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Abstract

Recent breakthroughs in single-image 3D portrait recon-
struction have enabled telepresence systems to stream 3D
portrait videos from a single camera in real-time, democ-
ratizing telepresence. However, per-frame 3D reconstruc-
tion exhibits temporal inconsistency and forgets the user’s
appearance. On the other hand, self-reenactment methods
can render coherent 3D portraits by driving a 3D avatar
built from a single reference image but fail to faithfully pre-
serve the user’s per-frame appearance (e.g., instantaneous
facial expressions and lighting). As a result, neither of these
two frameworks is an ideal solution for democratized 3D
telepresence. In this work, we address this dilemma and
propose a novel solution that maintains both coherent iden-
tity and dynamic per-frame appearance to enable the best
possible realism. To this end, we propose a new fusion-
based method that takes the best of both worlds by fusing
a canonical 3D prior from a reference view with dynamic
appearance from per-frame input views, producing tempo-
rally stable 3D videos with faithful reconstruction of the
user’s per-frame appearance. Trained only using synthetic
data produced by an expression-conditioned 3D GAN, our
encoder-based method achieves both state-of-the-art 3D re-
construction and temporal consistency on in-studio and in-
the-wild datasets.

1. Introduction
Telepresence aims at bringing distant people face-to-face
and stands out as a particularly compelling application of
computer vision and graphics. Over the last decades, var-
ious successful telepresence systems [19, 21, 21, 25, 31,
33, 37, 43] have been developed. However, most employ
bulky multi-view 3D scanners or depth sensors to ensure
high-quality volumetric per-frame reconstruction. Unlike
these classical 3D/4D reconstruction methods, recent AI-
based feed-forward 3D lifting techniques [2, 52] can lift a
single RGB image from an off-the-shelf webcam into a neu-
ral radiance field (NeRF) representation encoded into a set
of triplanes in real time, paving the way towards making 3D
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telepresence accessible to anyone [48].

Figure 1. Comparisons. Given a single reference image and a
single-view video frame, our method reconstructs the authentic
dynamic appearance of the user (e.g., facial expressions and light-
ing) while producing a temporally coherent 3D video. A previous
single-view 3D lifting method (LP3D) that reconstructs the avatar
from the video frame on a per-frame basis suffers from distortions
and temporal inconsistency. A portrait reenactment method (GPA-
vatar) drives the identity in the reference image using the video
frame, but fails to capture accurate facial expressions (e.g., smile)
and per-frame appearance (e.g., lighting). The output should be
compared to the appearance of the input video frame (green box).

Currently, there are two major paradigms in democra-
tized 3D telepresence solutions from a single-view video:
(1) single-view per-frame 3D lifting methods and (2) 3D
portrait reenactment, which drives an identity from a refer-
ence image using another driving frame, but none of them
is an ideal solution. For (1), single-frame-based lifting tech-
niques such as LP3D [52], have the advantage of faithfully
preserving the instantaneous dynamic conditions present in
an input video, e.g. lighting, expressions, and posture, all
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of which are crucial to an authentic telepresence experi-
ence. However, single-image reconstruction methods oper-
ate independently on each frame and thus have fundamen-
tal limitations in maintaining temporal consistency. This
difficulty stems from the inherent ill-posed nature of single-
image-based reconstruction. In order to render novel views
that are significantly far from the input view, the system
cannot rely on information present in the input view and
hence must hallucinate generate plausible content, which
cannot be guaranteed to be consistent across multiple tem-
poral frames. For example, LP3D’s reconstruction changes
significantly depending on the user’s head pose in the in-
put frame (see second row in Fig. 1 and third column in
Fig. 2). In comparison, 3D self-reenactment methods create
an avatar model from one or multiple reference images and
use a separate driving video to drive the facial expressions
and poses of the avatar. [6, 27, 51, 59]. While these ap-
proaches allow for temporally consistent results, they often
cannot faithfully reconstruct the input video’s dynamic con-
ditions such as changes in lighting. Moreover, reenactment
methods often struggle to generate accurate expressions be-
cause their expression detection and control are not precise
enough (see the first row in Fig. 1).

In this work, we address this dilemma of democratized
3D telepresence approaches and propose a novel solution to
the problem of simultaneously maintaining temporal stabil-
ity while preserving real-time dynamics of input videos for
single-camera telepresence applications. Our proposed so-
lution is a fusion-based approach that leverages the stability
and accuracy of a canonical 3D prior, and also captures the
diverse deviations from the prior in newer video frames (see
the third row in Fig. 1).

Our model first uses LP3D [52] to construct a canonical1

triplane prior from a (near) frontal image of the user, which
can be casually captured or extracted from a video. During
video reconstruction, our model lifts each input frame into a
raw triplane, which is then fused with the canonical triplane
(see Fig. 3). For images with oblique yaw head poses, ar-
tifacts and identity-related distortions may be present in its
lifted triplane (see “LP3D” in Fig. 1 and 2). Hence we pro-
pose an undistorter module, which learns to undistort the
raw instantaneous triplane to more closely match the iden-
tity of the correctly structured canonical triplane. We then
propose a fuser module that combines the undistorted tri-
plane and the canonical triplane in order to preserve iden-
tity consistency and recover occluded regions while recon-
structing the dynamic lighting, nuanced expressions, and
posture information in the input frame.

We summarize our contributions as follows:
• We contribute a novel triplane fusion method that com-

bines the dynamic information from per-frame triplanes
with a canonical triplane extracted from a reference im-
age. Trained only using a synthetic multi-view video
1We find that the 3D lifting from a near frontal reference view is reli-

able, hence use this as a canonical 3D prior. See Fig. 2 first column.

dataset, our feed-forward approach generates 3D portrait
videos that demonstrate both temporal consistency and
faithful reconstruction of the dynamic appearance of the
user (e.g. lighting and expression), whereas prior solu-
tions can only achieve one of the two properties.

• We propose a new framework to evaluate single-view 3D
portrait reconstruction methods using multi-view data and
gain insight into the method’s reconstruction quality and
robustness.

• We present evaluations on both in-studio and in-the-wild
data and demonstrate that our method achieves state-of-
the-art performance in terms of temporal consistency and
reconstruction accuracy.
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Figure 2. View-Dependent Distortion. “NV” refers to “Novel
View Rendering”. Top: inputs to our model and LP3D. Second &
Third Rows: LP3D’s reconstruction varies greatly under challeng-
ing viewpoints, showing a predictable pattern of artifacts including
abnormally strong activations on the side being captured (red cir-
cle), as well as geometric distortion along the view direction of the
camera due to depth ambiguity. We refer to this phenomenon as
“View-Dependent Distortion”. Fourth row: Our method removes
such artifacts and achieves better coherence.

2. Related Work
2D portrait reenactment. Given a single or a few refer-
ence portrait images and a driving video, recent talking-
head generators can reenact 2D portraits by transferring the
facial expressions and poses from the driving video onto fa-
cial portraits [9, 10, 17, 46, 53, 54, 60, 62–64, 66]. However,
being 2D, they cannot be rendered from novel viewpoints,
which is crucial for 3D telepresence.
3D-aware portrait generation and reenactment. Some
recent works use deformable volumetric implicit radiance
fields [34, 38, 39] or Gaussian splatting [22] combined by
3DMMs to reconstruct a photorealistic and animatable vol-
umetric head avatar [1, 4, 14, 41, 45, 57, 67]. However,
they require extensive data captures from videos or mul-
tiview cameras and person-specific training. Others use
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large-scale video datasets and learn a disentangled triplane
3D [5] for 3D facial reenactment in a feedforward fash-
ion [6, 27, 28, 32, 51, 59, 61]. They construct a canonical
3D head from a reference image (often a neutral frame), and
use facial expressions and head poses extracted from a sepa-
rate driving video to animate it. As such, fine-grained facial
expressions may not be captured due to errors in disentan-
glement. Most importantly, these reenactment methods fail
to preserve the dynamic appearance of users (e.g., person-
specific wrinkles or lighting) across time.
3D GAN inversion. By combining GANs [15] and neu-
ral volume rendering [34], recent breakthroughs in 3D-
aware GANs [5, 8, 16, 36, 44, 47, 55, 56, 58, 65, 68]
can learn to generate photorealistic 3D heads from in-the-
wild 2D images. Notably, EG3D proposes an efficient
and compact triplane representation [5] to generate 3D
heads, and Next3D [50] extends EG3D to create 3D por-
trait videos controlled by 3DMM facial expression and pose
parameters. Besides generating 3D heads, these models
can also be used for single-view 3D reconstruction using
GAN inversion [13, 24, 30, 49], manipulation of the 3D
head [18, 49, 69], and 3D personalization [3, 40]. However,
inverting a few seconds of video can take many minutes or
hours, and the inversion quality is often unsatisfactory due
to inaccurate identity and expression preservation, as eval-
uated by GPAvatar [6]. Therefore, recent works [2, 52]
propose encoder-based solutions to lift each video frame
into a triplane. However, when each frame is independently
lifted into 3D, the resulting 3D head video suffers in terms
of temporal consistency – a key requirement of 3D telepres-
ence systems. To enhance single-frame 2D-to-3D encoders
for human heads, e.g., LP3D [52], we propose a triplane-
fusion-based method, which improves their temporal stabil-
ity while preserving temporal dynamics across time.

3. Method
3.1. Background: 3D Portrait from a Single Image
LP3D [52] performs photorealistic 3D portrait reconstruc-
tion by using a feedforward encoder to lift an RGB image
into a triplane T ∈ R3×32×256×256, which can be volume
rendered to an RGB image from any viewpoint. LP3D can
run in real-time and has been developed into a complete
realtime telepresence system [48]. We lift 2D faces into tri-
planes with a slightly modified LP3D trained on larger face
crops containing shoulders and a camera estimator to re-
cover the input image’s camera parameters M ∈ R25. It
performs better than the original version (Table 3).

3.2. Definitions
We call a current video frame an “input frame” into our
system. Additionally, we encode a near-frontal “reference
image” of the subject into a “canonical triplane”, which is
used to stabilize the 3D video generation process. Lastly,
we refer to the viewpoint of the camera in the input frame

as “input viewpoint”.

3.3. Overview
An overview of our method is illustrated in Fig. 3. To im-
prove temporal consistency and reconstruct occluded parts
of the face, we leverage an additional near-frontal reference
image, which can be a selfie image or a video frame auto-
matically obtained from the same video using an off-the-
shelf head pose estimator like DECA [11]. We lift this ref-
erence image into the canonical triplane using pre-trained
LP3D. When processing the video, we first lift each input
frame into a raw triplane. Then, the Triplane Undistorter
(Sec. 3.5) removes view-dependent distortions and recov-
ers the identity using the canonical triplane as a reference.
This produces an undistorted triplane. Finally, to recover
regions that are occluded in the input frame and further im-
prove stability, our Triplane Fuser (Sec. 3.6) combines the
undistorted triplane with the canonical triplane to generate
the final coherent triplane.

3.4. Generating Synthetic Dynamic Multiview Data
We synthesize ground truth multiview training images us-
ing Next3D [50]. We first extract 2D landmarks and
FLAME [26] coefficient labels for the FFHQ [20] dataset
using DECA [12]. Then, during training, we sample a pair
of random FLAME coefficients from our FFHQ labels and
input them to Next3D alongside a single random identity
code z. We notice that FFHQ contains mostly less extreme
expressions. Thus, we randomly multiply the expression
codes by a small scaling factor to exaggerate the expres-
sions during training. Notice that the Next3D generator is
much more expressive than FLAME due to its use of tri-
planes and GAN training even though it is conditioned on
FLAME. Next3D then generates a pair of triplanes for t = 0
and t = 1 of the same person with 2 expressions. We ren-
der the t = 0 triplane into a near-frontal reference image
Iref (Fig. 3 orange box) and the t = 1 triplane into 3 im-
ages: the input frame rendered from a random viewpoint
(green box), the ground truth image at a different viewpoint
(red box), and a frontal-view image (red box). Only the lat-
ter two are used for supervision. Additionally, to simulate
different lighting conditions, we also apply different color
augmentations (brightness, contrast, saturation, and hue) to
images at t = 0 and t = 1.
Shoulder augmentation. It is important that 3D portraits
capture dynamic shoulder movements to convey body lan-
guage and achieve eye contact in telepresence. However,
Next3D does not provide control over shoulder posture.
Thus, we simulate shoulder movement in the rendered im-
ages without modifying the Next3D triplanes by warping
camera rays during volume rendering. Please see the sup-
plement for more detail.
Pseudo-groundtruth triplanes. Due to our shoulder aug-
mentation, the Next3D triplanes and their 2D renderings be-
come inconsistent. Thus, Next3D’s triplanes cannot be used
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Figure 3. Method Overview. Given a near-frontal reference image and an input frame, we first reconstruct a canonical triplane and a raw
triplane using LP3D [52] (Sec. 3.1). Next, we combine them through a Triplane Fusion module (blue box) that ensures temporal consistency
while preserving dynamic information (e.g., lighting and shoulder pose) (Sec. 3.5 and 3.6). Our model is trained with only synthetic video
data generated by a 3D GAN [50], with carefully designed augmentations to preserve shoulder motion and lighting (Sec. 3.4).

as direct supervisory signals. To mitigate this, we leverage
the fact that LP3D generates reasonably accurate triplanes
from frontal view images. We use a frozen LP3D to predict
pseudo-groundtruth triplanes TtriplaneGT from the frontal
novel view Ifrontal for t = 1 (Fig. 3 bottom right).

3.5. Removing Distortion and Preserving Identity
LP3D’s reconstruction quality strongly depends on the in-
put frame’s viewpoint. When subjects are captured from the
side, LP3D tends to produce errors in identity and exhibits
stretching distortions (e.g., in the “Input Frame 1” and “In-
put Frame 2” columns in Fig. 2), primarily due to the inher-
ent ambiguity of single-image reconstruction. In contrast,
near-frontal views offer more complete identity cues and
suffer less from occlusion (e.g. the “Reference Image” col-
umn in Fig. 2), leading to more reliable reconstruction. To
reduce the single-image ambiguity, we adopt a near-frontal
reconstruction as the canonical triplane Tcano. Although
incorporating more reference views could potentially im-
prove accuracy, we find that using a single near-frontal view
not only simplifies the model but also sufficiently enhances
temporal coherence.

To correct the distortion in an input raw triplane Traw

using the canonical triplane Tcano as reference, we devise a
Triplane Undistorter U (Fig. 3):

U(Traw, Tcano) = Tundist ∈ R3×32×256×256 . (1)

Since the distortion in each triplane is a 2D warping arti-
fact, it can be reversed through a 2D undistortion warping
of each plane. To this end, our Undistorter U adopts the
SPyNet[42] architecture to predict a 2D correction warp-
ing Tcorr ∈ R3×2×256×256 for the three planes. Then,
the Undistorter corrects the raw triplane Traw by warping
it based on the predicted 2D offsets (∆u,∆v) in Tcorr as:

Tcorr = SPyNet(Traw, Tcano), (2)

Tundist = Warp(Traw, Tcorr). (3)

It is important to note the difference between optical flow
and undistortion. An ideal optical flow model would warp
Traw towards Tcano in order to make the two identical.
However, this alignment leads to significant artifacts and
destroys the reconstruction (Table. 3 and Fig. 5). This is
because the purpose of undistortion is not to make the two
triplanes identical, but to correct Traw such that it has the
same identity as the canonical triplane Tcano, while pre-
serving dynamic information such as expressions and light-
ing. Therefore, instead of using the canonical triplane Tcano

as the warping target, our Undistorter U merely uses Tcano

as the identity conditioning to correct the raw triplane Traw

towards the ground truth triplane TtriplaneGT (Fig. 3, lower-
right), which is not available during test time. The cor-
rection warping is supervised by the consistency between
the undistorted triplane Tundist and pseudo-groundtruth tri-
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plane TtriplaneGT (Sec. 3.4) via a triplane loss:

Lundist = L1(Tundist, TtriplaneGT ). (4)

3.6. Reconstructing Occluded Regions through Tri-
plane Fusion

As the user moves around in the video, different parts of
their head become occluded. To recover occluded areas in
the input frame and further stabilize the subject’s identity
across the video, our Fuser F enhances the reconstruction
by utilizing the canonical triplane Tcano, in which the cur-
rently occluded areas are often visible. Therefore, it is im-
portant for the Fuser F to identify and recover the occluded
regions while preserving information from the visible re-
gions in Tundist. To accomplish this, we thus use a 5-layer
ConvNet-based visibility estimator V to predict a visibil-
ity triplane as V (Traw) = T vis

raw ∈ R3×1×128×128, i.e. one
visibility map for each plane. T vis

raw is undistorted along-
side Tundist to produce T vis

undist. We also predict a visibility
triplane for the canonical triplane as T vis

cano = V (Tcano).
Finally, the Fuser F produces the fused triplane Tfused by
combining information from the undistorted input tranplane
Tundist, its visibility triplane T vis

undist, the canonical triplane
Tcano, and its visibility triplane T vis

cano.

Tfused = F (Tundist, T
vis
undist, Tcano, T

vis
cano). (5)

In this way, Fuser F merges new information in the input
frame with occluded regions visible in the reference image.
To train the visibility predictor V , we calculate the visibility
loss Lvis as the L1 distance between the predicted visibility
triplanes versus the ground truth:

Lvis = L1(T
vis
raw, T

visGT
raw ) + L1(T

vis
cano, T

visGT
cano ). (6)

The ground truth visibility triplanes contain 1 for pixels that
are visible, and 0 otherwise. The generation of the ground
truth visibility triplanes T visGT

raw and T visGT
cano is discussed in

the supplementary.
To supervise the Fuser F , we calculate the fusion loss

Lfusion as the L1 loss between the fused triplane Tfused

and the pseudo-groundtruth triplane TfrontalGT . To high-
light the currently occluded region during training, we also
upweight the occluded region using an occlusion mask
ToccMask ∈ R3×1×256×256 as:

Tdiff = |Tfused − TtriplaneGT |, (7)

Lfusion = Mean(Tdiff ) +
Tdiff · TvisGT

|TvisGT |
+

Tdiff · ToccMask

|ToccMask|
. (8)

Please refer to the supplementary for the calculation of the
occlusion mask. We use the Recurrent Video Restoration
Transformer (RVRT) [29] as the backbone of our Fuser
F because of its memory efficiency. We find that the fi-
nal summation skip connection in RVRT prevents effective
learning. This is because the original RVRT was designed to
correct local blurriness and noise in a corrupted RGB video,

whereas our triplane videos exhibit structural distortion on a
much larger scale and the summation skip connection thus
limits the model’s ability to correct the general structure.
We thus replace the summation with a small 5-layer Con-
vNet.

Lastly, note that both the Undistorter U and the Fuser F
consist of 3 separate copies, one for each of the 3 planes, be-
cause we find that processing all three planes jointly leads to
collapse to 2D (please see supplementary for visualization
and analysis).

3.7. Training Losses
Our loss function is the summation of four loss terms that
provide two types of supervision: (a) direct triplane space
guidance used to supervise the undistortion process in the
Undistorter U , the visibility prediction process, and the fu-
sion process in the Fuser F ; and (b) image space guidance
for overall learning of high-quality image synthesis:

L = wundistLundist + wfusionLfusion

+wvisLvis + wrenderLrender, (9)

where wundist, wviz , wfusion, and wrender are scalar
weights for the different loss terms. Lrender is calculated as
the perceptual loss LLPIPS between the ground truth novel
view IGT and the rendered novel view Irender as:

Lrender = LLPIPS(IGT , Irender). (10)

4. Evaluation
Multi-view evaluation of single-view reconstruction.
Due to the lack of 3D ground truth for in-the-wild im-
ages, prior methods are often evaluated on the input image
reconstruction task, which compares the rendered image
against the input image using metrics like PSNR, whereas
the novel view synthesis task often relies on visual assess-
ments. However, this practice can lead to ambiguities and
inaccurate conclusions. For example, if a 3D reconstruc-
tion is only rendered and evaluated from the input view-
point, then that reconstruction can overfit to the input view
to achieve high scores even if it is inaccurate when rendered
from other viewpoints (as proven quantitatively in Fig. 11
of the supplementary). Moreover, single-view reconstruc-
tion methods can be heavily affected by the choice of in-
put viewpoints (Fig. 2). Therefore, both the input view-
point and the novel viewpoint are crucial variables to con-
sider when concluding the performance of a method. We
thus propose a new evaluation framework that evaluates a
model across every input-novel viewpoint combination. In
this way, a method can only achieve high numerical perfor-
mance when it consistently generates high-quality recon-
structions regardless of the choice of input or novel view-
point.

4.1. Evaluation Dataset
We quantitatively evaluate various methods on the
NeRSemble [23] dataset, which is a multiview portrait
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video dataset that allows us to evaluate the methods using
different input-novel viewpoint combinations. It is recorded
with 16 calibrated time-synchronized cameras in a con-
trolled studio environment. The images are captured at
7.1 MP resolution and 73 frames per second. There are
10 sequences in the test set, each capturing a different in-
dividual performing different expressions. One of the 10
test sequences involves severe facial occlusion from hair
that causes most of the methods’ face trackers to fail for
significant portions of the recording for many of the view-
points. We thus leave out that sequence because the results
would not be a reliable assessment of quality. We also use
8 roughly evenly separated cameras out of all 16 cameras
during evaluation.

4.2. Metrics
Synthesis Quality. Given N views in the dataset, we eval-
uate a method’s average performance across every input-
novel viewpoint combination. More specifically, for each
frame, each of the N cameras is used as the input view-
point, producing N reconstructions in total. Then, each of
the N reconstructions is rendered and evaluated on the N
viewpoints, resulting in an N × N score matrix. As men-
tioned before, we use N = 8 of the camera views from the
NeRSemnble[23] dataset as input and novel views. Thus,
for a test sequence of T frames, we can calculate a spatial-
temporal score matrices ST×8×8 for each of the metrics (as
visualized in Fig. 11 in the supplementary):

St,i,j = Metric(It,i,jrender, It,jGT ), 1 ≤ i, j ≤ N, 1 ≤ t ≤ T, (11)
s = Mean({St,i,j}), (12)

where Metric(·) can be LPIPS, PSNR, etc.. It,i,jrender is the
image rendered using camera i as the input frame and cam-
era j as the output rendering view at frame t. It,jGT is the
ground truth frame captured by camera j at frame t. The
Synthesis Quality s is thus the average over all entries in
S. For a dataset with multiple sequences, such as NeRSem-
ble, the final Synthesis Quality is the average across all se-
quences.
Novel View Synthesis (NVS) Quality. Novel View Syn-
thesis Quality sNV is the average over all entries where the
input view i is different from the novel view j, essentially
removing the diagonal entries from the score matrix:

sNV = Mean({St,i,j |i ̸= j, 1 ≤ t ≤ T}). (13)

Identity Accuracy (ID) We measure the ArcFace [7] co-
sine distance between the ground truth image IGT and ren-
dered image Irender both from the frontal camera.
Expression Accuracy (Expr) We use NVIDIA Maxine
AR SDK [35] to measure the L2 distance between expres-
sion coefficients eGT of the ground truth image and erender
of the rendered image both from the frontal camera.
Dynamic Appearance While we believe that it is impor-
tant to measure the accuracy of dynamic appearance such

as lighting and shoulder poses, there is no existing multi-
view in-the-wild portrait video dataset to support such eval-
uation. We thus qualitatively evaluate various methods on
challenging in-the-wild portrait videos. Please see the sup-
plementary material for image examples and video results.

4.3. Comparisons
Baselines. We compare recent methods from 3 categories:
(i) Reconstruction: We evaluate LP3D [52] using the above
protocol. LP3D generates N 3D portraits using each of
the N viewpoints as input, and the N 3D portraits are then
evaluated on the N ground truth viewpoints. (ii) Reenact-
ment: We evaluate Li et al. [28] and GPAvatar [6] in the
self-reenactment setting. Li et al. [28] reconstruct 3D por-
traits as triplanes from reference images without test-time
optimization, and they drive the 3D portraits via dynamic
frontal renderings of 3DMMs. The authors of Li et al. [28]
evaluated their approach using the input views as the only
novel view, instead of all N views. GPAvatar[6] recon-
structs 3D portraits by leveraging multiple source images
and driving them through a FLAME [26] mesh model. We
use the first frame of the frontal camera in each NeRSem-
ble test sequence as the reference image to generate the
3D portrait, and drive it using videos from each of the N
viewpoints. We evaluate GPAvatar using the same evalua-
tion protocol as our method and LP3D. (iii) Inversion: We
evaluate VIVE3D [13], which is a state-of-the-art 3D GAN
inversion method for videos, and it can also perform se-
mantic video editing. We first provide VIVE3D 3 video
frames from the input viewpoint, which it requires for per-
sonalization. Then, we invert the input video frames into
3D portraits and render the 3D portraits from all N view-
points. Each of the above method uses a different cropping
of the face. We standardize the evaluation by re-cropping all
methods to our cropping protocol, which is the largest of all.
Please see the supplement for an additional table, where we
evaluate the methods using different croppings around the
face and arrive at conclusions consistent with Table 1.
Quantitative results. We evaluate various methods using
different input-novel viewpoint combinations, providing a
robust multi-view assessment of a model’s performance.
Table. 1 shows that our model achieves state-of-the-art per-
formance across all metrics versus recent works. Notably,
while LP3D overfits to the input viewpoint (as shown by
the difference of 0.806dB PSNR between Synthesis Quality
and NVS Quality), our method generalizes better to novel
viewpoints (as shown by the difference of 0.330dB). More-
over, our method best preserves subject identity and expres-
sion (Table. 1, Fig. 2, and 4). On the other hand, the reen-
actment methods struggle to capture authentic expressions
because of the use of morphable face models, which have
limited expressiveness and accuracy. Moreover, they cannot
reconstruct dynamic appearance (e.g. the stuck-out tongue
in the second and third rows of Fig. 4) because they solely
rely on information present in the reference image(s) and
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Reference / SourceGroundtruth GPAvatarLP3DOurs Input / Driving Frame

Figure 4. Visual comparisons with baseline methods. Our method strikes a balance between coherent reconstruction and faithfully
preserving dynamic conditions like expressions. LP3D (third column) exhibits inconsistency in identities, hairstyles, and artifacts (red
circles). GPAvatar (fourth column) fails to capture challenging expressions (first row), new information not present in the reference image,
(the stuck-out tongue in second and third rows), and the identity of the person (last row).

do not incorporate new per-frame information. On the other
hand, our method achieves faithful dynamic appearance and
coherent reconstruction at the same time.

Method Type Expr↓ ID↓ Synthesis Quality NVS Quality

PSNR↑ LPIPS↓ PSNR↑ LPIPS↓
Li et al. [28] reenact 0.266 0.241 18.573 0.255 18.202 0.262

GPAvatar[6] reenact 0.204 0.207 21.949 0.233 21.949 0.2334

VIVE3D[13] invert 0.290 0.395 18.577 0.259 18.145 0.271

LP3D[52] recon 0.168 0.215 22.331 0.223 21.525 0.237

Ours recon 0.158 0.187 22.770 0.219 22.440 0.224

Table 1. Comparisons on Nersemble [23]. Our evaluation pro-
tocol (Sec. 4.2) utilizes multiview groundtuth for thorough anal-
ysis. Our method achieves state-of-the-art performance across all
metrics, maintains temporal coherence, and preserves accurate ex-
pressions.

4.4. Ablations
We evaluate the effectiveness of our proposed Triplane
Undistorter and Fuser modules on NeRSemble. In addition
to the Synthesis Quality in terms of PSNR and LPIPS, we
develop two new metrics to separately measure the robust-
ness to variations in (1) rendering viewpoints and (2) input
viewpoints:
(1) Novel View Variation (NVV). We evaluate how much
a method’s reconstruction quality varies across different
novel views. We quantify this as the standard deviation of
performance across the N novel views when using the same
input view, i.e. the average standard deviation of each hori-
zontal row of the score matrix S:

NVV =
1

TN

T∑
t=1

N∑
i=1

stddev
(
{St,i,j |1 ≤ j ≤ N}

)
. (14)

(2) Input View Variation (IVV). We measure how much
a method’s reconstruction quality varies when using the N
different input viewpoints (Sec. 4.2 second column from the
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Method U F Synthesis Quality IVV↓ NVV↓
PSNR↑ LPIPS↓ (PSNR) (LPIPS) (PSNR) (LPIPS)

LP3D[52] ✗ ✗ 22.331 0.223 1.025 0.015 2.200 0.053

Ours ✓ ✗ 22.196 0.221 0.907 0.009 1.699 0.038

✗ ✓ 22.265 0.223 0.559 0.006 1.315 0.029
✓ ✓ 22.770 0.219 0.245 0.005 1.383 0.037

Table 2. Undistorter and Fuser Ablations. The Undistorter-only
(row 2) and Fuser-only (row 3) variants both lead to improvements
in viewpoint robustness metrics (IVV and NVV), but not in Syn-
thesis Quality. The best performance is achieved by using both the
Undistorter and the Fuser at the same time.

right). We quantify this variation as the average standard de-
viation of performance on the same novel view when using
different input views, i.e. the average standard deviation of
each vertical column of the score matrix S:

IVV =
1

TN

T∑
t=1

N∑
j=1

stddev
(
{St,i,j |1 ≤ i ≤ N}

)
. (15)

NV V and IV V are measured for both PSNR and
LPIPS, and they are better if lower.

As shown in Table. 2, the Undistorter module consis-
tently improves the NVV and IVV metrics versus LP3D,
indicating better robustness to different input viewpoints
and more consistent rendering quality across novel rendered
views. However, when only the Undistorter is added (Tab. 2
second row) the PSNR is slightly reduced. This is likely
because this model does not leverage the reference image
to recover occluded areas while also overfitting to the in-
put view. Similarly, the Fuser-only variant (Tab. 2 third
row) achieves better NVV and IVV scores, but also scores
lower in terms of PSNR. A likely cause is that, without the
Undistorter, the Fuser needs to merge highly misaligned tri-
planes, where the person looks drastically different in Traw

and Tcano. This misalignment possibly induces more blur-
riness and alignment artifacts that lower the PSNR. The best
performance is achieved by our full model, which includes
both the Undistorter and the Fuser and thus achieves bet-
ter PSNR, LPIPS, IVV and NVV scores. This means that
the Undistorter and the Fuser complement each other: The
Undistorter corrects the distortion in the raw triplane and
thus reduces the challenges in fusing misaligned triplanes,
and the Fuser recovers the occluded areas in the raw tri-
plane.
Shoulder Augmentation. without shoulder augmentation,
the model fails to correctly reconstruct varying shoulder
poses, resulting in worse performance (Fig. 5 and Table. 3).
Optical Flow. As mentioned in Sec. 3.5, replacing the
Undistorter with optical flow worsens the reconstruction
(Table. 3). As shown by Fig. 5, this variant fails to correctly
reconstruct the shoulder and the mouth accurately.
GAN Training. We retrained our model with an additional
adversarial loss incorporated into Eqn. 10. As expected, the

Reference

Input Frame w optical flowLP3D w/o shoulder augOurs

Figure 5. Visual ablation. Our method with optical flow and
w/o shoulder augmentation on two different input frames (top and
bottom rows).

Method LPIPS↓ PSNR↑ IVV (PSNR) ↓ ID↓ Expr↓
LP3D (orig.) 0.334 18.721 2.130 0.247 0.451

LP3D (ours) 0.223 22.331 1.025 0.168 0.215

w optical flow 0.227 22.085 1.175 0.178 0.335

w/o shoulder aug. 0.218 22.342 0.829 0.153 0.244

Ours 0.219 22.770 0.245 0.158 0.187
Ours + GAN 0.207 22.074 0.314 0.152 0.198

Table 3. Other Ablations. We compare our implementation of
LP3D to the original one [52] (row 1&2); the effect of replacing
our Undistorter with optical flow warping (row 4); the effect of re-
moving shoulder augmentation during training (row 4); and the ef-
fect of adding an adversarial GAN loss (row 6) alongside Eqn. 10.

GAN training (Table. 3) improves the sharpness of images
as seen from the LPIPS error reduction from 0.219 to 0.207.
Additional results are included in the supplementary.
Qualitative results. In-the-wild experiments show that
our method achieves better temporal consistency than
LP3D [52] and more accurately captures dynamic infor-
mation like expressions and lighting changes than GPA-
vatar [6]. We refer the readers to our supplementary ma-
terials for visual examples of these results.

5. Discussion
Conclusion. Recognizing the individual limitations of
per-frame single-view reconstruction and 3D reenactment
methods, we presented the first single-view 3D lifting
method to reconstruct a 3D photorealistic avatar with faith-
ful dynamic appearance as well as temporal consistency,
marrying the best of both worlds. We believe our method
paves the way forward for creating a high-quality telepres-
ence system accessible to consumers.

Limitations and future work. We use a single reference
image, but incorporating multiple ones with different
expressions and head poses could lead to further im-
provements. With our method, fusing an extreme side
view with a very different expression to the reference
view may result in blurry reconstruction due to ambigu-
ity in triplane alignment. Finally, due to the additional
components, our current run-time performance is slower
than real time, which could be improved in future work.
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