
January 26, 2026

Demystifying Data-Driven Probabilistic Medium-Range
Weather Forecasting

Jean Kossaifi∗†, Nikola Kovachki∗†, Morteza Mardani∗, Daniel Leibovici∗, Suman Ravuri∗, Ira Shokar∗,
Edoardo Calvello, Mohammad Shoaib Abbas, Peter Harrington, Ashay Subramaniam, Noah Brenowitz,
Boris Bonev, Wonmin Byeon, Karsten Kreis, Dale Durran, Arash Vahdat, Mike Pritchard and Jan Kautz
NVIDIA

Abstract
The recent revolution in data-driven methods for weather forecasting has lead to a fragmented land-
scape of complex, bespoke architectures and training strategies, obscuring the fundamental drivers of
forecast accuracy. Here, we demonstrate that state-of-the-art probabilistic skill requires neither intricate
architectural constraints nor specialized training heuristics. We introduce a scalable framework for
learning multi-scale atmospheric dynamics by combining a directly downsampled latent space with a
history-conditioned local projector that resolves high-resolution physics. We find that this simple design
is robust to the choice of probabilistic estimator, seamlessly supporting stochastic interpolants, diffu-
sion models, and CRPS-based ensemble training. Validated against the Integrated Forecasting System
and the deep learning probabilistic model GenCast, our framework achieves statistically significant
improvements on most of the variables. These results suggest that for medium-range prediction, scaling
a unified, general-purpose model can be more effective than relying on domain-specific complexity or
probabilistic estimation framework.

1. Introduction

Until recently, the consensus within the atmospheric science community was that purely data-driven approaches
could never rival the fidelity of numerical weather prediction (NWP). The chaotic, multi-scale dynamics of
the atmosphere were thought to demand explicit solvers based on fluid dynamics. However, the introduction
of a neural-operator [1], and later graph-neural-network approaches [2, 3] for capturing these multi-scale
dynamics, demonstrated that deep learning could not only capture global circulation patterns from historical
data but do so with accuracy competing with the gold-standard Integrated Forecasting System (IFS) developed
by the European Centre for Medium-Range Weather Forecasts (ECMWF). Since, data-driven deterministic
models [1, 4, 5, 6, 7, 8] have reached parity with or surpassed traditional NWP.

Beyond matching the accuracy of traditional solvers, these models offer a fundamental computational
advantage: they generate predictions several orders of magnitude faster, often requiring only a single GPU. This
efficiency has democratized access to high-quality forecasting and opened the door to massive ensembles [9, 10].
Consequently, the frontier of research has now shifted from establishing feasibility to mastering probabilistic
prediction [11, 12, 13, 14, 15], aiming to capture the uncertainty inherent in partially observed, chaotic
systems.

However, these recent and rapid evolutions of the field have led to a fragmented landscape of architectures
and training methodologies. Because weather data resides on a spherical manifold and involves distinct
physical variables, researchers have heavily prioritized domain-specific inductive biases. Current approaches
generally fall into three distinct design philosophies. First, the FourCastNet family [6, 14] and related
architectures [16, 17, 18, 19, 20] leverage spherical harmonics and convolutions to strictly enforce geometric
symmetries as inductive biases. Second, graph-based models [5, 11, 12, 13] encode the atmosphere on
icosahedral meshes and rely on message-passing architectures to capture physical dynamics. A third category
[4, 7, 21] adapts vision transformers (ViTs) [22] with bespoke tokenization strategies or vertical aggregation
layers to handle the 3D structure of the atmosphere. While effective, these specialized architectural and training
constraints often introduce significant engineering complexity and computational bottlenecks that hinder
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efficient scaling.
The challenge is compounded in the probabilistic setting where the design space is even more fragmented.

To capture uncertainty, complex loss functions and sampling strategies have been proposed. Some approaches
optimize continuous-ranked probability scores (CRPS) directly but can struggle to accurately predict spectral
power at the shortest retained wavelengths [12, 13]. Others augment CRPS with spectral terms to improve
sharpness [23, 14].

More recently, diffusion, flow-matching, or consistency models [11, 24, 25] have demonstrated high fidelity
but suffer from slow inference times or limited resolution. Indeed, diffusion based approaches have especially
attractive potential for controllability relevant to multi-task foundation modeling [26] beyond the prediction
task. However, they have so far not achieved probabilistic skill close to state-of-the-art without sacrificing either
time or spatial resolution – an open challenge.

We investigate the extent to which bespoke probabilistic estimation or architectural complexity are necessary
to achieve state-of-the-art weather forecasts by pursuing a very different path: a streamlined framework that
relies on standard, scalable components. Our framework leverages standard, scalable transformer architectures
operating within a compressed latent space. Inspired by the success of latent diffusion in computer vision,
our approach decouples the modeling of global dynamics from high-resolution synthesis. By stripping away
intricate, domain-specific constraints in favor of a general-purpose, scalable backbone, we achieve state-of-the-
art probabilistic performance with simplicity.

Our contributions are as follows:

• A unified latent framework: We find that the direct application of probabilistic methods such as diffusion
or stochastic interpolants to high-resolution weather data is often computationally prohibitive or unstable.
We propose the ATLAS framework: a standard transformer operating in a directly downsampled latent
space, coupled with a history-conditioned local projector. We show that this streamlined framework
effectively resolves high-resolution physics without the need for complex variational encodings or bespoke
layers.

• Method-agnostic robustness: We demonstrate that this framework serves as a universal backbone for
probabilistic forecasting. Unlike prior works that are tightly coupled to specific loss functions or training
recipes, our framework achieves state-of-the-art results using three independent estimation methods,
including stochastic interpolants, diffusion models, and CRPS-based ensemble training, suggesting
potential to unify the fragmented modeling landscape.

• State-of-the-art performance for a fully open model: We validate our approach against the Integrated
Forecasting System (IFS) and the strongest publicly available deep learning probabilistic model we are
aware of that was trained on similar ERA5 data and can therefore be fairly compared – GenCast. Our
method outperforms the IFS by a large margin and achieves statistically significant improvements over
GenCast for most variables (Figure 1).

• This performance represents the most skillful attempt yet to train a diffusion-based approach for this task
without sacrificing resolution.

2. ATLAS: Medium-Range Latent Probabilistic Weather Forecasting

In this section, we introduce ATLAS (Atmospheric Transformer in Latent Space), our method for medium-range
probabilistic weather forecasting. We first introduce the problem formulation, our choice of latent space
modeling and backbone architectures before introducing three probabilistic generative methods used to train
and validate our approach.

2.1. Problem Formulation

We consider a stationary, discrete-time, R𝑑-valued stochastic process {𝑥 𝑗 } 𝑗∈Z which represents the distribution
of 𝑑 measurements of the state of the atmosphere at equally spaced time intervals. Our task is to model the
conditional distribution 𝜌𝑐 (𝑥 𝑗+1 |𝑥 𝑗 ) from a single, finite, realization of {𝑥 𝑗 } as data. Note that by the stationarity
assumption, the joint distributions 𝜌(𝑥 𝑗 , 𝑥 𝑗+1) = 𝜌(𝑥𝑘 , 𝑥𝑘+1) for any 𝑗 , 𝑘 ∈ Z hence 𝜌𝑐 is independent of time.
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(a) Atlas-SI vs. IFS-ENS

(b) Atlas-SI vs. GenCast

Figure 1: Scorecard comparison of ATLAS-SI vs. IFS-ENS (a) and GenCast (b) for a fifteen day forecast with 56 ensemble
members averaged over ERA5 initial conditions in 2020. Left shows percent improvement in the RMSE of the ensemble
mean and right in the ensemble CRPS.

This allows us to formulate the problem as finding a model for a single conditional distribution 𝜌𝑐 (𝑥1 |𝑥0) given
data in the form of 𝑁 ∈ N realizations from the joint distribution 𝜌(𝑥0, 𝑥1). In particular, we assume to have
data {(𝑥†

𝑗
, 𝑥

†
𝑗+1)}

𝑁−1
𝑗=0 such that the pairs (𝑥†

𝑗
, 𝑥

†
𝑗+1) ∼ 𝜌(𝑥0, 𝑥1) are identically distributed. While we formulate

our models within this framework for simplicity, we readily admit that the stationarity assumption may be
violated for real weather data. This problem may be dealt with by appropriately conditioning on the sources of
non-stationarity, e.g., a representation of the time of day and the day of the year.

In subsection 2.4, we formulate three approximate models for 𝜌𝑐 (𝑥1 |𝑥0). Each method defines a conditional
transport map which, given an initial condition from 𝜌(𝑥0), pushes a known probability distribution to 𝜌𝑐 (𝑥1 |𝑥0).
Therefore sampling 𝜌𝑐 (𝑥1 |𝑥0) can be done by first sampling the known distribution and then evaluating the
transport map. In subsections 2.4.1 and 2.4.2, the transport map is defined implicitly as the flow map of a
stochastic process with 𝜌𝑐 (𝑥1 |𝑥0) as its terminal condition, while in subsection 2.4.3 it is defined directly. Each
case requires parameterizing a map which takes as input 𝑥0 as well as other case dependent inputs to produce a
R𝑑-valued output. In subsequent sections, we present a unified framework for parameterizing such maps as well
as reducing the dimensionality of the original data that is employed in all methods outlined in subsection 2.4.

Given an initial sample 𝑥0 ∼ 𝜌(𝑥0), we may use the models formulated in subsection 2.4 to generate an
approximate sample 𝑥1 ∼ 𝜌𝑐 (𝑥1 |𝑥0) for the next time step. We may then view 𝑥1 as the initial sample and again
use our approximate models to produce a sample for the next time step 𝑥2 ∼ 𝜌𝑐 (𝑥1 |𝑥1). Iterating on this process,
called unrolling, gives a forecast 𝑥1, 𝑥2, . . . for the initial condition 𝑥0. Since 𝑥1 is only approximately distributed
according to 𝜌𝑐 (𝑥1 |𝑥0), using it as an initial sample for the next step introduces a distribution shift in the inputs
of the transport maps of subsection 2.4. As more steps are unrolled, the distribution shift can become worse
because errors may compound. We show that our architectures are robust to this distribution shift and can
produce stable forecasts up to 15 days, amounting to 60 auto-regressive steps.

2.2. Latent Space Modeling

Latent space

We model a time series of re-assimilated observations of the atmosphere from ECMWF’s ERA5 dataset (see
subsection 3.1 for details). Each data point consists of 75 variables each on a quarter degree 721 × 1440
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Figure 2: Overview of our approach: Atmospheric states 𝑥0 and 𝑥−1 are encoded into a latent representation
𝑧0 and 𝑧−1, which is mapped, through a probabilistic model with a transformer backbone into a latent represen-
tation of residuals 𝑟1 of the next time step. These residuals are deterministically decoded back into original
space with a transformer-based decoder which is also conditioned on the high resolution initial state.

equiangular grid, making 𝑑 = 77, 868, 000. Handling such high-dimensional data directly is computationally
challenging for modern deep learning architectures [27]. We therefore adopt a latent space approach that
has recently shown success for computer vision and natural language processing tasks [28, 29]. In particular,
we encode each data point to a lower dimensional space, perform probabilistic inference in that space, and
decode the output back to the original space. In computer vision, this is normally done by first training an
encoder-decoder architecture and then training probabilistic models on the encoded data. We take a simpler
approach and instead downsample the data using bilinear interpolation and then train a decoder-only model to
upsample. We find this approach to produce considerably better behaved latent spaces with favorable spectral
properties, leading to probabilistic forecast models that remain stable in rollout. Standard VAEs mix all channels
(here representing physical variables) in the encoder, producing latent features that aggregate heterogeneous
variables into a common channel space. However initial experiments indicated that such mixing tends to: (i)
generate latent spectra with a long, flat high-frequency tail (a manifestation of spectral bias when aggressively
compressing complex multi-channel fields [30]), and (ii) ignore the underlying temporal structure of the data,
so that temporally adjacent fields can be mapped far apart in latent space [31, 32, 33]. By using bilinear
interpolation, we remove only the small-scale physics from the data, which are usually only predictable at short
time scales, but preserve other physical structures.

Furthermore since memory and computational resources that are normally reserved for the encoder can
now be put into the decoder, we find that this method achieves significantly better reconstruction performance.
We choose a 16× compression scheme by bilinearly interpolating each variable to a one degree 181 × 360
equiangular grid. Since we choose to make predictions at six hour intervals, this choice is physically justified
because, at that time scale, spatial scales less than approximately seventy kilometers are deterministically
unpredictable [34]. We find no degradation in predictive performance when upsampling with our decoder
model since its reconstruction errors tend to be an order of magnitude lower than those of the predictive model.
We refer to section 5 for ablations of various encoding strategies and comparisons against encoder-decoder
models.

Residual prediction and history

Empirical tests also uncovered better performance when predicting temporal residuals of states instead of the
states directly. We also found that including one additional historical state improves the robustness of the
model, improving stability at longer lead times.

Let B denote the bilinear downsampling operator. We will write 𝑧 𝑗 = B(𝑥 𝑗 ) for the latent state and
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𝑟 𝑗+1 = B(𝑥 𝑗+1 − 𝑥 𝑗 ) for the latent residual. Our aim then is to approximate the distribution 𝜌𝑐 (𝑟 𝑗+1 |𝑧 𝑗 , 𝑧 𝑗−1).
We will assume that the application of B preserves stationarity, and therefore that this is equivalent to the
distribution 𝜌𝑐 (𝑟1 |𝑧0, 𝑧−1) for all 𝑗 ∈ Z. Let D denote the decoder model that approximately inverts B. It then
follows that if 𝑦 ∼ 𝜌𝑐 (𝑟1 |𝑧0, 𝑧−1), D(𝑦)+𝑥0 is approximately distributed according to 𝜌𝑐 (𝑥1 |𝑥0, 𝑥−1). We therefore
train a decoder model that upsamples residuals so that D(𝑟1) ≈ 𝑥1 − 𝑥0. We have found that including the initial
state as an input to this model significantly improves reconstruction performance, that is, D(𝑟1, 𝑥0) ≈ 𝑥1 − 𝑥0.
This makes D similar to a deterministic model which predicts residuals but also has access to a downsampled
version of the truth. This mix of data allows the model to more easily capture high-resolution details and the
necessary physical dynamics from its input. Figure 2 depicts a graphical summary of our approach.

2.3. Transformer Architectures as the backbone of ATLAS
As a base model, we adapt the Diffusion Transformer (DiT) [35] originally popularized for image generation.
We tailor the specifics of the DiT to construct the decoder architecture parameterizing D and the predictive
architecture used for modeling 𝜌𝑐 (𝑟1 |𝑧0, 𝑧−1). In latent image and video diffusion models, it is common practice
to use a convolutional U-Net decoder [36] and a transformer for the generative model [27, 28, 37]. We find
that using a transformer-based decoder significantly improves our reconstruction results with errors typically
an order of magnitude lower than those of the predictive results. This improvement makes our latent space
approach possible as we find no loss in performance when going from the latent to the original space.

Decoder architecture

Our decoder model D takes as input the latent residual 𝑟1 which is a 181 × 360 spatial field with 75 channels
and the full resolution initial condition 𝑥0 which is a 721×1440 spatial field with 79 channels (see subsection 3.1
for details). It then outputs an approximation to the residual 𝑥1 − 𝑥0 which is again a 721 × 1440 spatial field
with 75 channels. In order to align the two spatial fields, we first patch 𝑥0 into 181 × 360 tokens by applying a
learned strided convolution with a 1 × 1 kernel, expanding the channels to an embedding dimension 𝑒𝑜 ∈ N.
We similarly apply a 1 × 1 non-strided convolution to the residual field 𝑟1, expanding its channels to 𝑒1 ∈ N.
We then concatenate the two fields into a single 181 × 360 spatial field with 𝑒 = 𝑒0 + 𝑒1 channels. A standard
sine-cosine positional encoding is added to this field and 𝑙 ∈ N DiT blocks are applied to it. Each DiT block is
modified to use local attention [38] in a 3 × 3 window and minimal spherically consistent padding applied
before the attention operation to ensure each pixel in the true field has a 3 × 3 context window around it. Since
the task of the decoder is spatially local, we have found local attention to be incredibly effective while being an
order of magnitude faster than its global counterpart on the long sequence length 181 · 360 = 65, 160. After
applying the last DiT block, a local linear layer is applied transforming the 𝑒×181×360 field to a 75×721×1440
field. Since the original DiT was designed for use in diffusion models, each DiT block takes as input an extra
time-conditioning parameter 𝑡 which internally modulates the scale and shift of the block’s output. We keep
this extra conditioning, simply fixing it to 𝑡 = 1 for any input as we have found that this performs better than
removing it.

Predictive architecture

Similar to the decoder architecture, the predictive architecture used to parameterize the maps 𝑏̂, 𝑠, or 𝑓 is
based on a DiT with various number of input fields. For 𝑏̂ (or 𝑠) the inputs are the noisy field 𝑋SI

𝑡 (or 𝑋DM
𝑡 )

and the two historical states 𝑧0, 𝑧−1, all of which are 75 × 181 × 360 spatial fields. We use a strided convolution
with a 1 × 1 kernel to patch the first input field to a dimension 𝑒1 × 𝑝1 × 𝑝2 and a similar convolution for the
concatenation of the historical states (𝑧0, 𝑧−1) resulting in a 𝑒2 × 𝑝1 × 𝑝2 field. Subsection 2.4 provides further
details.

Experimentation indicated that smaller patch sizes, resulting in larger 𝑝1, 𝑝2, yield a consistently better
single time step predictive performance at the expense of a higher computational and memory cost. However,
at very small patch sizes, symptoms of overfitting emerge, and predictions become unstable during rollout. We
find that 2× 3 patches, which make 𝑝1 = 91 and 𝑝2 = 120, to be the best compromise, resulting in accurate and
stable models. For equiangular grids, this patch size is known to give quasi-isotropic patches and has some
precedent in numerical methods for climate modeling [39]. Once patched, the inputs are concatenated into a
single representation with embedding dimension 𝑒 = 𝑒1 + 𝑒2 and sequence length 𝑝1 · 𝑝2 = 10, 920. A standard
sine-cosine embedding is added to this representation and 𝑙 ∈ N DiT blocks are applied each conditioned on
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the time input 𝑡 ∈ R. In this architecture, we use global attention as we find that it significantly improves the
stability of the model compared to its local counterpart. This may be due to potential long-range correlations
in the dynamics of the atmosphere. The final state is again obtained by a local linear layer projecting to a
75 × 181 × 360 field. In the case of 𝑓 , the inputs are the fields 𝑧0, 𝑧−1 and Gaussian vector 𝜉 ∼ 𝑁 (0, 𝐼𝑝). The
spatial fields are treated as before while the Guassian vector is used as extra conditioning to the DiT blocks
similar to the architecture in [12].

2.4. Three Approaches to Probabilistic Modeling in Latent Space
In the following three subsections, we describe three probabilistic methods that, once trained, allow us to
approximately sample the latent conditional distribution 𝜌𝑐 (𝑟1 |𝑧0, 𝑧−1). Combined with our decoder, this gives
an approximate method for sampling 𝜌𝑐 (𝑥1 |𝑥0) as described in subsection 2.2. For notational simplicity, we will
omit 𝑧−1 from our formulation and simply note that it is added as an additional input to any parameterized
map. Furthermore, we denote by 𝑧

†
𝑗
= B(𝑥†

𝑗
) and 𝑟

†
𝑗+1 = B(𝑥†

𝑗+1 − 𝑥
†
𝑗
), for all 0 ≤ 𝑗 ≤ 𝑁 − 1, the latent encodings

of our dataset. For simplicity, we continue to denote by 𝑑 the dimensionality of our data, noting that below this
now represents the dimensionality of the latent encoding and not the original data.

2.4.1. Stochastic Interpolants (SI)

Our first modeling approach is based on the stochastic interpolants framework [40] and, in particular, the
time-series formulation in [41]. Define the stochastic process

𝐼𝑡 = 𝛼(𝑡)𝑧0 + 𝛽(𝑡)𝑟1 + 𝜎(𝑡)𝑊𝑡 , 0 ≤ 𝑡 ≤ 1,

where (𝑧0, 𝑟1) ∼ 𝜌(𝑧0, 𝑟1),𝑊𝑡 is a R𝑑-valued Wiener process independent of (𝑧0, 𝑟1), and 𝛼, 𝛽, 𝜎 ∈ 𝐶1 ( [0, 1];R≥0)
satisfy the boundary conditions 𝛼(0) = 1, 𝛼(1) = 0, 𝛽(0) = 0, 𝛽(1) = 1, 𝜎(0) = 𝜎(1) = 0. We therefore have
that 𝐼0 = 𝑧0, 𝐼1 = 𝑟1 and, in particular, 𝐼𝑡 |𝑧0 is a bridge between 𝛿𝑧0 and 𝜌𝑐 (𝑟1 |𝑧0). It is shown in [41, Theorem
3.1], that solutions of the stochastic differential equation (SDE)

𝑑𝑋SI
𝑡 = 𝑏(𝑋SI

𝑡 , 𝑧0, 𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊𝑡 , 𝑋SI
0 = 𝑧0 (1)

satisfy Law(𝑋SI
𝑡 ) = Law(𝐼𝑡 |𝑧0) for all 𝑡 ∈ [0, 1] where 𝑏 : R𝑑 × R𝑑 × [0, 1] → R is the minimizer of

LSI =
∫ 1

0
E
[
|𝑏(𝐼𝑡 , 𝑧0, 𝑡) − ¤𝛼(𝑡)𝑧0 − ¤𝛽(𝑡)𝑟1 − ¤𝜎(𝑡)𝑊𝑡 |2

]
𝑑𝑡 (2)

with the expectation taken over the joint distribution (𝑧0, 𝑟1,𝑊𝑡 ). In particular, we note that 𝑋SI
1 ∼ 𝜌𝑐 (𝑟1 |𝑧0),

hence solving (1), allows us to sample 𝜌𝑐 (𝑟1 |𝑧0).
By discretizing the expectation in (2) with data samples, we may find an approximate minimizer of 𝑏. In

particular, we define 𝑏̂ to be the minimizer (over the parametric family defined in subsection 2.3) of

L̂SI =
1
𝑁

𝑁−1∑︁
𝑗=0

E𝑡∼𝑈 (0,1)E𝜉∼𝑁 (0,𝐼 )
[
|𝑏̂(𝐼†

𝑡 , 𝑗
, 𝑧

†
𝑗
, 𝑡) − ¤𝛼(𝑡)𝑧†

𝑗
− ¤𝛽(𝑡)𝑟†

𝑗+1 − ¤𝜎(𝑡)
√
𝑡𝜉 |2

]
where 𝐼

†
𝑡 , 𝑗

= 𝛼(𝑡)𝑧†
𝑗
+ 𝛽(𝑡)𝑟†

𝑗+1 +𝜎(𝑡)
√
𝑡𝜉. In practice, similarly to [42], we re-parametrize the loss so that inputs

and outputs to 𝑏̂ have approximately zero mean and unit variance at all time steps 𝑡 ∈ [0, 1] and pick a linear
schedule for 𝛼, 𝛽, 𝜎. Using this minimizer in (1), gives an approximate model of 𝜌𝑐 (𝑟1 |𝑧0). That is, we define

𝑑𝑋̂SI
𝑡 = 𝑏̂( 𝑋̂SI

𝑡 , 𝑧0, 𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊𝑡 , 𝑋̂SI
0 = 𝑧0 (3)

and expect that 𝜌( 𝑋̂SI
1 ) ≈ 𝜌𝑐 (𝑟1 |𝑧0) since 𝑏̂ ≈ 𝑏. Numerically, we discretize (3) with a first-order stochastic

Runga-Kutta scheme [43].

2.4.2. Diffusion Models

Our second modeling approach is based on the diffusion models framework [44] and, in particular, the
formulation in [42]. Consider the system of SDE(s)

𝑑𝑋
F,0
𝑡 = 0, 𝑋

F,0
0 = 𝑧0,

𝑑𝑋
F,1
𝑡 =

√︁
2𝜎(𝑡) ¤𝜎(𝑡)𝑑𝑊𝑡 , 𝑋

F,1
0 = 𝑟1,
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for 𝑡 ∈ [0,∞) where (𝑧0, 𝑟1) ∼ 𝜌(𝑧0, 𝑟1), 𝜎 ∈ 𝐶1 ( [0,∞);R≥0) monotonically increasing with 𝜎(0) = 0, and 𝑊𝑡

is a R𝑑-valued Wiener process independent of (𝑧0, 𝑟1). Let 𝑝 : R𝑑 × R𝑑 × [0,∞) → R denote the density of
(𝑋F,1

𝑡 , 𝑋
F,0
𝑡 ). We now consider the reverse time SDE,

𝑑𝑋DM
𝑡 = −2𝜎(𝑡) ¤𝜎(𝑡)∇ log 𝑝(𝑋DM

𝑡 , 𝑧0, 𝑡)𝑑𝑡 +
√︁

2𝜎(𝑡) ¤𝜎(𝑡)𝑑𝑊 𝑡 , 𝑋DM
𝑇 = 𝑋

F,1
𝑇

, (4)

for some 𝑇 > 0 where ∇ denotes the gradient in the first component and𝑊 𝑡 is a reverse time, R𝑑-valued Wiener
process independent of (𝑧0, 𝑟1,𝑊𝑡 ). It can be shown that Law(𝑋DM

𝑡 ) = Law(𝑋F,1
𝑡 ) for 𝑡 ∈ [0, 𝑇] and, in particular,

𝑋DM
0 ∼ 𝜌𝑐 (𝑟1 |𝑧0) hence solving (4) allows us to sample 𝜌𝑐 (𝑟1 |𝑧0) [44].
To that end, we estimate ∇ log 𝑝 from data. It is shown in [45, Theorem 1] that ∇ log 𝑝 is the minimizer of

LDM =

∫ 𝑇

0
E
[
|∇ log 𝑝(𝑋F,1

𝑡 , 𝑋
F,0
𝑡 , 𝑡) − 𝜎(𝑡)−2 (𝑋F,1

𝑡 − 𝑟1) |2
]
𝑑𝑡 (5)

where the expectation is taken over (𝑋F,0
𝑡 , 𝑋

F,1
𝑡 ). We therefore define 𝑠 to be the minimizer of

L̂DM =
1
𝑁

𝑁−1∑︁
𝑗=0

E𝑡∼𝑈 (0,𝑇 )E𝜉∼𝑁 (0,𝐼 )
��𝑠(𝑟†

𝑗+1 + 𝜎(𝑡)𝜉, 𝑧†
𝑗
, 𝑡) − 𝜎(𝑡)−1𝜉

��2.
Using this minimizer in (4) and approximating the terminal condition gives an approximate model of 𝜌𝑐 (𝑟1 |𝑧0).
That is, we define,

𝑑𝑋̂DM
𝑡 = −2𝜎(𝑡) ¤𝜎(𝑡)𝑠( 𝑋̂DM

𝑡 , 𝑧0, 𝑡)𝑑𝑡 +
√︁

2 ¤𝜎(𝑡)𝜎(𝑡)𝑑𝑊 𝑡 , 𝑋̂DM
𝑇 = 𝜉𝑇 (6)

where 𝜉𝑇 ∼ 𝑁 (0, (1 + 𝜎(𝑇)2)𝐼) . Then we expect that 𝜌( 𝑋̂DM
0 ) ≈ 𝜌𝑐 (𝑟1 |𝑧0) since 𝑠 ≈ ∇ log 𝑝 and 𝜌(𝜉𝑇 ) ≈ 𝜌(𝑋F,1

𝑇
)

for 𝑇 large enough. Numerically, we discretize (6) with the predictor-corrector method introduced in [42].

2.4.3. CRPS-based Models

Our third modeling approach learns a direct generative map 𝑓 : R𝑑 × R𝑝 → R𝑑 such that, for a latent state 𝑧0
and noise 𝜉 ∼ 𝑁 (0, 𝐼𝑝), the output 𝑓 (𝑧0, 𝜉) approximates a sample from the conditional distribution 𝜌𝑐 (𝑟1 | 𝑧0).
Training is performed by minimising a generalised Continuous Ranked Probability Score (CRPS) [46, 47] using
the ℓ1-norm, chosen for robustness in weather forecasting [12, 13], despite not being strictly proper for general
distributions [48, 49].

For a given (𝑧0, 𝑟1) pair and independent noise samples 𝜉, 𝜉′ ∼ 𝑁 (0, 𝐼𝑝), the CRPS objective is

LCRPS ( 𝑓 ) = E
[
| 𝑓 (𝑧0, 𝜉) − 𝑟1 | −

1
2
| 𝑓 (𝑧0, 𝜉) − 𝑓 (𝑧0, 𝜉

′) |
]
, (7)

where the first term measures the distance to the target and the second penalizes excessive ensemble spread.
This CRPS objective compares predictive ensembles to observations only through marginal distributions and

does not explicitly enforce the joint spatial structure. While the scalar CRPS is strictly proper, this property does
not extend to aggregated CRPS over spatial or multivariate dimensions, allowing ensembles to be point-wise
accurate yet inconsistent jointly. This manifests in two ways: CRPS-based models do not guarantee physically
meaningful spatial correlations, and empirically they exhibit spectral bias, capturing large-scale modes while
under-representing high-frequency energy [23].

To address this, we introduce a spectral regularization term. Let S denote the spherical harmonic transform,
implemented using torch-harmonics [6]. For a spatial field 𝑥(𝜃, 𝜙) on the sphere 𝑆2. S computes the
spectral coefficients via the projection:

[S(𝑥)]𝑙,𝑚 =

∫
𝑆2
𝑥(𝜃, 𝜙)𝑌 ∗

𝑙,𝑚 (𝜃, 𝜙) 𝑑Ω, (8)

where 𝑌𝑙,𝑚 are the orthonormal spherical harmonic basis functions, 𝑑Ω = sin 𝜃 𝑑𝜃 𝑑𝜙 is the area element, and
(·)∗ denotes the complex conjugate. We compute the CRPS on the magnitudes of the spectral coefficients |S(·) |,
ensuring phase invariance.
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Lang et al. [12] observed that the fair CRPS (an unbiased finite-ensemble estimator) can exhibit a degeneracy
in which ensemble variability is under-constrained when most members exactly match the observation; to
mitigate this, they propose using a mixture of biased and fair CRPS estimators. Similarly, Alet et al. [13] restrict
the latent noise dimensionality to constrain stochastic variance and promote coherent global structures. In
contrast, we find that spectral CRPS regularization not only stabilizes training with high-dimensional noise
with the standard two-sample CRPS estimator but also allows full expressive stochastic conditioning without
biased–fair mixtures or low-dimensional noise constraints.

During optimization, we discretize the outer expectation by sampling a training point 𝑧†
𝑗
and approximate

the inner expectations using two independent noise samples:

L̂( 𝑓 ) =
[
| 𝑓 (𝑧†

𝑗
, 𝜉1) − 𝑟

†
𝑗+1 | + | 𝑓 (𝑧†

𝑗
, 𝜉2) − 𝑟

†
𝑗+1 | − | 𝑓 (𝑧†

𝑗
, 𝜉1) − 𝑓 (𝑧†

𝑗
, 𝜉2) |

]
+𝜆spec

[��|S( 𝑓 (𝑧†
𝑗
, 𝜉1)) | − |S(𝑟†

𝑗+1) |
�� + ��|S( 𝑓 (𝑧†

𝑗
, 𝜉2)) | − |S(𝑟†

𝑗+1) |
��

−
��|S( 𝑓 (𝑧†

𝑗
, 𝜉1)) | − |S( 𝑓 (𝑧†

𝑗
, 𝜉2)) |

��] ,
with 𝜉1, 𝜉2 ∼ 𝑁 (0, 𝐼𝑝) i.i.d and 𝜆spec denotes a weighting factor. Given the minimizer 𝑓 , we expect that for
a latent state 𝑧0 and 𝜉 ∼ 𝑁 (0, 𝐼𝑝), 𝑓 (𝑧0, 𝜉) ∼ 𝜌𝑐 (𝑟1 |𝑧0), i.e., a single draw of 𝜉 passed through 𝑓 yields an
approximate sample from the conditional distribution.

Together our latent space encoding strategy described in subsection 2.2, our transformer-based decoder and
predictive architectures described in subsection 2.3, and the probabilistic models described in subsection 2.4
constitute our proposed model ATLAS. The full method is illustrated in Figure 2.

3. Experimental setting

In this section, we detail the dataset and training parameters that are common across all our models. We
further delineate our evaluation protocol and and the metrics used to obtain all quantitative results.

3.1. Training and evaluation
We use standard methods to compare the performance of the models on key metrics/variables with each other
and with our chosen baselines.

Dataset

We use a subset of ECMWF’S ERA5 dataset at the original 721×1440 resolution given at 6 hour intervals for years
from 1980 to 2019 for training, and 2020 for testing. We include seven surface variables and five atmospheric
variables each at thirteen different pressure levels (see Table 1). We include two additional variables: sea
surface temperature (sst) and total precipitation (tp), for a total of 75 input and output variables. At any
land location, we assign zero values to the sst field.

Training procedure

Prior to training, all data is normalized with statistics computed from the training years. In particular, we
compute the mean and standard deviation of all pixel values separately for each field. We compute separate
statistics for input fields and the residual fields. We then subtract the mean and divide by the standard deviation,
so that each field follows an approximately standard Gaussian distribution. For evaluation, we apply the inverse
of this normalization to our predictions and compute all metrics against the unnormalized dataset.

Each model is trained by minimizing its respective loss function detailed in subsection 2.4 by elastic averaged
stochastic gradient decent with a total batch size of 32 spread over 32 80GB A100 or H100 GPUs [50]. We use
the StableAdamW optimizer with default settings from the optimi library. We use the learning rate 1.28 × 10−4

with a linear ramp-up schedule for the first 2,000 steps followed by cosine decay for 100,000 steps [51], which
we call a cycle. The learning rate is then reset to 0.8× of its original value and again cosine decayed for 100,000
steps. For the evaluated model, ATLAS-SI and ATLAS-EDM are trained for 3 cycles, while ATLAS-CRPS is
trained for 6 cycles.
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Channel Description ECMWF ID
Surface variables

10u 10 meter 𝑢-wind component 165
10v 10 meter 𝑣-wind component 166
100u 100 meter 𝑢-wind component 228246
100v 100 meter 𝑣-wind component 228247
t2m 2 meter temperature 167
msl Mean sea level pressure 151
tcwv Total column vertically-integrated water vapor 137

Atmospheric variables at pressure level 𝑝 indicated by -- in hPa
z-- Geopotential 129
t-- Temperature 130
u-- 𝑢 component of the wind 131
v-- 𝑣 component of the wind 132
q-- Specific humidity 133

Table 1: Surface and atmospheric variables predicted by ATLAS. Detailed specifications of each variable can be
accessed at https://apps.ecmwf.int/codes/grib/param-db.

All predictive models use the same decoder, which is also trained with the above settings for 3 cycles,
minimizing the ℓ1-norm between its output and the residual field 𝑥1 − 𝑥0. To resolve potential non-stationarity
in the data, our decoder also takes as input the cosine-zenith angle (date dependent), the surface geopotential,
the land-sea mask, and the sst mask, all normalized in the range [−1, 1], as additional fields appended to 𝑥0,
giving a total of 79 input variables.

Model hyperparameters

Our three models — ATLAS-SI, ATLAS-EDM, and ATLAS-CRPS — use the same DiT predictive architecture
described in subsection 2.3. We choose the embedding dimension of the current state to be 𝑒0 = 2496 and the
embedding dimension of the history to be 𝑒1 = 832 for a total embedding dimension 𝑒 = 3, 328. We use 𝑙 = 12
DiT blocks with 13 heads in the attention layer, resulting in an embedding dimension of 256 per head. For the
SI and EDM versions, this results in a 2.4B parameter architecture. For the CRPS model, the noise dimension
is chosen to be the same as the embedding dimension 𝑝 = 3, 328. This noise is first processed by a MLP and
then passed to each DiT block as extra conditioning where it is processed by modulation layers. These extra
layers result in a 3.3B parameter architecture. Our decoder model, common to all three configurations, has an
embedding dimension for the high resolution state 𝑒0 = 1, 728 and an embedding dimension for the encoded
residual 𝑒1 = 768 for a total embedding dimension 𝑒 = 2, 496. We use 𝑙 = 16 DiT blocks with 12 heads in the
local attention layer, resulting in an embedding dimension of 208 per head. This results in a 1.8B parameter
architecture.

Evaluation procedure

Evaluation is focused on headline probabilistic score metrics aggregated globally for the validation set (year
2020), and compared against a deterministic physics-based ensemble baseline from the ECMWF IFS ENS at
0.25 degree horizontal resolution, as well as against a strong data-driven baseline, GenCast.

Our discussion will especially focus on the skill in predicting the 500 hPa geopotential height (z500) as a
key tracer of midlatitude dynamics. We also consider other important variables: 850 hPa temperature (t850),
the total column water vapor (tcwv), 850 hPa humidity (q850), and the 10 meter wind velocities (u10m and
v10m). Our evaluation protocol uses statistics aggregated across forecasts launched on 28 common initialization
dates spread throughout the year 2020, namely, 00:00 UTC on the 2nd and 16th of each month, plus the 8th
for January–April. This will be shown to yield more than enough statistical power for validation against our
baseline. Our models were evaluated at 6-hour intervals with rollouts extending up to 15 days. Each evaluation
was conducted by simultaneously simulating 56 ensemble members and, at each forecast step, computing
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the ensemble mean Root Mean Squared Error (RMSE), Continuous Ranked Probability Score (CRPS), and
Spread–Skill Ratio (SSR). For the GenCast baseline, we unroll the model from the publicly available checkpoint
(quarter degree, non-operational) using the same procedure as ATLAS but at 12 hour time steps. This setup
was chosen to ensure a fair and consistent comparison with ATLAS.

We find that on a single A100 GPU, generating a single time-step prediction (12 hours for GenCast and
6 hours for ATLAS) takes around 140s for GenCast, 94s for ATLAS-SI, 88s for ATLAS-EDM, and 3.3s for
ATLAS-CRPS.

3.2. Metrics
We evaluate our model on a basket of metrics generally used to assess probabilistic medium-range models. We
evaluate all metrics on a 721 × 1440 equiangular grid and report results by variable, level, and lead time. We
use the following notation for the rest of this section:

• Locations are indexed by 𝑝 and represent a particular latitude and longitude.
• 𝑤𝑝 is the area weight for that particular location and is proportional to sin(lat𝑢) − sin(lat𝑙), where lat𝑢

and lat𝑙 denote the upper and lower bounds of the latitude at point 𝑝, respectively. Area weights are
normalized such that ∑

𝑝 𝑤𝑝 = 1.
• We denote the ground truth at a particular initialization time 𝑡 and location p as 𝑥𝑡 , 𝑝. The number of

initialization times is 𝑇 .
• The prediction of 𝑥𝑡 , 𝑝 with ensemble member 𝑚 is 𝑥 (𝑚)

𝑡 , 𝑝 . We define the mean prediction across 𝑀 ensemble
members 𝑥 (𝑚)

𝑡 , 𝑝 ≡ 1
𝑀

∑
𝑚 𝑥

(𝑚)
𝑡 , 𝑝 .

• Due to the complexity of notation, variables, levels, and lead time are not indexed as above and are
implied.

Our choice to evaluate ensemble members across 56 ensemble members could be viewed as non-standard
given a frequent choice of 50. However this modest change is not material to our intercomparison since we also
report results on baselines with 56 members, such that any comparisons between the two models are valid.

Continuous-Ranked Probability Score

To assess pointwise accuracy of the models, we evaluate on continuous-ranked probability score (CRPS) and
ensemble mean RMSE. We use the “fair” version of CRPS [52], averaged across the above mentioned 28
initialization times. As the fair version is an unbiased estimator of CRPS, the average scores converge to the
same value in the infinite sample limit regardless of ensemble size. The CRPS for a particular variable, level,
and lead time is:

CRPS =
1
𝑇

∑︁
𝑡

∑︁
𝑝

𝑤𝑝

(
1
𝑀

∑︁
𝑚

|𝑥 (𝑚)
𝑡 , 𝑝 − 𝑥𝑡 , 𝑝 | −

1
𝑀 (𝑀 − 1)

∑︁
𝑚≠𝑚′

|𝑥 (𝑚)
𝑡 , 𝑝 − 𝑥

(𝑚′ )
𝑡 , 𝑝 |

)
.

Ensemble-Mean RMSE

We further report the ensemble mean RMSE. Since we report the standard version, which is a biased estimate
of the RMSE, there is a small bias due to the difference in ensemble member size. That said, the reported bias
is lower than for a 50-member ensemble.

ERMSE =

√√√
1
𝑇

∑︁
𝑡

∑︁
𝑝

𝑤𝑝

(
1
𝑀

∑︁
𝑚

(𝑥 (𝑚)
𝑡 , 𝑝 − 𝑥𝑡 , 𝑝)2

)
.

Spread-Skill Ratio

To assess calibration, we report the spread-skill ratio (SSR) [53], where

SSR =

√︂
𝑀 + 1
𝑀

Spread
ERMSE

, and Spread =

√√√
1
𝑇

∑︁
𝑡

∑︁
𝑝

𝑤𝑝

(
1

𝑀 − 1

∑︁
𝑚

(𝑥 (𝑚)
𝑡 , 𝑝 ) − 𝑥

(𝑚)
𝑡 , 𝑝 )2

)
.
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Under the assumption that ensemble members and the ground truth are exchangeable, a necessary condition is
that the ensemble mean RMSE equals its spread. A properly calibrated model has a SSR of 1, while below and
above that number represents under- and over-dispersion, respectively.

Statistical significance: Paired t-test

We apply a paired t-test to determine where differences between ATLAS skill are statistically detectable relative
to the GenCast ensemble baseline, by computing p-values across initialization dates for each lead time. This
approach recognizes the influence of sampling error and helps isolates genuine improvements in forecast skill
from transient fluctuations in skill metrics from internal variability.

Let 𝜏 denote the forecast lead time. For each model 𝑚 (Atlas-SI, Atlas-EDM, Atlas-CRPS, GenCast), let
𝑆𝑚 (𝑡, 𝜏) denote the verification score (ERMSE or CRPS) evaluated at lead time 𝜏. To compare two models 𝐴

and 𝐵, we form paired score differences across identical initialization dates,

𝑑𝑡 (𝜏) = 𝑆𝐴(𝑡, 𝜏) − 𝑆𝐵 (𝑡, 𝜏).

For each lead time 𝜏, we assess whether the mean score difference is statistically significant by testing the
null hypothesis 𝐻0 : E[𝑑𝑡 (𝜏)] = 0, using a paired 𝑡-test. The test statistic is given by

𝑡 (𝜏) = 𝑑 (𝜏)
𝑠𝑑 (𝜏)/

√
𝑇
,

where the sample mean and standard deviation of the paired differences are

𝑑 (𝜏) = 1
𝑇

𝑇∑︁
𝑡=1

𝑑𝑡 (𝜏), 𝑠𝑑 (𝜏) =

√√√
1

𝑇 − 1

𝑇∑︁
𝑡=1

(
𝑑𝑡 (𝜏) − 𝑑 (𝜏)

)2
.

Under the null hypothesis, the statistic 𝑡 (𝜏) follows a Student-𝑡 distribution with 𝑇 − 1 degrees of freedom.
Statistical significance is quantified using the corresponding two-sided 𝑝-value,

𝑝(𝜏) = 2
[
1 − 𝐹𝑡𝑇−1 ( |𝑡 (𝜏) |)

]
,

where 𝐹𝑡𝑇−1 (·) denotes the cumulative distribution function of the Student-𝑡 distribution. We say that a result is
statistically significant if 𝑝(𝜏) < 0.05.

4. Results

We perform a comprehensive quantitative and qualitative evaluation of ATLAS, demonstrating that the model
family performs well on standard statistical metrics and extreme events.

The section begins with a quantitative evaluation of the ATLAS models, comparing them with strong
data-driven and numerical models and to each other. Next, we perform a case study and highlight how the
model can generate accurate and physically realistic predictions for meteorologically important events. Finally,
this section concludes with a quantitative and qualitative evaluation on tropical cyclone tracking.

4.1. Quantitative Evaluation
In this section, we benchmark the ATLAS family of models against the ECMWF’s Integrated Forecasting System
and GenCast.

Comparison with Integrated Forecasting System

All three variants of ATLAS produce compelling skill gains relative to the IFS-ENS physics baseline, consistent
with trends seen in other state-of-the-art data-driven approaches. Figure 3 demonstrates that these improve-
ments are substantial at early lead times, particularly for surface variables; zonal and meridional surface
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(a) Atlas-SI vs. IFS ENS

(b) Atlas-EDM vs. IFS ENS

(c) Atlas-CRPS vs. IFS ENS

Figure 3: Heatmaps comparing Atlas and IFS across RMSE and CRPS, for all three variants, SI, EDM and CRPS.

winds (u10m, v10m) exhibit the strongest relative performance, with CRPS improvements peaking near 50%
at initialization and remaining above 10% throughout the first 6 days.

All three ATLAS variants maintain this performance advantage throughout the full 15-day forecast window
for the majority of state variables, including specific humidity (q850), temperature (t850), and surface winds,
where clear separation from the baseline persists even at two weeks. 500 hPa geopotential (z500) is an
exception to this trend; here the skill advantage converges toward the baseline after approximately 12 days,
whereas other atmospheric and surface fields retain improved skill over IFS-ENS through to day 15.

Comparison with GenCast

ATLAS also demonstrates superior skill against GenCast, a state-of-the-art open data-driven baseline. Figure 4
shows the same scorecards, comparing ATLAS to GenCast. When trained with the stochastic interpolant
variant, ATLAS consistently outperforms GenCast on both CRPS and ensemble mean RMSE out to lead times of
approximately seven days, the time scales where the predictability of the atmosphere is most actionable. On
longer time scales the skill differences between ATLAS-SI and GenCast are statistically indistinguishable at
our chosen sampling. The two other variants of ATLAS also show interesting skill with subtle channel- and
lead-time-specific tradeoffs. ATLAS-EDM has virtually equivalent skill as GenCast for all variables except the
500 hPa geopotential, for which it underperforms. ATLAS-CRPS has detectable skill gains clustered around
8-10 day lead times, despite underperforming during the first two days.

15-day rollout comparison

For a complementary view, Figure 5 shows time series comparing the probabilistic error growth of ATLAS
(solid lines) to the IFS (dotted) and GenCast (dashed) ensemble baselines, as measured by ensemble mean
RMSE (left) and CRPS (middle) while also revealing the spread-error ratio (right) of the underlying ensembles.
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(a) Atlas-SI vs. GenCast

(b) Atlas-EDM vs. GenCast

(c) Atlas-CRPS vs. GenCast

Figure 4: Comparing Atlas and GenCast across RMSE and CRPS with statistical significance (p<0.05), for all three
variants, SI, EDM and CRPS. Green means Atlas is better, red means GenCast is better, white means the difference is not
statistically significant.

Consistent with the skill difference scorecards, ATLAS-SI tends to exhibit lower ensemble RMSE and CRPS for
most variables during the initial forecast week, despite being slightly more under-dispersive than the GenCast
baseline, which is often over-dispersive at longer lead times.

We observe in Figure 5 that SSR of ATLAS -CRPS remains under-dispersive compared to the other approaches,
a behavior consistent with results in FourCastNet 3 [14]. The CRPS objective can be interpreted as a min-
max game: minimizing the error term encourages accuracy, while minimizing the negative interaction term
encourages ensemble diversity. While this specific balance of attractive and repulsive forces is necessary for
the CRPS to be a proper scoring rule, these results suggest that this competition is uneven. The optimization
dynamics appear dominated by the minimization of the first-moment error, implying that the repulsive force
intended to drive ensemble spread provides a comparatively weaker signal. Consequently, the model converges
to a state that prioritizes minimizing the forecast error over maximizing the ensemble dispersion, leaving the
ensemble under-dispersed despite the theoretical incentive for equilibrium.

13



Demystifying Data-Driven Probabilistic Medium-Range Weather Forecasting

Figure 5: 15-day rollout comparison between ATLAS, IFS, and GenCast.

4.2. Case Study: Storm Dennis
Case study analysis is important to complement headline score statistics that can otherwise obscure issues of
realistic spatial coherence in atmospheric model validation.

Here we examine the performance of ATLAS-SI on one of most intense extratropical cyclones ever recorded,
Storm Dennis, which underwent explosive cyclogensis on 13 February 2020, reached its minimum central
pressure on the 14th and produced destructive winds and heavy precipitation over the British Isles on the
15–16th. Ensemble forecasts were initialized at 00 UTC on 11 February 2020. Figure 6 shows 500-hPa
geopotential height and 850-hPa wind speed at forecast lead times of 2–5 days for two ensemble members,
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along with the ERA5 analysis. The color scale for wind speed transitions to orange around 33 m s−1, which
is the threshold for 1-minute-sustained surface winds in a Category 1 hurricane. Both ensemble members
perform well, capturing Dennis’ rapid intensification and the full strength of the evolving wind field at lead
times from 2-4 days. The 5-day forecast is also strong, with the caveat that the wind speed is just slightly
under-forecast over Wales and westward across the Atlantic.

Also shown in the bottom row of Figure 6 are normalized spectra of the 850-hPa horizontal kinetic energy
plotted as a function of total spherical wavenumber. At all lead times, the spectra for both ensemble members are
in excellent agreement with that for ERA5. Despite some modest systematic under-representation of variance
at the finest length scales (horizontal wavenumbers greater than 200) there is no lead-time dependent trend
in the evolution of the spectral bias, which could be viewed as consistent with maintenance of encouragingly
self-similar dynamical phenomena throughout the forecast.

Figure 6: Atlas-SI forecast for storm Dennis. 850-hPa wind speed and 500-hPa geopotential height (dam)
for the ERA5 ground truth, predictions from ensemble members one and two, and angular power spectral
densities from top to bottom.

4.3. Tropical cyclone evaluation
We also evaluate ATLAS performance on tropical cyclone (TC) tracking, focusing on just the most skillful
ATLAS-SI variant, and comparing the model to GenCast, a diffusion model with strong TC tracking performance.
We use the 2020 subset of International Best Track Archive for Climate Stewardship (IBTRACs) dataset [54] for
ground-truth track data. Of the 118 storms that year, we filter the dataset in two ways for a fair intercomparison.
First, to ensure examples are independent, we only use one initialization time per storm, which is the first time
IBTRACs reports on the storm. Second, to evaluate on an equal number of samples for each lead time out to
seven days, we include only tropical cyclone tracks whose lifetimes extended to at least seven days. The 46
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storms that satisfy these criteria form the test set. For the metrics presented, we evaluate each model on 32
ensemble members.

As tracking algorithms often have a substantial effect on overall tracking performance, for fair comparison we
use a standard tracker, TempestExtremes [55]. Since ATLAS-SI matches the assumptions of the TempestExtremes
tracker by using a 6-hour timestep, we use the standard hyperparameters. As GenCast uses a 12-hour timestep,
however, we follow the protocol in the original GenCast paper [11] and use those hyperparameters to generate
tracks.

Figure 7: Tropical Cyclone Tracking: Comparison of ATLAS-SI and GenCast on all 46 tropical storms with at
least seven day lifetimes during the held out year of 2020. ATLAS-SI and GenCast are represented in green and
dashed blue, respectively. Left: Ensemble Mean Track Error. Right: Mean Absolute Error of wind speed.

Figure 8: Tropical Cyclone Tracking: Comparison of spaghetti plots of ATLAS-SI and GenCast for the first seven
days of Hurricane Eta. Models are initialized at October 31, 2020 UTC 18:00. Origination and termination of
the ground truth tropical cyclone track (red) are represented by a “×” and “·” respectively. For predicted tracks,
origination is represented by neon green, while termination is represented by blue. Left: ATLAS-SI. Right:
GenCast.

As shown in Figure 7, both the ensemble mean track error and the average intensity error of ATLAS-SI are
similar to that of GenCast. ATLAS-SI’s ensemble mean track error improves on GenCast beyond 80 hours and
is similar at shorter lead times. The average intensity error of ATLAS-SI matches GenCast’s to 144 hours but
slightly lags beyond that point.

Furthermore, ATLAS-SI can generate TC track predictions qualitatively different to, and in many cases more
accurate than, GenCast. Figure 8, which shows seven-day “spaghetti” plots of Hurricane Eta for ATLAS-SI and
GenCast, is one such example. Hurricane Eta was a Category 4 tropical cyclone from late October to early
November 2020, and caused at least 175 fatalities and an estimated $7.2 billion of damage [56]. Cyclogenesis
occurred on October 31 and Eta intensified to a Category 4 on November 3. Here, we show the first seven days
of prediction, before Eta made landfall in Cuba and the United States. Of particular interest is the eastward
swing after the hurricane makes landfall in Nicaragua, as this would presage likely candidates for subsequent

16



Demystifying Data-Driven Probabilistic Medium-Range Weather Forecasting

landfalls. Many more of the ATLAS-SI tracks accurately predict this eastward swing compared to GenCast.
Overall, ATLAS-SI predicts that Hurricane Eta was more likely to swing eastward rather than travel westward,
while the GenCast predictions place a higher probability of a westward trajectory.

A second example is Tropical Cyclone Damien, which was a Category 2 storm formed on February 3, 2020
and dissipated on February 9, and was the strongest cyclone to make landfall in Western Australia since 2013
[57]. As shown in Figure 9, GenCast predictions exhibit a significant eastward bias, with the model predicting
landfall east of observed track. By contrast, ATLAS-SI’s predictions show a less eastward bias, with a number of
ensemble members mirroring the observed track.

Finally, for completeness, we also include a weaker storm. Tropical Storm Krovanh (also known as Tropical
Depression Vicky) originated on Dec 17, 2020 and terminated on December 25 of that year, and caused 9
fatalities and $4.5M of damage [58]. Figure 10 shows the predicted tracks for the two models; ATLAS-SI’s
span the full length of the tropical cyclone, while GenCast’s terminate before reaching the southern shores of
Vietnam and Cambodia.

Figure 9: Cyclone Damien Tracking: Comparison of spaghetti plots of ATLAS-SI and GenCast for the first seven
days of Cyclone Damien. Models are initialized at February 3, 2020 UTC 00:00. Origination and termination of
the ground truth tropical cyclone track (red) are represented by a “×” and “·” respectively. For predicted tracks,
origination is represented by neon green, while termination by blue. Left: ATLAS-SI. Right: GenCast.

Figure 10: Tropical Storm Krovanh Tracking: Comparison of spaghetti plots of ATLAS-SI and GenCast for
the first seven days of Tropical Storm Krovanh. Models are initialized at December 17, 2020 UTC 12:00.
Origination and termination of the ground truth tropical cyclone track (red) are represented by a “×” and “·”
respectively. For predicted tracks, origination is represented by neon green, while termination by blue. Left:
ATLAS-SI. Right: GenCast.
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5. Validating latent space modeling

While we have advocated for simplifying and using standard architectures for AI weather models, one area
where we found a more bespoke approach beneficial is the design of the encoder and decoder. Here, we provide
empirical evidence justifying our choices.

Figure 11: Comparison of learned latent and downsampled latent. While 6− and 12−hour performance of
forecasts learned in a learned latent space are competitive, errors in auto-regressive forecasts accumulate at a
faster rate.

The predominant approach to latent modeling in image and video domains is to compress the data with
a variational autoencoder. The variables that constitute our atmospheric state vector, however, exhibit quite
different properties from the RGB channels that constitute images and video. In particular, variables such as
temperature, wind, and geopotential are far more heterogeneous than RGB data. As a result, as mentioned
in subsection 2.2, standard VAE modeling leads to less well-behaved latent spaces. Moreover, since weather
prediction inherently is a “pixel” prediction task, a decoder with low reconstruction error is an important
desideratum. Here, we empirically demonstrate that even a well-tuned VAE with low reconstruction error leads
to less accurate forecasts.

Baseline autoencoding models

The learned autoencoder was tuned to achieve the lowest reconstruction error of all 16×-spatially compressed
latent models. The structure of the model is as follows: after applying sinusoidal positional encodings to
mean-variance normalized inputs, a convolution layer embeds these inputs into spatial resolution of (195×390),
but increases the hidden dimension to 832. This embedded state is then processed by eight DiT blocks, with each
DiT block’s linear layer progressively decreasing the hidden dimension by 112 channels. The dimensionality of
the latents after the eighth block is 64 × 195 × 390. The decoder mirrors the encoder with eight DiT blocks and
a final linear layer. Each DiT block’s linear layer progressively increases the hidden dimension, while the final
linear layer projects the data back to the original dimensionality.

The 64 × 195 × 390 state is the latent used for predictive modeling. We train stochastic interpolants models,
and evaluate two different prediction approaches. The first predicts the next latent state given the current
latent one, while the second the next latent residual given the current latent state. A second autoencoder,
which takes as input and output state residuals, is trained to model the latent residual.

Figure 11 shows that, even though reconstruction errors for the state-to-state and residual-to-residual
models are relatively low for T850 and Q850 — Z500 error is relatively high — and while 6- and 12-hour
prediction accuracy was competitive, longer rollout performance lagged IFS ENS. Furthermore, and perhaps
somewhat surprisingly, even though residual-to-residual reconstruction error is lower than for state-to-state,
the resulting autoregressive rollout accumulated error at a higher rate compared to the latent state prediction
model.

Streamlining the encoding and decoding process

We found that a trivial “encoding” of bilinear interpolation preserves the structure of the latent space at the
cost of small-scale information. As shown in Figure 11, however, extending this approach by trivially “decoding”
the compressed state using bilinear upsampling yields very high reconstruction errors. Instead, we train a
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Figure 12: Importance of the decoder in ATLAS.

DiT decoder that takes as input the low-resolution residual and the high-resolution input state and predicts
the high-resolution residual. One can think of the decoder as predicting a high-resolution residual consistent
with low-resolution residual and high-resolution input. This method not only dramatically decreases the
reconstruction error, achieving the lowest error among all models, but also yields the lowest rollout error among
all tested methods.

We note that, even though the DiT backbone only ever operates on low-resolution states, the decoder at
each time step retains high-resolution information of the previous timestep. As a result the model retains
high-resolution temporal consistency during inference.

6. Conclusion

In this paper, we challenge the prevailing view that probabilistic weather forecasting requires complex, domain-
specific architectures or training methods. We proposed ATLAS, a simple, scalable framework—comprising
of a latent transformer and a local projector. Combined with any probabilistic estimation framework, from
stochastic interpolants to diffusion models and CRPS ensemble training, we show that it outperforms both the
operational IFS and the deep learning model GenCast.

We speculate that two key ingredients in these successes have been scaling and an explicitly multi-scale
signal processing framework. During initial development, we found that progressively increasing the compu-
tational complexity of the backbone model consistently improved forecasting skill, seemingly promoting the
model’s ability to learn physical correlations naturally. From this view, the intrinsic scalability of transformer
architectures and ample tooling from their scaling in non-weather domains might portend a future of conver-
gence towards ATLAS-like architectures. Furthermore, our approach decouples the tasks of learning the time
evolution of the full-resolution state from the prediction of the most fundamental atmospheric dynamics that
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take place at larger horizontal scales, allowing us to separately scale the models for each task.
We conduct an extensive evaluation of our models and demonstrate statistically significant improvements

in aggregate metrics, sharp emulation of extreme events, and accurate tracking of tropical cyclones all at a
reduced computational cost compared to GenCast. These results suggest that the path to higher fidelity lies not
in architectural complexity, but in the scaling of general-purpose foundation models.

We readily admit several limitations of our work. Our baseline – while intentionally chosen for a combination
of known strength and feasibility of intercomparison under the constraint of fully open ERA5 training data – is
not the only interesting strong baseline that would be worth measuring skill against. Fine-tunings of ATLAS
beyond the corpus of ERA5 data on operational IFS analyses would be useful towards eventual comparisons
against more contemporary baselines of significance such as AIFS and FGN [12, 13], which might prove
revealing. Likewise, additional validation of phenomena beyond tropical and midlatitude cyclones, and analysis
beyond the held-out year of 2020, is recommended towards greater understanding of the behavior of ATLAS
and for measuring its statistical performance on extremes.

Meanwhile, one contribution of the work we suspect may have general implications is the progress in
achieving frontier skill using diffusion-based approaches, which has historically required some compromise.
For instance, there seems to be a trade-off between short and medium-range skill. While diffusion models
can be trained with wide noise schedules to capture tail behavior and achieve excellent short-term forecasts
(e.g., one week), this often degrades skill at longer lead times. Thus, we deliberately sacrificed some near-term
skill to improve stability. We believe this can be mitigated through improved noise-schedule design and tighter
overfitting control.

Finally, since diffusion is readily controllable, successful weather prediction built on it could be viewed
as opening up paths towards guided forecasting, such as to a subset of the ensemble that validates as a
particular regional hazard of outsize interest, as demonstrated in [26]. Therefore this technical progress may
prove helpful to broader efforts across the community to evolve AI weather models from narrow, task-specific
technologies to broader, task-diverse foundational informatics systems.
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