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Figure 1. Our method enables accurate human mesh and camera parameter estimation for single-view in-the-wild images including
close-ups with high levels of perspective distortion (pelvis depth Tz shown in meters).

Abstract

Single-image human mesh recovery is a challenging task
due to the ill-posed nature of simultaneous body shape,
pose, and camera estimation. Existing estimators work well
on images taken from afar, but they break down as the per-
son moves close to the camera. Moreover, current meth-
ods fail to achieve both accurate 3D pose and 2D align-
ment at the same time. Error is mainly introduced by inac-
curate perspective projection heuristically derived from or-
thographic parameters. To resolve this long-standing chal-
lenge, we present our method BLADE which accurately re-
covers perspective parameters from a single image with-
out heuristic assumptions. We start from the inverse re-
lationship between perspective distortion and the person’s
Z-translation Tz , and we show that Tz can be reliably esti-
mated from the image. We then discuss the important role of
Tz for accurate human mesh recovery estimated from close-
range images. Finally, we show that, once Tz and the 3D
human mesh are estimated, one can accurately recover the
focal length and full 3D translation. Extensive experiments
on standard benchmarks and real-world close-range im-
ages show that our method accurately recovers projection
parameters from a single image, and consequently attains
state-of-the-art accuracy on both 3D pose estimation and
2D alignment for a wide range of images.

1. Introduction

Recent advances in 3D human mesh recovery (HMR) have
started to democratize motion capture for media produc-

* Shengze Wang was an intern at NVIDIA during the project.

tion, allowed computers to understand human gestures for
human-computer interaction and enabled new applications
in healthcare, fitness, and virtual try-on for E-commerce.
Despite the many successes, current methods struggle in
scenarios such as video conferencing and large-scale pose
estimation on diverse images captured in the wild (Fig. 1).

Single-image human mesh recovery is challenging due
to the under-constrained nature of estimating many param-
eters from a single view. Scale ambiguity and the unknown
shape of the person contribute to the existence of poten-
tially an infinite number of valid yet incorrect solutions [8].
Furthermore, intrinsic and extrinsic camera parameters are
unknown for in-the-wild images and need to be estimated in
addition to human shape and pose. It is thus exceptionally
difficult to jointly estimate all of these variables at once.

Therefore, most existing methods reduce the number
of unknowns by assuming near-orthographic projection,
where the person is assumed to be far away and focal
length is heuristically determined or calculated [10, 14–
16, 19, 20, 31]. This leads to an unsatisfactory result, es-
pecially for close-ups that show a person with strong per-
spective distortion (Fig. 1). Recent work SPEC [15] targets
this problem by directly estimating the camera focal length
from images. ZOLLY [31] estimates both the depth of the
person and a 2D affine transformation for an orthographic
camera, which are then heuristically converted to a focal
length and 3D translation with perspective projection. Both
methods rely on inaccurate assumptions and fail to accu-
rately recover the perspective parameters.

To simultaneously solve these manyfold challenges, we
propose a new method for Body mesh Learning through
Accurate Depth Estimation from a single image (BLADE).
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Our key observation is that, mathematically, perspective
distortion is driven by the distance between camera and per-
son, but not affected by focal length (Fig. 3). The idea
is that the Z-translation Tz of the person can be disentan-
gled from other variables and be reliably estimated from
the input image (Sec. 3.2). Once Tz is estimated, other vari-
ables become easier to solve. Motivated by this intuition
as well as the success of recent one-shot metrical depth es-
timators [3, 27, 33], we train a Tz estimator to predict the
depth of the person’s pelvis with respect to the camera. We
notice that that human pose estimators predict 3D human
mesh from images that are affected by perspective distor-
tion and that perspective distortion is determined by Tz .
Therefore, we condition our pose estimator on Tz in order
to improve accuracy of estimated human mesh. Lastly, the
focal length and remaining translation parameters Tx and
Ty can be obtained with knowledge of Tz and the 3D hu-
man mesh shape. Existing labeled datasets for HMR lack
close-range images with strong perspective distortion. To
augment them, we also contribute a new large-scale syn-
thetic dataset with 2 million images tailored to this task. It
helps our model learn accurate Z-translation of the human
body and 3D pose across a wide range of depths.

On several benchmark datasets captured at diverse
ranges, we outperform all existing SOTA methods at esti-
mating subject depth, focal parameters, 3D pose, and 2D
alignment. Our work contributes a new angle on accurate
single-image 3D human pose estimation. It fully departs
from the orthographic camera model and recover a fully
perspective projection model without heuristics (Fig. 2),
achieving high accuracy on 3D pose and 2D alignment on
diverse depth ranges, including close-range images (Fig. 1
and 7).

In summary, we contribute:
1. A method for HMR that directly estimates perspective

projection parameters given a single image without rely-
ing on heuristics. Our method achieves SOTA results on
diverse depth ranges, including close-range images.

2. We identify that close-range pose estimation is heavily
affected by Z-translation Tz , and we propose to condi-
tion the pose estimation on the estimated Tz to improve
the accuracy of mesh recovery.

3. We correct the misconception that focal length affects
image distortion, and we show the benefit of estimating
focal length and XY-translation independently from Tz

and mesh shape and pose.
4. We contribute a new large-scale synthetic dataset with a

wide Tz variety.

2. Related Work
Human mesh recovery (HMR) from images and video is a
long-standing problem and has received broad attention in
research. Tian et al. [30] provides a comprehensive review

Figure 2. Pose error introduced by camera heuristics. (1,2) Pre-
vious methods estimate the pose of the person from image crops,
leading to pose inaccuracy compared to the ground truth (left). (3)
Focal length and 3D translation (f, T ) are heuristically converted
from a 2D affine transformation (s, tx, ty), which is only suitable
from afar but not for close-range images. (4) Due to the incorrect
pose and perspective parameters, the final estimation is inaccurate.

of the SOTA in HMR from monocular images. Additional
surveys include recovery from multi-view images, videos,
and body-worn sensors [7, 23, 38, 39]. In the following, we
focus on methods for single-view single-person 3D HMR.
This is an important distinction as we target general pose
labeling of in-the-wild and internet-scale image datasets for
which usually no data beside the images is available. To ob-
tain realistic and manipulable human bodies, the paramet-
ric body model SMPL [24] and its successor SMPL-X [28]
have been proposed. These models use linear blend skin-
ning for the person’s shape along with 3D joint positions
and rotations for the pose.

Various methods estimate the body mesh directly using
different neural network architectures such as a graph neural
network [17], transformer [6], and a hybrid of the two [22].
Other methods regress on the SMPL(-X) body model pa-
rameters [8, 10, 14, 16, 20, 32, 35] using a multi-stage pro-
cess that includes cropping of the body parts using detected
bounding boxes followed by utilizing distinct models for in-
dividual reconstruction of those parts. In contrast, SMPLer-
X [5], OSX [21], and AiOS [29] regress the body model
as a whole, which reduces artifacts stemming from individ-
ual part reconstruction. Additionally, AiOS [29] utilizes a
one-stage framework that directly recovers the human mesh
from the entire image, omitting body cropping.

Due to the lack of camera information for in-the-wild im-
ages, all mentioned methods use orthographic camera mod-
els assuming that the person is sufficiently far from the cam-
era. This is not always true in practice. As shown in Fig. 2,
the weak-perspective assumption often involves estimating
a 2D affine transform and heuristically converting the 2D
scale and image space translations to focal length and 3D
translations.

Different from these, few prior works do consider per-
spective distortion [13, 15, 20, 31]. Nagano et al. eval-
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Figure 3. Influence of Tz on perspective distortion. A person is captured with different focal length and Z-translation Tz from the
camera. (b&d) Changing the focal length from a short lens f1 to a long lens f2 changes the zoom factor but does not change the perspective
distortion, as shown by the equivalence between (c) and (d). (a) Changing the Z-translation by a ∆Tz changes the level of perspective
distortion in the image. This effect is particularly pronounced for close-range imagery (blue curve). See Sec. 3.1 for detailed discussion.

uate the distortion of faces for perspective projection and
propose a generative adversarial network to normalize face
images with distortion into near-orthographic ones [26].
Zhao et al. propose an approach to learning perspective
undistortion for face portraits [37]. BeyondWeak [13] and
CLIFF [20] show for HMR that a correction of camera
translation from the box crop around the person to the full
image improves performance. BeyondWeak [13] and W-
HMR [34] propose to derive the focal length from image
resolution as an approximation. SPEC [15] predicts camera
parameters by learning field of view, camera pitch, and roll.
However, the mentioned methods tend to overestimate fo-
cal length and translation and are therefore not reliable for
close-up images.

TokenHMR specifically studies the influence of near-
orthographic assumptions on the HMR quality [8]. The
method reveals that current focal length estimators are inac-
curate and unreliable and as a result, improving alignment
to the 2D image deteriorates the accuracy of the 3D pose.
TokenHMR proposes a Threshold-Adaptive Loss Scaling
function to achieve both high 2D and 3D accuracy but only
for a distant camera. Our approach is different from To-
kenHMR as we do not generate perspective projection pa-
rameters from an orthographic camera model. Instead, we
directly solve for camera intrinsic and extrinsic parameters.

ZOLLY [31] is a perspective-aware SOTA method which
allows HMR from close-range images. The method pre-
dicts SMPL body parameters inside a bounding box con-
taining the person and estimates the orthographic projec-
tion, which is an affine transformation containing a scaling
factor s. ZOLLY follows existing heuristics to estimate the
focal length as f = s ·h ·Tz/2 and 3D translation as a func-
tion of 2D translation and bounding box properties (Fig. 2).
Here, h is the image height, and Tz is the estimated depth
of the SMPL pelvis. However, these heuristics are inaccu-
rate approximations that lead to incorrect projections. In
this work, we also estimate Tz as part of our method, but
we avoid relying on heuristics for estimation. Instead, we
disentangle the parameters to achieve better HMR perfor-

mance and a more accurate recovery of camera parameters.
There exists no method that can estimate the accurate 3D
translation [Tx, Ty, Tz] or correct focal length from a single
image. The problem is inherently ill-posed because there
are not enough constraints from a single image to solve
for all variables. On the other hand, significant advance-
ment has been made in solving two major sub-problems, i.e.
depth estimation [1, 3, 11, 27, 33] and 3D pose estimation
[5, 8, 10, 20, 21, 31]. Therefore, we leverage these efforts
to solve for the remaining variables, namely [f, Tx, Ty].

3. Method

Given a single image, our goal is to estimate an accurate
3D mesh of the person as SMPL-X parameters [28] while
simultaneously achieving good 2D alignment. Although it
is unreliable to directly estimate camera focal length and
extrinsics from a single image, we show that they are es-
sentially scaling and alignment parameters, which can be
determined once the person’s Z-translation Tz is estimated.
Building upon this insight, we introduce a 3-step HMR
pipeline (Fig. 4) that solves for all essential parameters in
perspective projection: (1) Z-translation Tz of the person
with respect to the camera (Sec. 3.2), (2) the 3D human
pose and shape (β, θ) (Sec. 3.3), and finally (3) the person’s
XY-translations (Tx, Ty) and focal length f (Sec. 3.4).

3.1. Perspective Projection and its Implication

SMPL-X provides a differentiable function M(β, θ) that
takes the pose parameters θ and the shape parameters β and
outputs a body mesh M ∈ RN×3 with N = 10475 ver-
tices and joint location J ∈ RK×3 with K = 54 joints. 1

The shape parameters β ∈ R10 are the first 10 PCA coef-
ficients to model body shape variations. The pose param-
eters θ ∈ R3K model the joint rotation including the body
orientation. One can obtain camera space coordinates of

1We omit facial expressions and hand gestures due to the lack of such
labels in the existing close-range datasets.
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Figure 4. Overview. Starting with a bounding box image crop Icrop of the person, the Pelvis Depth Estimator FTz (green box) estimates
the Z-translation of the person’s pelvis, Tz . Then, the Pose Estimator F pose (blue box) estimates SMPL-X shape and pose (β, θ) from
the full input image while considering the image distortion induced by Tz . Finally, through differentiable rasterization, the Camera Solver
(brown box) recovers the optimal focal length and 3D translations that best aligns the rasterized SMPL-X mesh with the segmented mask
of the person. We are thus able to solve for the full perspective projection model without heuristic assumptions.

SMPL-X vertices [xm, ym, zm] as:[
x, y, z

]
=

[
xm, ym, zm

]
+
[
Tx, Ty, Tz

]
, (1)

where T = [Tx, Ty, Tz] is the position of the person’s pelvis
in the camera coordinate. With perspective projection, the
projected coordinate is:[

u
v

]
= f ·

[
x/z
y/z

]
= f ·

[
(xm + Tx)/(zm + Tz)
(ym + Ty)/(zm + Tz)

]
. (2)

According to Eq. 2, the projected image coordinate is glob-
ally linear with respect to the focal length f , indicating that
focal length only acts as a uniform scaling and does not
affect perspective distortion. In contrast, the distance Tz

and 3D geometry, which influence the position zm, have a
nonlinear impact on the projected image. In Fig. 3, we
show how perspective distortion, defined as the difference
between perspective and orthographic projection, decreases
as Tz increases, whereas perspective distortion quickly in-
creases as Tz decreases in the close range. This phe-
nomenon presents two key insights: (1) The amount of per-
spective distortion observed in an image is strongly corre-
lated to the subject’s Z-distance Tz to the camera and hence
can be exploited to reliably estimate Tz directly from the
image (Sec. 3.2). (2) The same person and pose can result
in significantly different projections in the image depending
on Tz . Thus, when estimating the 3D mesh of the person,
the model needs to consider the influence of Tz (Sec. 3.3).

3.2. Predicting Z-Translation Tz

The amount of perspective distortion of a person in an im-
age I is determined by Tz , i.e., their distance to the cam-
era (Fig. 3). Thus, we build a pelvis depth estimator FTz

that directly estimates the depth of their pelvis from their
appearance in a cropped image Icrop around them, Tz =
FTz (Icrop). For FTz we employ a state-of-the-art pre-
trained monocular depth prediction network DAv2 [33] as

a pre-trained backbone to extract appearance features from
Icrop, but we do not use their depth maps directly because
they are highly inaccurate. Instead, we feed the appear-
ance features into a learnable ConvNet followed by a trans-
former module to estimate the pelvis depth Tz . We find
DAv2 [33] to be the best-performing among recent alterna-
tives [12, 27, 33] (Tab. 2). Note that, as depth can increase to
infinity, it is impractical to accurately predict depth for the
entire unbounded range due to the model’s limited learn-
ing capacity. We show in the supplemental material that
current backbones struggle to simultaneously achieve high
accuracy for both near ranges (SPEC-MTP [15]) and far-
ther ranges (HUMMAN [4]). Hence, it is more important
for the model to learn accurate depth prediction for <1.2m,
where perspective distortion manifests more strongly, ver-
sus farther ranges. To encourage this, while training FTz

we weigh the Tz error inversely in proportion to the ground
truth depth TGT

z resulting in the weighted L1 depth loss:
Ldepth = 1/TGT

z ·
∥∥Tz − TGT

z

∥∥
1
. (3)

To avoid unstable division by small Tz values, we remove
samples with Tz ≤0.5m from training.

3.3. Tz-aware Pose Estimation

As discussed in Sec. 3.1 and Fig. 2, Tz affects the appear-
ance of the human body in the image and thus the accuracy
of pose estimation. Therefore, we design a Tz-aware pose
estimation block F pose (Fig. 4) that takes the input image I
and Tz translation to predict the human mesh as SMPL-X
parameters, i.e. (β, θ). Specifically, BLADE employs the
HMR algorithm AiOS [29], which directly predicts human
meshes from the original uncropped image I . The method
extracts features from a pre-trained backbone and contains a
transformer-based encoder and non-autoregressive decoder
for set prediction of the poses of all persons in an image. It

21994



is trained on large amounts of real-world and synthetic im-
ages making it highly generalizable. However, its training
data mostly contains distant persons, making it not accus-
tomed to close-range people with strong perspective distor-
tion. We find that naively fine-tuning AiOS with smaller
close-range datasets employed in [31] results in over-fitting
and undermines its generalizability (Table 3).

To achieve both generalizability and Tz-awareness, our
pose estimator Fpose retains the existing knowledge of the
pretrained AiOS while injecting additional depth informa-
tion Tz = FTz (I) through a ControlNet [36] style architec-
ture (Fig. 4, pose estimator block). Specifically, we freeze
AiOS and create a trainable copy of its backbone. The train-
able copy is initialized with the pretrained weights, and its
output is passed through a zero-initialized MLP before sum-
ming with the original output from the frozen backbone.
Before training starts, the zero-MLP creates a zero resid-
ual and thus guarantees the same performance as the origi-
nal AiOS. Once training starts, the zero-MLP becomes non-
zero and allows the trainable backbone to improve upon the
original AiOS. To condition the pose backbone on Tz , we
use two MLPs to encode Tz into deep features, and we in-
ject the Tz features into the trainable backbone by summing
them with the backbone’s encoder features. This way, the
existing knowledge is retained in the frozen backbone while
the trainable backbone acquires new knowledge about how
the Tz distance affects the appearance of the human body in
close-range images.

We input the predicted shape and pose parameters (β, θ)
to the SMPL-X function M to obtain the vertices V and
joints J with the pelvis joint at the origin:

(β, θ) = F pose(I|Tz), (V, J) = M(β, θ). (4)
To supervise the estimation of human shape, we calculate
a shape loss Lshape as the L1 distance between the ground
truth shape vector βGT and predicted shape vector β:

Lshape = L1(β, βGT ). (5)
To supervise the pose parameters, we use an angular er-
ror between the predicted joint rotations θ and ground truth
joint rotations θGT (including the root joint orientation):

Lpose = Eang(θ, θGT ). (6)
We also supervise the position of the estimated SMPL-X
joints using a joint location loss Ljoint as the L1 distance
between the predicted joint locations J and ground truth
joint locations JGT :

Ljoint = L1(J, JGT ). (7)
Finally, we supervise the prediction of the mesh vertices
by calculating the vertex loss Lvert as the distance between
ground truth vertices VGT and predicted vertices V :

Lvert = L1(V, VGT ). (8)

Figure 5. Solving for (f ,Tx,Ty) : (a) With initial (f, Tx, Ty) =
[h, 0, 0], the estimated Tz and human mesh parameters (β, θ),
the optimal (f, Tx, Ty, Tz) is derived (b) by optimizing the im-
age space alignment through differentiable rasterization [18]. (c)
The optimized parameters correctly align the projected 3D human
mesh to the person in the image.

In summary, the total loss of our pose network is:

L = wshape · Lshape + wpose · Lpose

+ wjoint · Ljoint + wvert · Lvert, (9)
where we use wshape = 1, wpose = 1, wjoint = 5, wvert =
5 to balance the magnitudes of the different losses.

3.4. Solving for Focal Length and 3D Translation
The foundation of our method is the observation that, once
Tz is determined, [f, Tx, Ty] can be solved as alignment pa-
rameters. This is because when Tz is fixed, [Tx, Ty] con-
trols movements in the z = Tz plane and f controls the
scale of the image. Therefore, we reformat the problem as
alignment and solve it through differentiable rasterization
(Fig. 4, brown box). We render the predicted SMPL-X mesh
with an initial translation T = [0, 0, Tz] and the initial focal
length equals to the image height f init = h. Specifically,
we rasterize the SMPL-X model as a binary mask, where
pixels are 1 for the projected mesh surface and 0 otherwise.
Then, through differentiable rasterization [18], we optimize
for a tensor (f, Tx, Ty) that maximizes the intersection-
over-union between the rasterized SMPL-X mask and the
mask of the person, which is generated using an off-the-
shelf segmentation method [25]. To ensure smooth gradient
flow over the entire image, we apply Gaussian smoothing
to both the rasterized and segmented masks. The process
is visualized in Fig. 5 where (1) the purple SMPL-X model
shifts to the right such that its projection aligns with the per-
son in the image, and (2) the camera adjusts its focal length
to align the sizes of the rasterized and segmented masks.
Additionally, we find that optimizing for Tz , and potentially
pose and global orientation, often further improves the qual-
ity of estimated pose and camera parameters.

3.5. Synthetic Dataset
While perspective distortion is more severe for the depth
range smaller than 1.2m (Sec. 3.1), existing datasets [4, 9]
for HMR do not contain enough data for this range. An
evaluation of Tz distribution for various datasets is in-
cluded in the supplemental material. Therefore, we cre-
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Figure 6. Examples of our synthetic BEDLAM-CC dataset. High
variation in lighting and camera angles as well as strong close-up
distortion are intentionally part of the data. Images are rendered
with very wide FoVs to enable arbitrary crop augmentation with-
out re-rendering.

ate a new large synthetic dataset we name BEDLAM-CC
(“close camera”) utilizing assets provided with the BED-
LAM dataset [2]. It contains 2 million synthetically rendered
images enhancing current data for depth estimation. We
show example images of our dataset in Fig. 6. Focused on
challenging close-range images, we uniformly sample the
inverse depth 1/Tz approximating the perspective distortion
curve (Fig. 3) to generate this data. We enforce that 80% of
the samples are within the range of 0.3m ≤ Tz ≤ 1.2m and
the remaining samples in the range of 1.2m < Tz ≤ 10m.
BEDLAM-CC is used alongside other datasets to train our
Pelvis Depth Estimator FTz . For fair comparisons during
pose estimation, we do not use BEDLAM-CC during pose
learning. We also create a separate test set from it for eval-
uation to provide more accurate ground truth data with a
higher depth range. Please refer to the supplemental mate-
rial for more details on the BEDLAM-CC dataset generation.

4. Experiments
We evaluate our method using existing benchmarks and
also present extensive results on real-world images. Our
approach recovers both camera parameters and the human
mesh, achieving high 3D accuracy as well as precise 2D
alignment, whereas prior methods typically excel at only
one or the other [8].

4.1. Datasets
We train our model using a subset of 3D datasets employed
in ZOLLY [31], i.e. H36M [9], PDHUMAN [31], and
HUMMAN [4]. These datasets provide labeled camera and

SMPL parameters, which we convert to the state-of-the-art
SMPL-X model using the method from Choutas et al. [28].
Following ZOLLY [31], we evaluate our method on datasets
with strong perspective distortions including SPEC-MTP,
HUMMAN, PDHUMAN, and our dataset BEDLAM-CC.
SPEC-MTP [15] is a real-world dataset with distances
ranging from 0.5m to 2m. PDHUMAN [31] is a synthetic
dataset with distances ranging from 0.5m to 1.8m, where
many samples are around 0.6m. We identified some incon-
sistencies in the ground truth labels of PDHUMAN, which
we visualize in the supplementary material. HUMMAN [4]
is a multi-view dataset captured in a studio, exhibiting lim-
ited visual diversity and a narrow distance range of 1.75m
to 2.2m. To address the above shortcomings, we perform
additional evaluations on our BEDLAM-CC which provides
accurate ground truth labels and diverse depth ranging from
0.3m to 10m (Sec. 3.5), with 80% of the samples within
1.2m. We report performance on HUMMAN, 3DPW, and
H36M in the supplementary material, alongside visualiza-
tion of inconsistencies in PDHUMAN, distributions of depth
and body height, and runtime.

4.2. Training

Our framework contains two modules that require training,
namely the pelvis depth estimator FTzand the pose estima-
tor F pose. We train them in two stages. During the first
stage, we train the pelvis depth estimator FTzwith a total
batch size of 128 on 8 NVIDIA A100 GPUs for 4 epochs.
In the second stage, we freeze FTz , feed its prediction of
Tz to the pose estimator F pose, and train F pose. The sec-
ond stage of training uses a batch size of 336 on 48 NVIDIA
A100 GPUs for 4 epochs. The optimization of focal length,
and translation vector T = [Tx, Ty, Tz] requires no training.

4.3. Evaluation Metrics and Baselines

We evaluate the quantitative performance of all methods
using standard metrics and introduce new metrics to eval-
uate the recovered camera parameters. We use mean
Intersection-over-Union (mIoU) percentage to measure the
accuracy of 2D alignment between the rendered mesh and
the ground truth mask in the image. We use the Per-
Vertex Error (PVE) in millimeters to measure the accuracy
of the 3D mesh as the mean Euclidean distance between
the 3D vertices of predicted and ground truth meshes. We
also notice that existing metrics ignore the accuracy of the
estimated camera parameters, which is crucial to achiev-
ing consistent 3D pose estimation and 2D pose alignment.
Therefore, we introduce new metrics to evaluate the ac-
curacy of the recovered camera parameters. The common
camera model includes focal length and the translation and
rotation of the subject in camera space. We measure the ac-
curacy of the recovered focal length as the percentage error
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Figure 7. Qualitative SOTA comparison. We compare with SOTA methods for single-view human mesh recovery including AiOS [29],
and ZOLLY [31]. Our method BLADE is consistently more accurate in terms of estimated pelvis depth Tz of the person (metrical distances
given in parenthesis), focal length, and 2D alignment. Notice the improvements for areas with strong perspective effects close to the camera.
Image sources are given in the supplemental material.

with respect to the ground truth focal length:
Ef = |fpred − fGT |/fGT . (10)

Given that Tz has a direct inverse relationship with the
amount of distortion in the image (Fig. 3), whereas (Tx, Ty)
do not, we separately evaluate Tz and (Tx, Ty) errors as ETz

and ETxy in meters. Additionally, since Tz’s accuracy is
less important at far distances, we also calculate an inverse
Tz error E1/Tz

reflecting this property:

ETxy
= ∥T pred

xy − TGT
xy ∥2, (11)

ETz
= |T pred

z − TGT
z |, (12)

E1/Tz
= |1/T pred

z − 1/TGT
z |. (13)

We omit a dedicated 3D rotation error given that 3D rotation
is already evaluated as a part of MPJPE.

4.4. Comparison to State-of-the-Art Methods

Quantitative Results: In Table 1, we compare our method
BLADE with state-of-the-art single image HMR methods.
BLADE surpasses the current SOTA for close-range HMR,
ZOLLY [31], on all datasets and achieves the best overall
2D alignment, 3D localization, and pose estimation. No-
tably, BLADE obtains a relative improvement of 85.9%
ETz

and 21.4% PVE on the SPEC-MTP [15] dataset and
44.8% mIoU on the BEDLAM-CC dataset. We also eval-
uate recent SOTA methods AiOS [29], TokenHMR [8]
and SMPLer-X [5], using their respective publicly released
models. These methods don’t explicitly estimate focal
length and instead use a constant focal length of 5000. They
estimate accurate 3D meshes with low PVE values but are
inaccurate in terms of 2D alignment, focal length and 3D

translation. The common tradeoff between 2D and 3D ac-
curacy is discussed in detail in TokenHMR [8].

Additionally, we find that good performance on the syn-
thetic PDHUMAN dataset [31] does not reflect good perfor-
mance in real-world usage. As shown in Table 1, recent
SOTA methods [5, 8, 29] perform well on the real-world
dataset SPEC-MTP but substantially worse on PDHUMAN
in terms of PVE. Whereas ZOLLY [31] performs well on
PDHUMAN but less so on SPEC-MTP [15]. We sus-
pect that this potential gap is due to: (1) the extreme dis-
tortion in PDHUMAN which is not present in real-world
data, and (2) inconsistencies in its ground truth labels (de-
tailed in the supplementary). We thus show two versions
of BLADE: (i) “Ours” trained with a balanced distribution
across the 3 training datasets; and (ii) “Ours (real-world)”
trained with increased sampling from HUMAN3.6M and
decreased sampling from PDHUMAN. “Ours” performs
well on each dataset compared to other methods and per-
forms best on PDHUMAN. “Ours (real-world)” performs
the best on SPEC-MTP, BEDLAM-CC, and in real-world
usage. Please refer to the supplementary for an expanded
version of Table 1 with all metrics and additional results.

Qualitative Results: In Fig. 1 and Fig. 7, we show re-
sults of SOTA methods AiOS [29] and Zolly [31], and our
method on real-world images. BLADE performs signifi-
cantly better than compared methods in terms of 2D align-
ment of the mesh to the image, 3D body mesh, and the accu-
racy of perspective distortion. The alignment of body parts
close to the camera is specifically improved by our method.
More visual results are included in the supplementary.
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Methods SPEC-MTP [15] (real-world capture) PDHUMAN [31] (synthetic) BEDLAM-CC (synthetic)
ETz↓ E1/Tz

↓ ETxy↓ Ef↓ PVE↓ mIoU↑ ETz↓ E1/Tz
↓ ETxy↓ Ef↓ PVE↓ mIoU↑ ETz↓ E1/Tz

↓ ETxy↓ Ef↓ PVE↓ mIoU↑
ZOLLY [31] 0.899 0.394 0.906 1.063 126.7 62.3 0.255 0.355 0.267 0.273 82.0 53.0 0.539 0.634 0.564 0.461 131.8 51.8
SMPLer-X*[29] 0.980 0.450 0.109 1.121 102.6 53.0 2.223 1.030 0.126 0.550 161.2 47.6 2.057 1.172 0.087 1.349 139.9 53.0
TokenHMR*[8] 0.909 0.436 0.095 1.121 124.3 49.7 2.280 1.034 0.068 0.550 156.7 53.0 2.378 1.200 0.096 1.349 136.4 54.2
AiOS*[29] 1.035 0.464 0.121 1.121 110.9 48.7 2.312 1.024 0.149 0.550 183.4 49.5 2.340 1.197 0.111 1.349 143.0 54.6
Ours 0.129 0.114 0.056 0.163 111.9 68.7 0.106 0.176 0.043 0.216 80.5 67.3 0.326 0.305 0.079 0.257 111.6 74.6
Ours (real-world) 0.127 0.112 0.044 0.159 99.6 69.5 0.107 0.178 0.049 0.223 102.6 65.2 0.325 0.305 0.076 0.212 106.8 75.0

Table 1. Quantitative comparison to SOTA methods. Evaluation on SPEC-MTP [15], PDHUMAN [31], and BEDLAM-CC [2] datasets.
Our method achieves SOTA results. Best results indicated by bold numbers. For additional metrics and test datasets please refer to
the supplemental material. * symbol indicates pre-trained public models. Model version “Ours” is trained using 3D datasets used in
ZOLLY [31] whereas “Ours (real-world)” is trained with increased sampling frequency for real-world data HUMAN3.6M [9].

DiNOv2 [27] Sapiens [12] DAv2 [33] Ours

ETz ↓ 0.300 0.210 0.154 0.127

Table 2. Ablation study for depth backbone. Test on SPEC-
MTP [15]. “Ours” is using DAv2 as the depth backbone [33] and
fine-tuned using different augmentations.

4.5. Ablation Study

Ablation of pelvis depth estimator. Accurate depth es-
timation is the core to solving for other variables. In Ta-
ble 2 we evaluate various foundation models including Di-
NOv2 [27], Sapiens [12], and DAv2 [33] as the back-
bone to our pelvis depth estimator FTz . The models are
trained using HUMMAN [4], PDHUMAN [31], and HU-
MAN3.6M [9]. On the most challenging real-world SPEC-
MTP [15] dataset, DAv2 achieves the best accuracy with
ETz

= 15.4cm. Finally, “Ours” is a version of the DAv2-
based FTz trained with improved augmentation and addi-
tional data from our BEDLAM-CC dataset (Sec. 3.5), which
provides many close-range images (<1m), and thus further
reduces the Tz error from 15.4cm to 12.7cm.

Conditioning the pose estimator. In Table 3, we evalu-
ate various architectures of pose estimator on the task of
3D pose estimation and mesh recovery on the challenging
close-range real-world SPEC-MTP dataset [15]. The pub-
licly available “raw AiOS” performs well. However, after
fine-tuning (“ft. AiOS”) with the HUMMAN, PDHUMAN,
H36M datasets, which mostly contain faraway subjects and
synthetic images, its performance degrades on the close-
range real-world SPEC-MTP dataset [15], by losing its
good generalization to real-world data. On the other hand,
conditioning raw AiOS [29] in Tz through a ControlNet-
style architecture [36] that we proposed in BLADE (Fig. 4),
leads to significant improvements in pose estimation perfor-
mance. It enables the pose backbone to retain its previous
knowledge while learning the correct relationship between
Tz and the image to enhance 3D pose estimation.

PA-MPJPE↓ MPJPE↓ PVE↓
raw AiOS 62.816 101.577 110.851
ft. AiOS 64.932 113.173 120.582
Ours (Tz cond.) 56.666 94.050 99.635

Table 3. Ablation study for conditioning. Test on SPEC-
MTP [15]. Architecture: DAv2 [33] used in pelvis depth esti-
mator. First row: AiOS [29] used as pose estimator. Second and
third row “Ours”: AiOS [29] with ControlNet [36] used as pose
estimator with and without conditioning on Tz .

Limitations. We currently only consider single-person
images. For the future, we plan to extend our method to
process videos where more information can be leveraged
for better accuracy. We also do not consider lens distor-
tion or camera types other than the standard pin-hole camera
such as fish eye lenses. Lastly, the estimation of (f, Tx, Ty)
can fail when the segmentation mask is very inaccurate. A
promising direction is learnable optimization to substitute
differentiable rasterization for better robustness.

5. Conclusion
In this work, we propose BLADE – a method for human
mesh recovery and perspective camera estimation from sin-
gle images. This is a long-standing challenging and open
problem. Different from previous work, we provide a so-
lution to estimating perspective projection parameters with-
out conversion from an orthographic camera model. We
underscore the significance of accurate and disentangled
pelvis depth estimation, followed by depth-conditioned hu-
man pose estimation, and finally optimization of camera fo-
cal length and XY-translation. We also introduce a large-
scale synthetic single-person dataset, BEDLAM-CC, con-
taining a large number of close-range images with ground
truth labels for the perspective camera and SMPL-X body
parameters. Our framework BLADE achieves state-of-the-
art accuracy on a variety of benchmarks and across a wide
range of depths. Among other use cases, the method can
be applied for accurate pose labeling of in-the-wild image
datasets to train robust human-centric models.
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