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“Make a tower in the middle and center of the table”

“Make a short line out of mugs in the middle and center of the table”
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“Set the table in the center left, relative to you.”
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Fig. 1: Real-world rearrangement with unseen objects, given a language instruction. We use StructDiffusion to predict possible goals that satisfy physical
constraints such as avoiding collisions between objects. At the core of StructDiffusion is an object-centric multimodal transformer backbone combined with
a diffusion model, capable of sampling diverse high-level motion goals for language-guided rearrangement.

Abstract—Robots operating in human environments must be
able to rearrange objects into semantically-meaningful configura-
tions, even if these objects are previously unseen. In this work, we
focus on the problem of building physically-valid structures with-
out step-by-step instructions. We propose StructDiffusion, which
combines a diffusion model and an object-centric transformer
to construct structures given partial-view point clouds and high-
level language goals, such as “set the table”. Our method can
perform multiple challenging language-conditioned multi-step 3D
planning tasks using one model. StructDiffusion even improves
the success rate of assembling physically-valid structures out of
unseen objects by on average 16% over an existing multi-modal
transformer model trained on specific structures. We show exper-
iments on held-out objects in both simulation and on real-world
rearrangement tasks. Importantly, we show how integrating both
a diffusion model and a collision-discriminator model allows for
improved generalization over other methods when rearranging
previously-unseen objects. For videos and additional results, see
our website: https://structdiffusion.github.io/.

I. INTRODUCTION

Structures are everywhere in the real world: shelves are
stocked, tables are set, furniture is assembled. For robots to be
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successful assistants and collaborators, they must understand
object structures and build these structures based on human
commands. In this work, we predict how previously-unseen
objects should be rearranged in order to realize language
instructions, given only partial-view point cloud of a scene.
Solving this task requires models that can reason about dif-
ferent constraints over where objects should be at once (e.g.,
object geometry, language-driven task semantics, physics) and
generate solutions that respect all these constraints.

Assume a robot is given a language instruction such as
“set the table.” First, the objects must in the correct relative
positions in order to satisfy desired spatial and semantic
relations: utensils on the sides, plate in the center, for example.
Second, arrangements must be physically valid: even if the
plate is bigger than the robot saw in training data, it should
not collide with the utensils. These constraints correspond to
two overlapping, but not identical, sets of possible solutions
where a robot can place objects.

One potential approach for this task is to train a language-
conditioned multi-modal transformer to directly predict the
best sequence of actions the robot should take [1, 2, 3, 4, 5].
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Such models have achieved impressive results on pick-and-
place tasks for known objects [1, 3]; however, for structure
generation of unseen objects, regressing to a single solution
can often create problems when there are multiple, poten-
tially conflicting, constraints (e.g., place objects “tightly”
but avoid collisions) [4]. By contrast, planning-inspired ap-
proaches work by generating and refining a distribution over
estimated poses [6], most notably diffusion models [7, 8].
Such diffusion models have shown applications not just to
image generation [9, 10, 11, 12], but to motion planning and
pose estimation [8, 7], and to rearrangement [12], achieving
better results than previous policies due to their ability to more
accurately capture the space of potential solutions.

We hypothesize that by iteratively refining predicted goals
from a diffusion model, subject to learned constraints, we
can similarly find better solutions for language-conditioned
structure creation. In our approach, called StructDiffusion, we
first use unknown object instance segmentation to break up our
scene into objects, as per prior work [6, 13, 14, 15]. Then, we
use a multi-modal transformer to combine both word tokens
and object encodings from Point Cloud Transformer [16] in
order to make 6-DoF goal pose predictions. These predictions
are both refined iteratively via diffusion and the best goal is
selected with a “discriminator” model that is trained to recog-
nize unrealistic samples. Because goals are predicted relative
to the observed partial-view point clouds of the objects, it’s
possible to get strong results without any object models or
object foreknowledge. We train two main components:

1) An object-centric, language-conditioned diffusion
model, which learns how to construct different types
of multi-object structures from observations of novel
objects and language instructions.

2) A learned discriminator, which drastically improves
performance by rejecting samples violating physical
constraints.

This approach allows StructDiffusion to resolve problems
not possible in previous work. Compared to an existing single-
task model and a strong multi-task baseline we introduce,
StructDiffusion achieves 16.3% and 13.5% higher success
rates respectively. To our knowledge, StructDiffusion is the
first work that can build multiple structures requiring stacking
and 3D reasoning, while generalizing over different unseen
objects given high-level language instructions. We believe that
this approach will allow for language-guided control of robots,
to be applied to more complex tasks and environments.

II. RELATED WORK

Language-conditioned manipulation is a fast-growing area
of research [2, 17, 4, 3, 18, 19, 20]. Recently. Say-Can [21]
showed how a large language model (LLM) can be used to
sequence robot skills to respond to a wide range of natural-
language queries. This work has been extended to use a map
and object-centric representation of the world [22]. As this
line of work leverages LLMs for reasoning, they use a purely
language-based version of the world and require efforts in
prompt engineering [13, 23, 21]. Another thread of work looks

more closely at learning language-conditioned skills, and has
achieved impressive results on a variety of pick-and-place and
articulated object manipulation tasks [2, 18, 3]; however, these
approaches yet to demonstrate whether the skills can be se-
quenced to create more complex structures we study here. It’s
worth noting that several of these works have used an object-
centric representation of the world [1, 22, 4], where objects
are first segmented or detected and then encoded separately.
For example, VIMA [1] used encoded object patches as input
to a multimodal transformer. These works, however, do not
look specifically at generating physically realistic structures:
in our experiments, we show how these direct-regression-first
approaches do not generate the same quality of structures, and
that, in particular, simply predicting the best placement poses
or actions will lead to more failures.

Our work is related to planning with unknown objects.
Simeonov et al. [24] propose a planning framework for rigid
objects, but they do not study structures with complex depen-
dencies. Curtis et al. [25] investigate task and motion planning
with unknown objects, which relies on a similar segmentation
and grasping pipeline we use, but does not look at learning
goals, instead assume access to a set of predicates (e.g., Red,
on) which can be evaluated at planning time.

Furthermore, there is a set of works which learn object-
object relations for planning [6, 26, 27, 28], which is relevant
to our method’s refinement process. Many of these do so
explicitly. In particular, learning object skill preconditions is
very useful for sequential manipulation, so some works look
at predicting relationships in this context [29, 27, 30]. For
example, SORNet [27] learns to predict relations between
objects given a canonical image view of the objects; sim-
ilarly a predictive model from image inputs is learned for
capturing relationships [30]. These object-object relations are
an important part of planning sequential manipulation as per
StructDiffusion, but we pay attention to implicitly classifying
object relationships as a whole.

Finally, a set of recent works have explored how diffusion
models may be applied to robotics [7, 31, 8, 12, 32]. In
[7, 31, 32], the diffusion model is used to parameterize
the motion planning procedure, while our approach focuses
on generating rearrangement goals for manipulation. Further-
more, these works require known object models and are not
conditioned on flexible language goals. Similar to our work,
in DALL-E-Bot [12], DALL-E is used to generate a goal
image for an arrangement of multiple objects, from which
object matching is used to obtain an rearrangement of objects.
However, this approach assumes that underlying state of world
can be captured using an overhead image, as a generated image
is used to parameterize the final goal and a motion plan. In
our case, we directly generate object placement poses given
point cloud observations, and are thus unrestricted by which
position or angle the image is generated from.

III. PRELIMINARIES

We provide background information on diffusion mod-
els [10, 11] and transformers [33]. These two neural network
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Object-Centric Diffusion Model

Fig. 2: Overview of the object-centric diffusion model. We combine a diffusion model with an object-centric multimodal transformer to
iteratively reason about both 3D object embeddings and task specification in language, and to predict goal poses of objects.

structures provide core components for our approach.

A. Diffusion Models

Denoising Diffusion Models are a class of generative mod-
els [10, 11]. Given a sample x ∼ q(x0) from the data
distribution. The forward diffusion process is a Markov chain
that creates latent variables x1, ..., xT by gradually adding
Gaussian noise to the sample:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

Here βt follows a fixed variance schedule such that the
variance at each step is small and the total noise added to the
original sample in the chain is large. These two conditions
allows sampling x0 ∼ pθ(x0) from a reverse process that
starts with a Gaussian noise xT and follows a learned Gaussian
posterior

pθ(xt−1|xt) ∼ N (xt−1;µθ(xt, t),Σθ(xt, t))

In this work, we adopt the simplified model introduced in
[11] that fixes the covariance Σθ(xt, t) to an untrained time-
dependent constant and reparameterize the mean µθ(xt, t)
with a noise term εt. Diffusion models can be trained to
minimize the variational lower bound on the negative log-
likelihood E[− log pθ(x0)]. A simplied training objective with
the reparameterized mean can be derived as:

Lsimple = Et∼[1,T ],x0∼q(x0),ε∼N (0,I)[||ε− εθ(xt, t)||2]

B. Transformers

Transformers were proposed in [33] for modeling sequential
data. At the heart of the Transformer architecture is the scaled
dot-product attention function, which allows elements in a
sequence to attend to other elements. Specifically, an attention
function takes in an input sequence {x1, ..., xn} and outputs
a sequence of the same length {y1, ..., yn}. Each input xi is
linearly projected to a query qi, key ki, and value vi. The
output yi is computed as a weighted sum of the values, where
the weight assigned to each value is based on the compatibility
of the query with the corresponding key. In this work, we
use the encoder layers in the original transformer architecture.

Each encoder layer includes an attention layer and a position-
wise fully connected feed forward network. With the use of
attention mask, the encoder layer can process sequences with
different lengths.

IV. StructDiffusion FOR OBJECT REARRANGEMENT

Given a single view of an initial scene containing objects
{o1, ..., oN} and a language specification containing word
tokens {w1, ..., wM}, our goal is to rearrange the objects
into a goal configuration that satisfies the language goal. We
assume the objects are rigid and we are given a partial-view
point cloud of the scene with segment labels for points to
identify the objects. We can extract the initial poses of the
objects {ξpc1 , ..., ξpcN } from the segmented object point clouds
{x1, ..., xN} by setting the rotation to zero and the position
to the centroid of each object point cloud in the world frame.
To rearrange the objects, the robot needs to move the objects
to their respective goal poses ξgoali .

In this work, our robot can execute pick and place ac-
tions. For each object, we can sample a set of stable grasps
G = {g1, ..., gM}. Given a target pose for object ξgoali and
a stable grasp gj , the robot can move its end effector to
ξeei = ξgoali (ξpci )−1gj to place the object at the goal pose. We
only use pick and place actions in our setup to simplify the
problem. However, our object-centric actions can be integrated
with sampling-based TAMP solutions [25] to also leverage
other motion primitives, such as pushing and regrasping, to
reach the goal poses predicted by our system.

Below, we describe our approach for sampling goal poses
for objects based on partial point clouds, given a language
goal. Our framework combines a generator based on a diffu-
sion model and a learned discriminator that filters out invalid
samples. As shown in Fig. 2, our diffusion model is integrated
with a transformer model that maintains an individual attention
stream for each object. This object-centric approach allows us
to focus on learning the interactions between objects based on
their geometric features, as well as the grounding of abstract
concepts on spatio-semantic relations between objects (e.g.,
large, circle, top). The discriminator model operates on the
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Fig. 3: We model goal generation for semantic rearrangement as a diffusion process. For each sample, we start from the last step of the
reverse diffusion process, which places objects randomly in space, and jointly predict goal poses for all objects in the scene. This formulation
allows our model to reason about object-object interactions in a generalizable way, which outperforms simply predicting goal poses from
multi-modal inputs.

imagined scene after transforming the objects to their predicted
goal poses to further reject invalid samples.

A. Encoders

We leverage modality-specific encoders to convert the mul-
timodal inputs to latent tokens that are later processed by the
transformer network.

Object encoder. Given the segmented point cloud xi of
an object oi, we learn an encoder ho(xi), in order to obtain
the latent representation of the object. This is based on Point
Cloud Transformer (PCT) [16], which has been shown to
be effective at shape classification and part segmentation.
We process the centered point cloud with PCT and learn a
separate multilayer perceptron (MLP) to encode the mean
position of the original point cloud. Encodings from the two
networks are concatenated to give ho(xi). We rely on this
latent representation of objects for semantic, geometric, and
spatial reasoning.

Language. To map the language goal to its latent repre-
sentation, we map each unique word token from the language
instructions separately to an embedding with a learned map-
ping hw(wi). This method helps establish a fine-grained cor-
respondence between each part of the language specification
and the respective constraint on the generated structure. We
further investigate encoding whole sentences using a sentence
transformer in Appendix A.

Diffusion encodings. Since the goal poses of objects are
iteratively optimized by the diffusion model and need to feed
back to the model, we use a MLP to encode the goal poses
of the objects hT (ξgoali ). To compute the time-dependent
Gaussian posterior for reverse diffusion, we combine a latent
code for t in the feature channel by learning a time embedding
htime(t).

Positional encoding. To differentiate the multimodal data,
we use a learned position embedding hpos(i) to indicate the
position of the words and objects in input sequences and a
learned type embedding htype(υi) to differentiate object point
clouds (υi = 1) and word tokens (υi = 0).

B. Conditional Pose Diffusion Model

Combining a diffusion model and an object-centric trans-
former, StructDiffusion can sample diverse yet realistic ob-

ject structures while accounting for the complex constraints
imposed by the object geometry and language goal. The
conditional diffusion model predicts the goal poses for the
objects ξ0 = {ξi}Ni starting from the last time step of the
reverse diffusion process ξT ∼ N (0, I), as illustrated in
Fig. 3. We use the bold symbol here because we jointly
optimize the poses of all objects.

Object-centric transformer. Different from most existing
diffusion models that directly generate goal images and do not
explicitly model individual objects [9, 10, 11, 12], we use the
transformer model to build an object-centric representation of
the scene and reason about the higher-order interactions be-
tween multiple objects. This approach allows us to account for
both global constraints and local interactions between objects.
Leveraging attention masks, a single transformer model can
also learn to rearrange different numbers of objects.

Diffusion. The use of the diffusion model helps us capture
diverse structures since we are sampling from a series of
Gaussian noises at different scales when going from ξT to
our goal ξ0. The resulting samples, therefore, is diverse at
different levels of granularity (e.g., different placements of the
structures and different orientations of the individual objects).
Diversity is also crucial when dealing with the inherent ambi-
guity in language instructions. For example, a large circle of
plates and a large circle of candles impose different constraints
on the proportions of the structures because the objects being
arranged have different sizes.

Combining the advantages of the object-centric transformer
and the diffusion model, we propose to model the conditional
reverse process as

pθ(ξ0|{xi}, {wi}) = p(ξt)
∏

pθ(ξt−1|ξt, {xi}, {wi})
The generation process depends on the point clouds of the
objects and language instruction. As discussed in III-A, we
learn the time-dependent noise εt, which can be used to
compute ξt. We use the transformer as the backbone to predict
the conditional noise εθ(ξt, t, {xi}, {wi}) for each object. We
obtain the transformer input for the language part and the
object part as

ci,t = [hw(xi);hpos(i);htype(υi);htime(t)]

ei,t = [ho(xi);hT (ξgoali );hpos(i);htype(υi);htime(t)]



Algorithm 1 Goal generation with StructDiffusion

1: for t ∈ range(T, 1) do
2: εt ∼ εθ(ξt, t, {xi}, {wi})
3: z ∼ N (0, I) if t > 1 else z = 0
4: ξt−1 = 1√

βt
(ξt − βt∑t

s=1 1−βt
εt) +

√
βtz

5: Transform object points: xgoali = ξgoali (ξpci )−1xi
6: Compute discriminator scores
7: return ranked ξ0

where [; ] is the concatenation at the feature dimension. The
model takes in the sequence {c1,t, .., cM,t, e1,t, ..., eN,t} and
predicts {ε1,t, ..., εN,t} for the object poses. We parameterize
6-DoF pose target ξ as (t, R) ∈ SE(3). We directly predict
t ∈ R3 and predict two vectors a, b ∈ R3, which are
used to construct the rotation matrix R ∈ SO(3) using a
Gram–Schmidt-like process proposed in [34].

C. Discriminators

In addition to the generator, we also use a learned dis-
criminator model to further filter the predictions for realism.
The discriminator works on imagined scenes, where the point
clouds of objects are rigidly transformed to the respective goal
poses following xgoali = ξgoali (ξpci )−1xi. As the discriminator
is trained to predict a score s ∈ [0, 1], it can be used to rank the
generated samples from the diffusion model during inference.

Here we also have the opportunity to leverage a spatial
abstraction different from the one used by the generator. The
generator operates on the latent object-centric representation
that are suitable to imagine possible structures. The discrim-
inator can directly reason about the interactions between the
transformed point cloud objects at the point level. To maintain
the ability to distinguish each individual object, we add a one-
hot encoding to each point feature.

In our preliminary experiments, we found that this point-
level collision model has more discrimination power than an
object-centric model that operates on latent representations
of the objects. We also investigated whether a discriminator
can be integrated into the diffusion process using a technique
called classifier guidance [35], but observed no significant
benefits. Details are presented in Appendix B.

We explore two potential discriminators. The collision dis-
criminator learns to predict pairwise collisions between two
objects from their partial point clouds. Second, the structure
discriminator learns to classify the validity of the whole multi-
object structure. The structure discriminator is also language-
conditioned, so it can learn structure-specific constraints. We
found that the structure discriminator works better when it
is only required to predict if local constraints are satisfied.
Therefore, we normalize the scene point cloud and drop parts
of the language instruction that specify global constraints such
as where to place the structure on the table.

D. Planning and Inference

In Alg. 1, we show how to combine the different compo-
nents of our framework to sample object structures. We first

initialize a batch of goal poses R∈B×N×(3+3+3) with random
noise. We use batch operation on a GPU to efficiently perform
diffusion and transform point clouds of multiple objects for
different samples. For the discriminators, we also generate
point clouds combining all objects after the diffusion process
and score them in batches. The ranked samples are returned.
Each sample corresponds to a physically and semantically
valid multi-object structure that can be used by other com-
ponents of the manipulation pipeline for planning.

E. Training Details

We train the diffusion model and the discriminators sepa-
rately. For the diffusion model, we use the dataset from [4]
containing high-level language instructions, segmented object
point clouds, and sequences of rearrangement actions. We
extract the goal poses from the rearrangement actions. We train
a single model for all structures where the number of examples
for different classes of structures are balanced. We use a batch
size of 128 and train the diffusion model on an RTX3090 GPU
for about 12 hours. To train the collision discriminator, we
randomly sample 100, 000 pairwise configurations for objects
from the dataset. For the structure discriminator, we generate
negative examples by randomly perturbing the ground truth
target poses ξgoali . For each negative example, we randomly
select a subset of objects to perturb so that the negative
examples have different numbers of objects out of place. We
augment the data by using point clouds from different time
steps of the rearrangement sequence to create the imagined
scenes as they usually occlude different objects.

V. SIMULATION EXPERIMENTS

We first evaluate our method in simulation by comparing it
to existing methods and also a collection of strong baselines
we introduce for language-guided multi-object rearrangement.

A. Baselines

We compare our approach against the following baselines:
StructFormer: This prior method uses a multimodal trans-
former network to generate multi-object structures based on
segmented object point clouds and language instructions [4].
The transformer network autoregressively predicts the goal
poses of each object. We follow the original work to train
a separate model for each class of structure.
Conditional Variational Autoencoder (CVAE): CVAEs have
been used to capture different modes for multi-task learning
and language-conditioned manipulation [17, 18]. Our CVAE
baseline uses the object-centric transformer backbone as a
strong baseline for semantic rearrangement. To prevent the
latent variable from being ignored when combining the trans-
former with CVAE, the transformer network predicts the object
goal poses in a single forward pass (i.e., not autoregressively).
A single model is trained for four classes of structures.
Optimization with Learned Discriminator: This baseline
iteratively optimizes the goal poses of objects with the struc-
ture discriminator that is trained to classify valid rearranged
scenes and invalid ones. This general approach has been used



Fig. 4: Testing objects from Google Scanned Objects [40], Repli-
caCAD dataset [41], and the YCB Object Set [42]. The test object
dataset contains a wide range of textured objects belonging to various
classes. None of these objects appear in the training data.

extensively for learning language-conditioned manipulation
from offline data [36], grasping [37, 38], and predicting stable
placements of objects [6], but not for language-conditioned
multi-object rearrangement. We use the cross-entropy method
for optimization [39], and only optimize the object poses and
not the structure pose to simplify the optimization problem. We
initialize samples from the baseline generative models because
initializing with random values does not lead to meaningful
performance.

B. Experimental Setup

We evaluate all models in the PyBullet physics sim-
ulator [43]. Point cloud observations are rendered with
NViSII [44]. We test on novel object models from both known
and unknown categories as our goal is to transfer the model
learned in simulation directly to real-world objects. Fig. 4
shows the testing objects, which are collected from Google
Scanned Objects [40], ReplicaCAD dataset [41], and the YCB
object Set [42]. To generate the test scenes, we use the
same data collection pipeline that is used to collect ground
truth data from prior work [4]. This ensures that a valid
rearrangement can be found for each scene. The set of objects
and the language goal for each scene are randomly sampled.
Distractor objects are randomly placed in the scene to simulate
occlusions.

We report success rate for the rearrangements. To isolate the
pose prediction problem from other components of the system
(e.g., grasp sampling and motion planning), we directly place
objects 3cm above the the predicted target poses. We checks
whether the rearrangement is physically valid by running the
simulation loop after placing each object. We check possible
collisions and intersections between objects using approximate
convex decompositions of the 3D object models. We also
implement model-based classifiers to evaluate whether the
rearrangement satisfy the language goal. For example, we
check whether the objects are in a line using the centroids of
the models. A rearrangement is considered as successful if the
placements of objects are not preempted due to physics-related
failures and the goal scene satisfies all semantic constraints
determined by the given language goal. On average, there are
5 constraints for different types of structures.

Table 1
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Fig. 5: Success rates for four different classes of structures on held-
out objects. Models are evaluated in a physics simulator using unseen
objects. A rearrangement is successful only if all objects are placed in
physically valid poses and the rearranged scene satisfies the language
goal. Compared to StructFormer [4], the model previously proposed
for semantic rearrangement, StructDiffusion obtains a 16% average
improvement in success rate.
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Fig. 6: Comparing StructDiffusion with other iterative methods. The
two baselines initialize samples of target object poses using either
the StructFormer or the CVAE model. The predicted scores of a
learned discriminator is then used to guide iterative optimization
of the samples. In comparison, StructDiffusion directly predicts the
noises εt that need to be removed from the samples at each step.

C. Comparison with Other Generative Models

In Fig. 5, we compare with other generative models and gain
insights into the generator-discriminator design of our model.
We see that our complete model, StructDiffusion, significantly
outperformed all baselines on all structure types. The improve-
ment was most significant for structures that required precise
placements of objects and modeling contacts between objects.
The generator-discriminator design was necessary because
the diffusion model alone still generated invalid samples,
especially for the line structures. The performance difference
between StructDiffusion and the ablated model that does not
use discriminator supports that our model can leverage the
complementary strengths of object-centric representation and
scene-level representation that preserves the point-to-point
interactions. In our preliminary experiments, we observed that
using the collision discriminator is enough to create high-
quality samples; however, this is not the case for the iterative
methods discussed in the following section.

Although applying the collision discriminator also improved
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Fig. 7: Comparison between StructDiffusion and the baselines on partial views of held-out objects, given language commands from four
different categories. StructDiffusion is better at resolving constraints involving contact and precise arrangement of objects, avoiding collisions
and creating physically realistic placements. The labels indicate whether the structures can be successfully built in the simulation environment
and also satisfy the language goal.

the performance of StructFormer and the CVAE, our diffusion
model benefited the most from the addition. We attribute
this difference to the different diversities of samples from
these three classes of generative models. The autoregressive
transformer underlying StructFormer does not explicitly model
uncertainty, therefore leading to similar samples for each
scene. The single source of stochasticity from the latent
variable of the CVAE model is also not enough. As the
diffusion model incorporates uncertainties at different scales,
it has the ability to generate different classes of structures
but also generate hypotheses of object placements given only
partial, and even heavily occluded, point clouds of objects. We
provide a qualitative comparison in Fig. 7. We further break
down the failure cases based on structure types and methods
to support the insights discussed above in Appendix C.

D. Comparison with Other Iterative Methods

In Fig. 6, we compare StructDiffusion with other
optimization-based baselines that can take advantage of the ad-
ditional computational time to iteratively refine the prediction.
The result shows that StructDiffusion outperformed the other
two baselines. Even though we observed strong performance
when applying an optimization-based method [6] to other
manipulation tasks, we do not see significant benefit in our

task. Looking more closely, we observe that the challenging
cases that are not yet solved by the non-iterative variants
are cases where the placements of objects are highly related.
In these cases, the guidance from the discriminator can be
ambiguous and leads to local minimal without reaching valid
solutions. We hypothesize that leveraging guidance at different
scales is necessary, as studied in a recent work that directly
learns to predict scores (i.e., gradients) at different scales for
2D object rearrangement [45].

VI. REAL WORLD EXPERIMENTS

In this section, we report on real-world experiments, testing
structure assembly on a real robot.

A. Perception and Hardware

We deployed our system on a 7-DoF JACO arm with an
Asus Xtion RGB-D Camera. We obtained segmented object
point clouds by identifying clusters-of-interest through table
surface detection and Euclidean distance clustering, using the
Point Cloud Library [46]. For most objects, we calculated
antipodal grasps over each object point cloud [47], which
are then ordered and executed using pairwise ranking [48].
For objects involved in the table setting arrangements (e.g.,
forks and plates), we sampled grasps using the Contact-
GraspNet [49] because antipodal grasp sampling failed to
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Fig. 8: Examples of predicted structures for real-world objects. We can predict structures from raw point clouds for a wide range of language
instructions fitting into four different broad classes. Note the point clouds are incomplete because they were captured from a single camera.

generate successful grasps for these objects. We used RRT-
Connect [50] for motion planning. We released each object
3cm above the predicated target pose for placement.

B. Predictions for Real-World Objects

We first show qualitative examples of the predicted struc-
tures for real-world objects in Fig. 8. These examples are
created by rigidly transforming the segmented object point
clouds from an initial scene with the target poses of the
highest ranked structure. Even though our model is trained
only on simulation data, it can be directly used to generate
semantically diverse and physically valid structures for real-
world objects. Our model can generate different variations of
the same structure type, as shown in (A, B). The same set
of objects can be arranged into completely different classes
of structures conditioning on the language, as shown in (A,
C) and (D, E). Besides changing the positions and sizes
of the structures, the orientations of the structures can also
be specified in language (F, G) and (H, I). Note that even
though table settings in the training data are only aligned
horizontally as shown in I, the use of language and training
on other orientation-specific structures enable compositional
generalization to a new orientation shown in H. Finally, we
see non-symmetrical objects (e.g., mugs, knifes, and spatulas)
are correctly aligned in B, D, E, J, H.

C. Rearrangement with Pick and Place

To reliably rearrange multiple objects, we combined Struct-
Diffusion with grasp and motion planning. We performed

TABLE I: Robot experiments with real-world objects. We perform
each of the task multiple times with different objects and initial
placements. We show the number of times that valid grasp and motion
plans are found and that the plans are executed successfully by the
robot.

Object Categories (#Trials) Structure Grasp and PlacementMotion Planning

Bowl, Pan (3) Small Circle 3 3
Bowl, Pan (3) Tower 3 2
Bowl, Pan (3) Small line 2 2
Plate, Spoon, Fork, Knife, Cup (12) Table Setting 5 4

Overall Success Rate 61.9% 52.4%

nested search to find the target structure to execute. Specif-
ically, we iterate through the generated and ranked structures.
For each structure, we sample a set of grasp poses for each
object and compute corresponding pre-grasp, standoff, and
placement poses based on the prediction. We searched for valid
motion plans between these waypoints. If all motion plans
have been found, we execute them on the robot.

In Table I, we show success counts and average success
rate for trials with different objects and different language
goals. For circle, tower, and line structure, valid motion and
grasp plans can be found most of the time due to the diverse
structures generated by StructDiffusion. For table settings,
grasp planning is still challenging due to the small tolerance
of the grasp regions. The limited diversity of sampled grasps
also leads to no valid inverse kinematic solutions in some
cases. We observed that partial point clouds due to noisy real
sensor and self-occlusions for large objects led to a small



number of invalid structure predictions. While planning, we
make the assumption that the objects are rigidly attached to
the gripper after grasping without slippage. This assumption
generally did not hold in the real world and led to occasional
failures. This assumption can be relaxed by predicting a post-
grasp displacement, using learned models such as [51]. We
show examples of successful executions and failure cases in
Appendix D.

VII. CONCLUSIONS

We introduced StructDiffusion, an approach for creating
physically-valid structures using multimodal transformers and
diffusion models. StructDiffusion operates on point cloud
images of previously-unseen objects, and can create structures
for a range of language instructions.

Specifically, we compared to a wide variety of strong
baselines, including the previous state of the art [4] and to a
conditional variational autoencoder. End-to-end policies do not
perform as well, because they cannot refine placement poses
that are nearly correct. Using diffusion models for generating
diverse samples and a trained discriminator to filter object goal
poses significantly improves performance.

In this work, we did not look at optimally planning. In the
future, we could look at combining this approach with task and
motion planning for unknown objects, as in [25]. Additional
experiments presented in Appendix A showed that our model
could easily be combined with a pretrained language model
to deal with more natural sentences; therefore, we also hope
to apply our work to a far wider range of structures and more
complex language commands.

REFERENCES

[1] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen,
L. Fei-Fei, A. Anandkumar, Y. Zhu, and L. Fan, “Vima:
General robot manipulation with multimodal prompts,”
arXiv preprint arXiv:2210.03094, 2022. 1, 2

[2] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and
where pathways for robotic manipulation,” in Conference
on Robot Learning. PMLR, 2022, pp. 894–906. 1, 2

[3] ——, “Perceiver-actor: A multi-task transformer for
robotic manipulation,” arXiv preprint arXiv:2209.05451,
2022. 1, 2

[4] W. Liu, C. Paxton, T. Hermans, and D. Fox, “Struct-
former: Learning spatial structure for language-guided
semantic rearrangement of novel objects,” in 2022 In-
ternational Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 6322–6329. 1, 2, 5, 6, 9

[5] P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi,
I. Laptev, and C. Schmid, “Instruction-driven history-
aware policies for robotic manipulations,” arXiv preprint
arXiv:2209.04899, 2022. 1

[6] C. Paxton, C. Xie, T. Hermans, and D. Fox, “Predicting
stable configurations for semantic placement of novel
objects,” in Conference on Robot Learning (CoRL), 2021.
2, 6, 7

[7] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Plan-
ning with diffusion for flexible behavior synthesis,” in
International Conference on Machine Learning, 2022. 2

[8] S. Huang, Z. Wang, P. Li, B. Jia, T. Liu, Y. Zhu,
W. Liang, and S.-C. Zhu, “Diffusion-based generation,
optimization, and planning in 3d scenes,” arXiv preprint
arXiv:2301.06015, 2023. 2

[9] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and
B. Ommer, “High-resolution image synthesis with la-
tent diffusion models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2022, pp. 10 684–10 695. 2, 4

[10] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and
S. Ganguli, “Deep unsupervised learning using nonequi-
librium thermodynamics,” in International Conference on
Machine Learning. PMLR, 2015, pp. 2256–2265. 2, 3,
4

[11] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion
probabilistic models,” Advances in Neural Information
Processing Systems, vol. 33, pp. 6840–6851, 2020. 2, 3,
4

[12] I. Kapelyukh, V. Vosylius, and E. Johns, “Dall-e-bot: In-
troducing web-scale diffusion models to robotics,” arXiv
preprint arXiv:2210.02438, 2022. 2, 4

[13] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu,
J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Prog-
prompt: Generating situated robot task plans using large
language models,” arXiv preprint arXiv:2209.11302,
2022. 2

[14] A. Goyal, A. Mousavian, C. Paxton, Y.-W. Chao,
B. Okorn, J. Deng, and D. Fox, “Ifor: Iterative flow
minimization for robotic object rearrangement,” arXiv
preprint arXiv:2202.00732, 2022. 2

[15] A. Qureshi, A. Mousavian, C. Paxton, M. Yip, and
D. Fox, “Nerp: Neural rearrangement planning for un-
known objects,” in Proceedings of Robotics: Science and
Systems, 2021. 2

[16] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin,
and S.-M. Hu, “PCT: Point cloud transformer,” Compu-
tational Visual Media, vol. 7, no. 2, pp. 187–199, 2021.
2, 4

[17] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson,
S. Levine, and P. Sermanet, “Learning latent plans from
play,” in Conference on robot learning. PMLR, 2020,
pp. 1113–1132. 2, 5

[18] O. Mees, L. Hermann, and W. Burgard, “What matters
in language conditioned robotic imitation learning over
unstructured data,” IEEE Robotics and Automation Let-
ters (RA-L), vol. 7, no. 4, pp. 11 205–11 212, 2022. 2,
5

[19] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker,
R. Baruch, T. Armstrong, and P. Florence, “Interactive
language: Talking to robots in real time,” arXiv preprint
arXiv:2210.06407, 2022. 2

[20] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis,
C. Finn, K. Gopalakrishnan, K. Hausman, A. Herzog,



J. Hsu et al., “Rt-1: Robotics transformer for real-world
control at scale,” arXiv preprint arXiv:2212.06817, 2022.
2

[21] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes,
B. David, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog et al., “Do as i can, not as i say: Ground-
ing language in robotic affordances,” arXiv preprint
arXiv:2204.01691, 2022. 2, 12

[22] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrishnan,
M. S. Ryoo, A. Stone, and D. Kappler, “Open-vocabulary
queryable scene representations for real world planning,”
arXiv preprint arXiv:2209.09874, 2022. 2

[23] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter,
P. Florence, and A. Zeng, “Code as policies: Language
model programs for embodied control,” arXiv preprint
arXiv:2209.07753, 2022. 2, 12

[24] A. Simeonov, Y. Du, B. Kim, F. R. Hogan, J. Tenenbaum,
P. Agrawal, and A. Rodriguez, “A long horizon planning
framework for manipulating rigid pointcloud objects,”
arXiv preprint arXiv:2011.08177, 2020. 2

[25] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and
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APPENDIX

A. Towards Natural Language

In the main experiments, we evaluate the model that encodes
word tokens individually. Here, we want to see if our frame-
work can deal with more natural language without predefined
vocabularies and at different levels of abstraction (e.g., “make
a line” vs “make a short line at the bottom of the table”) by
combining with a pretrained language model.

1) Language Data: We procedurally generate sentences
to train the model. At test time, we leverage sentence em-
beddings to generalize to new sentences. Given the word
tokens in sentences, we first enumerate all possible com-
binations of the tokens. Note in our definition each token
corresponds to a type and a value. For example, [(shape,
circle), (size, small), (x position, center), (y position, middle),
(rotation, south)] can create combinations such as [(shape,
circle)], [(size, small), (x position, center)], [(shape, circle),
(x position, center), (y position, middle)]. In total, there are
669 unique combinations of word tokens. We then manually
created templates for each combination of token types. For
example, “build a [shape]”, “put the objects into [shape]”,
and “build a [size] [shape] on the [x position] of the table
facing [rotation]”. Combining the enumerated combinations
and sentence templates, we generated 3345 unique sentences.
We then map all the sentences to pretrained sentence em-
beddings using a sentence transformer [52], specifically the
all-MiniLM-L6-v2 model. Note that although the generated
sentences could have grammar errors, the pretrained sentence
transformer should be robust to those errors.

2) Model and Training: We modify the diffusion model to
take in a single sentence embedding instead of the embeddings
of individual word tokens. The sentence embedding from
the pretrained model has a dimension of 384. We use a
linear layer to map it to the same dimension as the point
cloud embeddings. During training, we randomly sample a
combination of the word tokens and map them to predefined
sentence embeddings. Therefore, the model should be able to
map ambiguous sentences (e.g., build a structure in the middle)
to different structures (e.g., a line, a circle, and etc).

3) Inference: We evaluate the performance of the model
using fully-specified sentences. As shown in Table A1, we
see within 5% decrease in performance across structure types
compared to the original model. Leveraging the generalization
capability of the pretrained language model, the model should
also be able to generalize to sentences not in the rearrangement
training data at test time. We show some qualitative examples
in Figure A1.

4) Using the Large Language Model to Parse Natural
Language: We also explore the prompting techniques [23, 21]
to map natural language to word tokens that our original
model knows. Examples in Listing 1 shows that this is also a
promising direction to bridge the gap between natural language
and domain-specific commands.

Listing 1: Example GPT-3 Prompt to map natural language descrip-
tions of target structures to word tokens that our model consumes.
Prompt context is in gray, input language descriptions are green, and
generated word tokens are purple.
Map each natural language instruction about an
object arrangement to available shape, size, and
location. If any element is not specified,
return NONE.

Available shapes: circle, line, table setting, tower
Available size: small, medium, large
Available location: top, middle, bottom

Example: rearrange the objects into a small circle.
Output: circle, small, NONE

Example: put the objects far apart and as a line
on top of the table.
Output: line, large, top

Example: there is a chair near the bottom edge
of the table. Arrange the dishes near the chair.
Output: table setting, NONE, bottom

Example: There is a teapot on the top right corner
of the table. Place the teacups surrounding it.
Output: circle, small, top

TABLE A1: Comparing the success rate % in simulation for the two
types of language inputs. We observe a small drop in performance
when we use a single sentence embedding comparing to individually
embed each word tokens for each input sentence.

Language Circle Tower Line Table Setting

Word Tokens 65 72 72 66
Sentence 63 70 67 67

“build a circle out 
of the objects”

“create an object 
structure in the bottom 

le! of the table”

“place the 
objects on top”

Fig. A1: Each row shows three sampled goals from the Diffusion
model that is trained with procedurally generated sentences. The
model generalizes to input sentences never seen during training by
using a pretrained sentence encoder. Because the model is trained
on language inputs at different levels of abstractions, the generated
samples correspond strongly to structure properties specified in the
sentences and at the same time show variations for the properties that
are left unspecified.



TABLE A2: The percentage of failure cases due to different types of errors for different models averaged over all structure types.
Model Intersection Abnormal Velocity Not Upright Semantic Failure

StructDiffusion w/o Collision Discriminator 17.33 14.36 5.20 5.94
StructDiffusion 6.44 17.57 4.46 3.71
CVAE 28.71 14.11 5.20 5.69
CVAE w/ Collision Discriminator 20.05 12.62 3.22 3.47
Opt w/ CVAE Prior 17.33 13.12 5.69 6.93

TABLE A3: The percentage of failure cases due to different types of errors for StructDiffusion.
Structure Type Intersection Abnormal Velocity Not Upright Semantic Failure

Circle 4.95 24.75 4.95 0.00
Tower 12.87 8.91 4.95 8.91
Line 5.94 17.82 4.95 0.0
Table Setting 1.98 18.81 2.97 5.94

B. Classifier-Based Collision Guidance

In addition to utilizing a separate collision discriminator,
we may directly integrate a classifier into the underlying
sampling procedure of the diffusion model by using classifier
based guidance. We present results in Table A4. We find that
integrating a noisy collision discriminator with sampling can
improve performance for towers and table settings but leads
to limited gains for other structures.

C. Failure Mode Analysis

We analyze the failure modes for our model based on
the simulation experiment. In Table A2, we first compare
the number of failure cases in all simulation experiments
for different methods. We observe that StructDiffusion, which
combines a collision discriminator and a diffusion model,
drastically reduces errors due to intersections between objects.
Comparing CVAE and Optimization with CVAE prior, we
also observe that optimizing the goal poses with a learned
discriminator can reduce the intersection errors but at the
expense of generating more semantically incorrect structures.
In Table A3, we further break down the failure modes for our
method on different structure types. Building circles tend to
have a higher failure rate due to abnormal velocity because
large circles may have objects occasionally placed outside of
the table. In comparison, towers suffer less from this issue

because objects are more closely packed. Reasoning about the
environment (e.g., the size of the table) is a necessary next
step to address this issue.

D. Real World Results

Here we show results from each of the real-world experi-
ments in Table I. Figure A3 shows some additional success
examples. Success cases show how StructDiffusion allows us
to rearrange previously-unseen objects that did not appear in
the training data. Figure A2 includes examples of cases where
our method fails. In summary, we see that most of our failures
were due to simple motion planning or grasping issues; these
could be solved in the future via better integration with task
and motion planning algorithms, and with reactive replanning.

TABLE A4: Effect of Collision Classifier Guidance on success rate.
This table shows the effect noisy classifier guidance on performance
on each of the provided tasks. We do not see clear advantages to
using the collision classifier.

Guidance Weight

Task 0 1 2 4 8

Circle 65 60 58 58 61
Tower 72 76 74 78 73
Line 72 73 69 73 69
Table Setting 66 70 73 66 70



“short line in the middle and center of the table” “tower in the middle and center of the table”

“set the table in the center le! of the table” “set the table in the center le! of the table”

“set the table in the center le! of the table” “set the table in the center le! of the table”

Grasp slippage caused a motion planning failure. Grasp slippage made the predicted goal pose invalid.

The planned motion failed to avoid another object. The grasp failed.

The grasp failed. The predict goal does not create enough space between the 
fork and the cup.

Fig. A2: Real-world failure cases from our robot experiments. A minority of failures come from StructDiffusion; the majority from grasping,
planning, and execution failures. This points to future work integrating StructDiffusion with task and motion planning or with



“small circle in the middle and center of the table” “small circle in the middle and center of the table”

“small circle in the middle and center of the table” “short line in the middle and center of the table”

“short line in the middle and center of the table” “tower in the middle and center of the table”

“tower in the middle and center of the table” “set the table in the center le! of the table”

“set the table in the center le! of the table” “set the table in the center le! of the table”

Fig. A3: Real-world success cases from our robot experiments. Out of 20 experiments, we saw 11 successes. Most failures were due to
grasping and motion planning, not due to issues with our method. All experiments were performed on unseen objects, and StructDiffusion
was not trained on any real-world training data.
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