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A USING MLPs FOR SCENE PARAMETERS

We show in Figure 1 that representing SVBRDF parameters with

MLPs yields reconstructions of higher quality than using dense

grids. For this reason, although it requires the use of additional

libraries to Mitsuba and is not compatible with mega kernels at this

time, we still favor using MLPs.

B ADDITIONAL TIME AND MEMORY

ANALYSIS

As described in Section 6 of the paper, we measure the time and

memory consumption of different methods as the path lengths

change in a scene. To enable the comparison with mega kernels,

as shown in the main paper, we used dense grids in Mitsuba as

radiance and scene parameter representation. In contrast, here we

present the results using MLPs in PyTorch in Figure 2. The VRAM

consumption is the sum of the peak allocated memory reported by

both Dr.JIT and PyTorch. While our method has a larger VRAM

overhead due to additional radiance MLP queries, its time and

memory usage remains constant as path length increases, while

the costs of other methods grow rapidly.

In all experiments, we initialize the radiance grid values to the

albedo of the walls and never update them during the measurement,

i.e., the back-propagation and gradients are computed as usual but

not applied to the grid values. This ensures that the measurements

are from fixed albedos. We obtain the peak VRAM numbers from

the Dr.JIT memory allocator. For methods that solve path integrals

(AD-PT and PRB), we enable Russian-Roulette with a minimum
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Figure 1: Grid SVBRDF. We compare the results of using a

dense grid with resolution 256
3
to store the scene parameters

versus using an MLP. MLP results are superior regardless of

rendering method. PSNR is reported.
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Figure 2: Cube scene measurements. We compare the time

and memory consumption of each training step, with all

parameters represented as MLPs. Note that the Y-axis is in

log scale. AD-PT runs out of VRAM (24GB) at albedo 0.97.

Our method uses constant amounts of VRAM and time.

termination probability of 0.05, and cap the maximum path length

to the 99.9 percentile when the scene is rendered with path tracing.

C ADDITIONAL RESULTS

We present results of additional scenes in Figure 3.
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Figure 3: Main results for NeRF scenes. For each scene, we compare the rendering, recovered albedo, and recovered roughness

(top to bottom rows) for direct illumination, PRB, and AD-Ours. We also compare to the case where the radiance cache is

trained without the prior. We show two different views of each scene, and report PSNR to ground truth (GT).

D TRAINING PROGRESS CURVES

We present how each method converges during training in Figure

4 and 5.

E ABLATION FOR MORE SCENES

We provide an ablation study for more scenes in Figure 6.



Supplementary Document: Inverse Global Illumination using a Neural Radiometric Prior SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

10

20

Al
be

do
 P

SN
R

10

15
Ro

gu
hn

es
s P

SN
R

0 5000 10000 15000
Step

100

102

Ph
ot

om
et

ric
 lo

ss
 (l

og
)

0 5 10 15
Time (hour)

AD-Ours PRB AD-PT AD-Ours w/o Prior AD-Direct

(a) Staircase
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(b) Kitchen
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(c) Living Room
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Figure 4: Reconstruction accuracy. Albedo, roughness and photometric error, for all the scenes, as a function of training

steps and time. Our method correctly accounts for global illumination thanks to our neural radiometric prior, resulting in

comparable accuracy at low computational cost.

20

40

Al
be

do
 P

SN
R

20

30

Ro
gu

hn
es

s P
SN

R

0 2500 5000 7500 10000
Step

10 2

10 1

100

Ph
ot

om
et

ric
 lo

ss
 (l

og
)

0.0 2.5 5.0 7.5 10.0
Time (hour)

AD-Ours PRB AD-PT AD-Ours w/o Prior AD-Direct

(a) Lego

20

30

40

Al
be

do
 P

SN
R

20

25

Ro
gu

hn
es

s P
SN

R

0 2500 5000 7500 10000
Step

10 2

10 1

100

Ph
ot

om
et

ric
 lo

ss
 (l

og
)

0 1 2
Time (hour)

AD-Ours PRB AD-PT AD-Ours w/o Prior AD-Direct

(b) Hotdog

20

40

Al
be

do
 P

SN
R

25

30

35

Ro
gu

hn
es

s P
SN

R

0 2500 5000 7500 10000
Step

10 2

10 1

100

Ph
ot

om
et

ric
 lo

ss
 (l

og
)

0.0 0.5 1.0 1.5 2.0
Time (hour)

AD-Ours PRB AD-PT AD-Ours w/o Prior AD-Direct

(c) Ficus

Figure 5: Reconstruction accuracy for NeRF scenes. Albedo, roughness and photometric error, for all the NeRF scenes, as a

function of training steps and time. Our method correctly accounts for global illumination thanks to our neural radiometric

prior, resulting in comparable accuracy at low computational cost.
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Figure 6: Ablation for more scenes. We start with the direct illumination integrator (left), and add the radiometric prior to it.

The results significantly improve when we ignore the gradients of the prior w.r.t scene parameters. Adding the prior to the

second bounce better accounts for additional global illumination effects for areas unseen by the input cameras. Using ground

truth data to improve the radiance field further improves the quality. Finally, the second column from the right shows our full

method, except that we omit the prior.
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