENNANT is
guarded by a convergence predicate that in turn prevents a
replay of the trace until the condition is resolved. A trace
replay overlaps with tasks only for 25% or less of the time
per iteration, which explains an improvement that is 4× off of
the improvement in the runtime overhead. Circuit shows the
biggest discrepancy between the improvement in the runtime
overhead and strong scaling simply because the runs did not
reach a point where they are limited by the replay overhead.

To study the effect of optimizations for idempotent record-
ings, we also measure the performance of runs where dynamic
tracing is used without those optimizations (column Tr.\Opt.).
The use of idempotent recordings improves performance by
an average of 5% and a maximum of 19%. More importantly,
dynamic tracing without optimizations sometimes perform
worse than the run without dynamic tracing because of spurious
dependences introduced by fences, which means fence elision
is crucial. The only program immune to the absence of
optimizations is Circuit, which has all-to-all dependences
between tasks on each node, which results in sightly longer
sequences of graph calculus commands after fence elision.

For Stencil, PENNANT, and MiniAero, we also compare per-
formance with expert-written MPI reference versions (column
MPI); these applications are static and well suited to MPI-
style programming. Note that the MPI versions of Stencil and



Nodes
Normalized Throughputs

Stencil (0.4B cells) Circuit (74K wires) PENNANT (29M zones) MiniAero (1M cells) Soleil-X (8.4M cells)

No Tr. Tr.\Opt. Tr.
MPI

No Tr. Tr.\Opt. Tr. No Tr. Tr.\Opt. Tr.
MPI

No Tr. Tr.\Opt. Tr.
MPI

No Tr. Tr.\Opt. Tr.
9R 12R 9R 12R 8R

1 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.2 1.0 0.9 1.0 0.3 1.0 1.0 1.0
2 2.0 2.0 2.0 1.9 2.1 2.0 2.0 2.0 2.2 2.2 2.2 1.9 2.3 2.1 1.8 2.1 0.6 2.0 2.0 2.0
4 4.1 4.0 4.1 3.7 4.1 3.9 4.0 3.9 4.5 4.3 4.6 3.8 4.6 4.2 3.8 4.4 1.3 3.3 3.8 3.9
8 8.1 8.0 8.2 7.4 8.2 7.3 7.5 7.6 8.6 8.4 9.1 7.6 9.3 8.1 8.7 9.0 3.0 5.3 6.9 7.2
16 16.0 15.7 16.2 14.8 16.3 13.3 13.6 14.0 16.6 15.3 16.8 14.9 18.3 14.9 17.3 16.8 7.3 7.6 11.9 12.7
32 31.3 30.1 32.0 29.2 32.4 24.7 25.5 25.9 29.6 28.4 30.3 29.2 36.4 21.7 31.3 32.1 16.0 9.0 17.9 18.7
64 50.1 54.3 61.9 57.9 63.3 18.0 48.1 49.7 54.0 55.8 60.8 56.7 71.8 24.0 54.0 55.0 30.0 10.2 31.5 32.4

128 68.3 108.0 126.3 116.6 134.3 8.3 87.4 90.2 71.4 106.2 117.6 115.6 139.6 23.7 90.9 94.8 51.0 10.6 53.0 54.8
256 77.2 269.7 320.0 259.8 387.5 4.2 133.7 131.4 68.8 185.0 198.5 211.4 250.1 22.9 121.4 123.4 58.2 5.7 69.5 74.0

max(Tr.)
max(No Tr.)

4.2 5.3 2.8 5.1 7.0

TABLE II: Strong scaling performance. Numbers in bold face show the maximum throughput achieved in each configuration.
Underlined numbers mean that the runs performed worse than those without dynamic tracing. Columns 8R, 9R, and 12R show
numbers from runs with 8, 9, and 12 ranks, respectively.

PENNANT are 21-26% faster than the Legion versions. Legion
requires resources for its runtime system to make dynamic
decisions (e.g., about tracing). In these experiments the Legion
runtime is configured to use 3 CPUs (out of 12) per node.
When the MPI versions use the same number of application
processors as Regent counterparts (column 9R), MPI Stencil
performs worse than the Regent version and MPI PENNANT
is slower up to 128 nodes and becomes 6% better on 256
nodes. The MPI reference of MiniAero, which only allows the
number of ranks to be a power of 2, starts 3× slower than
the Regent version, which is consistent with [24], and loses
scalability earlier.

Lastly, we use MiniAero and Soleil-X to calculate the
average task granularity supported by dynamic tracing. In these
two applications, tasks are almost completely overlapped with
the runtime overhead and copies, which make them suitable
for studying task granularity. Table III shows the minimum
time per iteration and the number of tasks each processor
runs, from which we derive the average task granularity.
The task granularity for MiniAero is half that for Soleil-X
because Soleil-X has roughly twice as many regions per task
as MiniAero, leading to twice as many copies on average to
replay per task (5.4 regions per task on average vs. 3.1).

VII. RELATED WORK

Dynamic tracing can be applied to any task-based system that
constructs task graphs using dynamic dependence analysis [4],
[5], [11], [19]. Hoque et al. [4] reports that dynamic task-based
systems require a larger granularity of tasks than explicitly
parallel programs to be efficient; our results show that dynamic
tracing can eliminate most of that overhead.

Execution templates [6] have a goal similar to dynamic
tracing. Both aim to reduce the overhead for executing

MiniAero Soleil-X
Tr. No Tr. Tr. No Tr.

Num. tasks per processor 36 56
Min. time per iteration 6.6ms 33.8ms 23.1ms 161.2ms
Avg. task granularity 183us 940us 413us 2,879us

TABLE III: Average task granularity

tasks on distributed memory systems. However, the program
representation used by execution templates is explicitly parallel
as it requires each command to specify a before set: a set
of previous commands for which the command must wait; in
contrast dynamic tracing takes a stream of implicitly parallel
tasks. Furthermore, execution templates map nodes in a task
graph directly onto workers, thereby requiring edits to the graph
for any subsequent changes in scheduling, etc. In dynamic
tracing the execution of a task graph is decoupled from
graph construction, and therefore dynamic tracing still provides
scheduling flexibility.

Dynamic tracing and Inspector-Executor (I/E) methods [33],
[34] are based on the same record-and-replay idea, but to
achieve orthogonal goals; I/E methods record working sets of
irregular array accesses, whereas dynamic tracing memoizes
dynamic tasks dependences. As a result the details are very
different; for example, I/E methods do not need to deal with the
possibility of dynamic changes in runtime mapping decisions
for data.

VIII. CONCLUSION

Dynamic tracing improves strong scaling performance by
efficiently capturing and soundly replaying task graphs of traces.
We have presented a complete design of dynamic tracing with
several key optimizations. We have also demonstrated that an
implementation of dynamic tracing improves strong scaling
performance of already optimized Regent applications by an
average of 4.9× at 256 nodes.
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APPENDIX

In this appendix, we evaluate how much dynamic tracing
reduces the cost of dynamic dependence analysis by measuring
the runtime overhead with and without dynamic tracing. We
use the synthetic benchmark program in Figure 9, which has
two desirable properties. First, the program performs no actual
computation so we can count all execution time as runtime
overhead. Second, the program exhibits a simple pattern of
task dependencies, which allows to compute a bound on the
possible improvement from dynamic tracing. Each iteration of
the outer most loop launches N parallel tasks S times where N

is the number of CPUs remaining after allocating some for the
runtime. The tasks form N chains of dependent tasks, where
the ith chain consists of S tasks that read and write region A[i].
Figure 10 illustrates the task graph of the synthetic benchmark
program.

We place the tracing annotation on the outer for loop (lines
4 and 10) and vary the value of S to study the effect of trace
size (S · N) on the reduction of runtime overhead. We also
run the program with different numbers of runtime threads to
measure the benefit of parallel replay.

Figure 11a shows the improvement in the runtime overhead
for four configurations of parallel replay. The legend shows
the number of runtime threads being allocated for parallel
dynamic dependence analysis and trace replay, and also the
corresponding value of N. In all four plots, a longer trace
leads to a greater improvement in the runtime overhead as
it better amortizes the constant overhead of initializing every
trace replay.

The plots also show that increasing the number of runtime
threads has diminishing returns, which occurs for two reasons.

1 task F(x) reads(x),writes(x) do end
2

3 while * do
4 begin_trace
5 for s = 0,S do
6 for i = 0,N do
7 F(A[i])
8 end
9 end

10 end_trace
11 end

Fig. 9: Synthetic benchmark program

S︷ ︸︸ ︷
F(A[0]) F(A[0]) · · · F(A[0])

F(A[1]) F(A[1]) · · · F(A[1])

...

F(A[N− 1]) F(A[N− 1]) · · · F(A[N− 1])

Fig. 10: Task graph of the program in Figure 9

First, dynamic tracing only reduces the runtime overhead
for dependence analysis and there are several other steps in
Legion’s task processing pipeline. Second, the performance
of parallel dependence analysis and trace replay scale sub-
linearly in the number of runtime threads, because both parallel
dependence analysis and trace replay have portions that run
sequentially; Legion performs a sequential preliminary analysis
on tasks for parallelizing the subsequent dependence analysis
and dynamic tracing sequentially initializes crossing events
for parallel trace replay. To better understand how these two
factors incur diminishing returns, we use the following model
Odep(T ) of runtime overhead when the number of runtime
threads is T :

Odep(T ) = Cdep · s(T ) +
Cpipe

T
,

where Cdep denotes the dependence analysis overhead with one
runtime thread, Cpipe is all the cost of Legion’s task processing
pipeline except for dependence analysis, and s(T ) models the
sub-linear speedup governed by Amdahl’s law; i.e.,

s(T ) =
1

(1− p) + p/T
,

where p is the proportion of dependence analysis that is
parallelized (0 < p < 1). In the model, we assume the cost
Cpipe of Legion’s task pipeline except for dependence analysis
can be perfectly parallelized across T threads as they are
embarrassingly parallel. The model Oreplay(T ) of the trace
replay overhead when the number of runtime threads is T
is the same as Odep(T ) except that the dependence analysis
overhead is replaced with the parallel trace replay overhead
Creplay · s(T ):

Oreplay(T ) = Creplay · s(T ) +
Cpipe

T
,

where Creplay denotes the trace replay overhead with one
runtime thread. (We use the same s(T ) to model the sub-
linearity of both parallel dependence analysis and trace replay,
to simplify the analysis, though using two different models
does not change the result.) The improvement I(T ) in runtime
overhead is a ratio of Odep(T ) to Oreplay(T ):

I(T ) =
Odep(T )

Oreplay(T )
=

Cdep + Cpipe/(s(T ) · T )
Creplay + Cpipe/(s(T ) · T )

.

Note that as T increases, I(T ) approaches asymptote I =
Cdep/Creplay; this means that the improvement in the depen-
dence analysis overhead becomes a dominant component in
I(T ). Finally, the return R(T ) = I(T +1)− I(T ) of using an
additional runtime thread when there are T threads reaches 0
as T goes to infinity (i.e., limT→∞R(T ) = 0), which implies
that R(T ) is diminishing as T increases. The plot of R(T ) in
Figure 12 also clearly shows the trend of diminishing returns.
(For the plot, we fit our model to the experiment results by
assuming that dependence analysis is 10× heavier than the rest
of analysis pipeline, that 90% of parallel dependence analysis
and trace replay is perfectly parallelized, and that dynamic
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Fig. 11: Runtime overhead of the synthetic benchmark program

tracing eliminates 85% of the dependence analysis overhead;
i.e., 10Cpipe = Cdep, Creplay = 0.15Cdep, and p = 0.9.)

Figure 11b shows the average runtime overhead per task with
dynamic tracing. Average overhead per task decreases as trace
size increases and eventually saturates once the overhead for
initializing trace replay is sufficiently amortized. The plots
exhibit a similar trend of diminishing returns as those in
Figure 11a, but because of Amdahl’s law; the Creplay · s(T )
term becomes dominant in Oreplay(T ) as T increases.

Next, we also evaluate how much dynamic tracing reduces
the runtime overhead for five applications used in Section VI.
To isolate the runtime overhead from application work or
communication, we apply the same methodology used for the
synthetic benchmark: We modify applications to only launch
tasks and run no actual computations, and we count their
execution time as runtime overhead. We allocate three runtime

1 2 3 4
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1

2

T

R
(T

)

Fig. 12: Diminishing return function R(T )

threads, the configuration used in the strong scaling runs.
Table IV summarizes the measured runtime overhead per trace.
In all five applications, dynamic tracing reduces the runtime
overhead by more than 7×. Circuit and PENNANT enjoy
noticeably greater improvement than the others because they
have reduction tasks and copies that make dynamic dependence
analysis more expensive. Table IV also shows the one-time
cost for trace optimization, which is just a few milliseconds
even for the longest trace.

The improvement in runtime overhead gives an upper bound
on the possible improvement in strong scaling performance. The
actual strong scaling improvement in Section VI is influenced
by many factors (such as inter-node communication) of which
runtime overhead is just one, though it is often the most
important one.

Stencil Circuit PENNANT MiniAero Soleil-X
No Tracing 2.23 10.29 10.47 4.99 19.41

Tracing 0.29 0.53 0.86 0.68 2.26
Improv. 7.6× 19.5× 12.2× 7.4× 8.6×

Trace size 47 76 121 210 344
Trace opt. 0.72 1.70 3.90 1.75 5.86

TABLE IV: Runtime overhead per trace (all in milliseconds)


