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Abstract

Accurate short-term prediction of clouds and precipitation is critical for severe weather warn-
ings, aviation safety, and renewable energy operations. Forecasts at this timescale are provided by
numerical weather models and extrapolation methods, both of which have limitations. Mesoscale
numerical weather prediction models provide skillful forecasts at these scales but require sig-
nificant modeling expertise and computational infrastructure, which limits their accessibility.
Extrapolation-based methods are computationally lightweight but degrade rapidly beyond 1-2
hours. This presents an opportunity for data-driven forecasting directly from observations using
geostationary satellites and ground-based radar, which provide high-frequency, high-resolution ob-
servations that capture mesoscale atmospheric evolution. We introduce Stormscope, a family of
transformer-based generative diffusion models trained on high-resolution, multi-band geostation-
ary satellite imagery and ground-based weather radar over the continental United States. Storm-
scope produces forecasts at a temporal resolution of 10min and 6 km spatial resolution, which
are competitive with state-of-the-art mesoscale NWP models for lead times up to 6 hours. Its
generative architecture enables large ensemble forecasts of explicit mesoscale dynamics for robust
uncertainty quantification. Evaluated against extrapolation methods and operational mesoscale
NWP models, Stormscope achieves leading performance on standard deterministic and probabilis-
tic verification metrics across forecast horizons from 1 to 6 hours. By operating in observation
space, Stormscope establishes a new paradigm for multi-modal AI-driven nowcasting with direct
applicability to operational forecasting workflows. The approach is extensible, with demonstrated
computational scaling to larger domains and higher resolutions. As Stormscope relies on globally
available satellite observations (and radar where available), it offers a pathway to extend skill-
ful mesoscale forecasting to oceanic regions and countries without strong operational mesoscale
modeling programs.

1 Introduction

Machine learning methods have revolutionized global, synoptic-scale medium-range forecasting [1, 2,
3, 4]. A key ongoing frontier is short-range, kilometer-scale forecasting that explicitly resolves storm
dynamics underpinning important meteorological hazards. Over the United States, computationally
intensive numerical convection-allowing models such as the High Resolution Rapid Refresh (HRRR) [5]
and the Warn-on Forecast System [6] simulate the atmosphere at spatial resolution of a few kilometers
using time steps measured in seconds in order to explicitly resolve deep convection and provide guidance
on thunderstorm development and evolution. In order to provide timely guidance on rapidly evolving
mesoscale weather, these models assimilate key radar observations from a dense network of radars.
These numerical convection-allowing models have made significant strides in forecast accuracy over
the last several years.

Despite much progress, physics-based approaches for convective-scale forecasting remain a chal-
lenge, both because of model error and the difficulty of convective-scale data assimilation (DA). On
the first point, competing methods for how to represent these process interactions in km-scale numer-
ical models are known to have first-order impacts on storm dynamics [7], and which may artificially
limit the state of the art in mesoscale prediction. Perhaps more importantly, convective-scale DA
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systems have lagged behind global DA for a variety of reasons [8]. These include deficiencies in the
observing system such as: the sparsity of direct observations relative to the relevant scales of motion;
the indirect nature of radar observations of precipitation versus the relevant state variables (wind,
temperature, humidity); and the fact that high-resolution geostationary satellites only loosely con-
strain the 3D state of temperature and humidity compared to the hyper-spectral polar orbiters, and
only in clear sky regions. Convective-scale dynamics also present unique challenges for DA since the
error-growth saturates in a matter of hours [9] and is aliased with model spin-ups. When a numerical
model is initialized with observation-based fields, it will experience an initial shock because the data-
derived fields or increments will not be compatible with the model’s discretization of the underlying
conservation laws. For synoptic scale models, the initial shock typically dissipates long before the fore-
cast loses utility because it projects onto faster modes (e.g. gravity waves) that dissipate faster than
the large-scale balanced motions dominating error growth. Unfortunately, convective-scale motions
lack such a clean time-scale separation between this initial adjustment and the dominant error growth
modes and so physics-based models typically filter the DA estimated state more strongly than global
DA do e.g. by post-processing with a digital filter [10]. For this practical reason, the initial condition
used by the forecast model is often not the best known guess of the local atmospheric state, which is
why organizations like the National Oceanic and Atmospheric Administration (NOAA) offer separate
products for state estimates [11] and forecasts [5]. In sum, physics-based forecasting and state estima-
tion has proven less successful for convective scales than it has for synoptic scales because observations
are more limited and difficult to assimilate into physics-based priors with current algorithms.

As a result, empirical approaches which operate directly in observation space have remained com-
petitive for short-term forecasts of key impact variables like radar-derived precipitation, an approach
known as nowcasting. Another compelling, and under-utilized, data stream for learning storm evo-
lution comes from geostationary satellites such as GOES [12], MeteoSat [13, 14], and Himawari [15].
These observations provide an ideal data stream with multi-spectral imagery capable of sampling con-
vective evolution at minutes and kilometers, providing indirect vertical soundings of temperature and
humidity through wavelength dependent emissivity and opacity in clear sky regions. Geostationary
satellite imagery is used by forecasters to analyze convective activity, assimilating mesoscale weather
states in storm-resolving models and more generally for providing outlooks of severe weather. In oper-
ations, forecasters use geostationary imagery to interpret convective development, and it is routinely
incorporated into storm-resolving analyses and severe-weather outlooks. Satellite information is also
used for real-time precipitation estimation [16] in regions where radar and surface networks are sparse,
obstructed by terrain, or absent (e.g., over oceans).

We hope to use information content available in direct observations to sample the three-dimensional
evolution of high impact convection without the need for traditional physical state variables. We hy-
pothesize that such direct observations provide a sufficiently rich representation of the atmosphere for
generating skillful forecasts, particularly on shorter lead times. We propose to use multi-modal ob-
servations from key modalities that have sufficient temporal and spatial resolution for resolving storm
dynamics, namely geostationary satellite and ground-based weather radar. The ubiquity of geosta-
tionary satellite observations could allow expanding high-fidelity convective forecasting in regions that
have not enjoyed sustained historical investments in expensive ground-based radar, data assimilation,
and high-resolution physical modeling infrastructure. In this context, we introduce “Stormscope”,
an observation-direct approach to solve the open challenge of outperforming the operational HRRR
baseline for precipitation prediction in individual convective trajectories, and achieving superior prob-
abilistic precipitation skill without a mesoscale DA apparatus.

Prior work on AI emulators of convection-allowing models [17, 18, 19, 20] proposes rapid compu-
tation of AI/ML generated trajectories that emulate the dynamics of the numerical models that they
were trained on. Such AI emulators of convection-allowing NWP models rely on the data-assimilation
infrastructure of their physics-based counterparts to initialize forecasts and for training data, thus in-
heriting the limitations of physics-based state estimates. On the other hand, most “observation-only”
modeling of precipitation and clouds has been limited to very short lead times (nowcasting), using both
methods based on Lagrangian extrapolation [21] and on AI/ML models [22, 23, 24, 25, 26, 27]. In
related work, Ref. [28] proposes a technique to fuse multi-modal satellite and radar observations along
with NWP data for directly forecasting the probability distribution of precipitation at a given loca-
tion. In contrast to the methodology employed in Ref. [28], Stormscope aims to generate ensembles of
spatiotemporally coherent dynamical weather trajectories to represent the shape, structure and timing
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of storm-scale weather as well as the uncertainty therein, rather than just probability distributions
alone.

Leveraging convection timescales and predictability heuristics, we present two model classes: now-
casting and nearcasting. The nowcasting models (0–2 hour range) prioritize low-latency, high-resolution
output on timescales necessary for tracking fast-evolving convection, utilizing only geostationary and
radar observations without conditioning on Numerical Weather Prediction (NWP) states. In contrast,
the nearcasting models target the 0–12 hour window, incorporating additional synoptic-scale informa-
tion to constrain the predictions at the longer lead times, similar to the so-called seamless nowcasting
paradigm [29, 30]. Our proposed framework achieves the following:

1. Employs a diffusion modeling approach to generate skillful forecasts of high-resolution geostation-
ary satellite imagery from the GOES-East satellite series across 8 sensor channels in visible and
infrared wavelengths over the Continental United States (CONUS) domain. The model exclu-
sively uses observations for nowcasting (0-2 hours) and incorporates synoptic-scale information
(500 hPa geopotential height) for near-term mesoscale forecasts.

2. Integrates radar observations where available as an additional prognostic variable to forecast
composite radar reflectivity conditioned on the satellite imagery forecast, achieving performance
competitive with the best numerical operational models for up to 6 hours.

3. Proposes the use of a scalable, compute efficient diffusion transformer architecture [31] that
enables parallel training and inference across multiple GPUs. The architecture can scale to
high-resolution satellite and radar data over large regions via context parallelism and sparse
attention.

4. Generates ensembles of dynamical trajectories representing realistic forecast variance with prob-
abilistic skill. In contrast to previously proposed AI approaches that target probabilistic out-
comes [28], our framework prioritizes the generation of fundamental, physically realistic, high-
fidelity trajectories that capture the emergent dynamics of storm evolution.

5. Individual forecasts of composite radar reflectivity from the nearcasting model outperform HRRR
with statistically significant improvement up to 4 hours and comparable forecasts for 6 hours.
These results are achieved through observational data and minimal synoptic conditioning, by-
passing the need for traditional, complex mesoscale data assimilation and numerical modeling
infrastructure.

2 Results

2.1 Qualitative Evaluation

We begin with qualitative visual validation that showcases the multi-scale character of an individual
forecast. Predicting direct observations permits intuitive and visually interpretable results. Figure 1
shows a sequence of composite visible satellite radiance forecasts generated by Stormscope alongside
the corresponding verification data from GOES-East. The visualization uses a linear combination of
three Advanced Baseline Imager (ABI) channels—Blue (0.47 µm), Red (0.64 µm), and Veggie (0.86
µm)—to produce a natural-looking composite without the interference of overlaid terrain or textures.
This specific forecast was initialized on June 25, 2024, at 12:00 UTC. The comparison spans four lead
times: 10 minutes (Panels a, b), 120 minutes (Panels c, d), 360 minutes (Panels e, f), and 720 min-
utes (Panels g, h). At the 10-minute mark, Stormscope demonstrates high fidelity in maintaining the
fine-scale detail of the initialized mesoscale cloud structures across the contiguous United States, prior
to their decorrelation timescale. As the lead time increases to 6 and 12 hours, the model maintains
only macroscale spatial coherence with the ground truth, for the evolution of synoptic-scale convective
systems, i.e., matching the observational verification in panels (f) and (h) only on large length scales.
Meanwhile, convective features remain visually realistic throughout the forecast horizon, and an en-
couraging diversity of small scale convective evolution is apparent such as independent realizations of
convective initiation and upscale development over the Rockies, as should be expected after memory
of the mesoscale has been lost, and variations in the mesoscale structures embedded within synoptic
systems.
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To provide a multi-modal assessment of the model’s performance, we also examine the long-wave
infrared (IR) and radar reflectivity forecasts for the same initialization. Figure 2 displays the 10.35
µm IR channel, which is critical for identifying deep convection having cold cloud temperatures and
associated vertical development of intense storm systems. Complementing the satellite radiance, Fig-
ure 3 shows the Stormscope radar reflectivity forecasts compared against Multi-Radar Multi-Sensor
(MRMS) verification data. These reflectivity plots (0–60 dBZ) highlight the model’s ability to forecast
the spatial intensification and movement of precipitation systems over the 12-hour window, particularly
showing skill in maintaining the structure of organized convective lines on the nowcasting timescale.
As with the visible GOES channels, the overall sense is of a reasonable mixture of desired abilities – to
maintain the memory of initialized convective systems’ detail on the nowcasting timescale, to generate
encouraging variations of such detail on the nearcasting to medium-range timescales, and to maintain
the coherence of the largest scale synoptic systems with predictability at the longest lead times.
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Figure 1: An example forecast of composited visible satellite radiance fields from Stormscope vi-
sualized along with the corresponding verification data from the GOES satellite observation. Panels
(a), (c), (e), and (g) show the Stormscope forecasts at 10 min, 120 min, 360 min, and 720 min lead
times with the corresponding verification visualized in panels (b), (d), (f), and (h) respectively. The
color visualization is composed of a linear combination of the visible radiance forecasts (a, c, e) and
observations (b, d, f) using the Blue (0.47 µm), Red (0.64 µm), and Veggie (0.86 µm) channels. The
initialization timestamp of this forecast was 06-25-2024 at 12:00 UTC. See Fig. 2 and Fig. 3 for the
corresponding IR channel forecast and the radar forecast for the same initialization time.
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Figure 2: An example forecast from Stormscope’s IR channel measuring 10.35 µm GOES brightness
temperature visualized along with the corresponding verification data. Panels (a), (c), (e), and (g) show
the Stormscope forecasts at 10 min, 120 min, 360 min and 720 min lead times with the corresponding
verification visualized in panels (b), (d), (f), and (h) respectively. The initialization timestamp of this
forecast was 2024-06-25 at 12:00 UTC. See Fig. 1 and Fig. 3 for the corresponding composite visible
radiance forecast and the radar forecast for the same initialization time respectively.
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Figure 3: Comparison of Stormscope radar reflectivity forecasts and verification data across the
contiguous United States. Panels (a), (c), (e), and (g) display the Stormscope reflectivity forecasts at
lead times of 10 min, 120 min, 360 min, and 720 min, respectively. The corresponding radar verification
data for each lead time is shown in panels (b), (d), (f), and (h). The forecast was initialized on 2024-
06-25 at 12:00 UTC. The color scale at the bottom indicates radar reflectivity in decibels relative to
1mm6/m3(dBZ), with values ranging from 0 to 60 dBZ, highlighting the spatial evolution and intensity
of precipitation systems.
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As an additional case study depicting a qualitative demonstration of Stormscope’s generated in-
ternal variability, Figure 4 shows three ensemble members from a forecast generated by Stormscope
of a developing Mesoscale Convective System (MCS) over the central US compared with verification
data at the appropriate lead time as well as simulated brightness temperature from the HRRR model.
We visualize the Clean IR window channel (10.35 µm) for our GOES forecast model and also show the
simulated brightness temperature (SBT) forecast for the HRRR model, which synthetically models
forward radiative transfer through physical state variables. The publicly available SBT operator data
for HRRR is based on the GOES-12 ABI channel imaging at a wavelength of 10.7 µm. While not
an exact wavelength match for the current GOES verification data, this SBT operator nonetheless
provides a reference for a baseline forecast using a numerical model.

There exists an encouraging amount of internal variability across the three independent Stormscope
forecasts. By hour 6, the first ensemble member experiences full aggregation into a large-scale MCS, as
occurred in the ground truth and the HRRR; the morphology of its central radar echo and surrounding
high cloud shield apparent from the brightness temperature is a satisfying match to the verification,
although this could be a coincidence. The second and third ensemble members fail to aggregate into
a large MCS – consistent with the fact that convective aggregation is a highly stochastic process in
nature.

For a final qualitative sense of the model’s nowcasting potential, Figure 5 homes in on a region
of the Central US during a time period in which multiple thunderstorms developed under weak syn-
optic organization. The forecast was initialized on 03-14-2024 at 00:00 UTC. At 10-minute lead time
(top), the excellent pattern match of all radar echoes between Stormscope and the verification affirms
successful initiation of mesoscale convection. One hour into the forecast, convective intensification
and organization are successfully simulated, leading to two distinct storm objects having significant
returns above the 40 dBZ radar threshold, spread across north Kansas. Two hours into the forecast,
these objects continue to intensify and move to the east, a third distinct storm object becomes visible,
as observed. Meanwhile the pattern match between forecast and verification is reduced, consistent
with the development of internal chaotic variability at the km-scale after two hours. For comparison,
we include the corresponding forecast using pySTEPS [21], an open source Lagrangian extrapolation
framework with further details and a quantitative comparison deferred to Sec. 2.2.2.

Together, the above results demonstrate the capacity to learn essential characteristics of explicit
storm evolution directly from observations using a scalable diffusion transformer architecture. This
justifies quantitative analysis of the resultant forecast skill. Additional case studies, animations and
qualitative characteristics of Stormscope across a series of case studies can be found in the Supple-
mentary Material.

2.2 Quantitative Evaluation

2.2.1 Nearcasting (0-12 hr)

To validate our nearcasting model, we compare precipitation forecasts on the 0-12 hour timescale to the
HRRR model. As a convection-permitting atmospheric model updated hourly, the HRRR represents
the strongest publicly available baseline for short-term convective forecasting in the United States. We
restrict the evaluation to regions inside the land boundaries of the Continental United States.

For deterministic skill comparison, we use the Fractions Skill Score (FSS) [32] as the key comparison
metric. The FSS allows us to assess spatial accuracy without overly penalizing near misses (the double-
penalty effect). We also construct a probabilistic HRRR baseline using lagged ensemble forecasting [33,
34]. The lagged ensemble HRRR forecasts are constructed by taking the control forecast at the
initialization time (say t0) along with four time-lagged forecasts initialized at t0−1 hr, t0−2 hr, t0−3 hr
and t0 − 4 hr at the appropriate verification time as ensemble members. For measuring probabilistic
skill, we use the Continuous Ranked Probability Score (CRPS) [35]. All scores are accumulated across
the CONUS domain within land boundaries and across 360 initializations from the held-out test period,
spanning the year 2024.

Figure 6 shows the comparative performance of our model against the HRRR baseline across both
probabilistic and deterministic frameworks. An immediately important observation is that for lead
times up to 3 hr, Stormscope deterministic scores surpass the HRRR baseline. This is true for the
FSS computed using radar reflectivity for both thresholds of 20 dBZ and 30 dBZ indicating light and
moderate precipitation using a pooling window of 18 km and 42 km respectively (Fig. 6b). Moreover,
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Figure 4: Comparison of Stormscope ensemble forecasts, verification data, and HRRR simulated
brightness temperature (SBT) for a developing Mesoscale Convective System (MCS) over the central
United States. The forecast initialization date is 05-15-2024 at 00:00 UTC. The rows display the
evolution of the system at lead times of 1, 3, and 6 hours. The first three columns show individual
ensemble members (Ens 1–3) from the Stormscope model, illustrating the predicted spatial distribution
and intensity of the MCS. The fourth column provides the GOES verification data (Clean IR window
channel, 10.35 µm) for the corresponding times. The final column shows the HRRR model’s simulated
brightness temperature forecast. Note that while Stormscope and verification data utilize the 10.35 µm
channel, the HRRR SBT is based on a 10.7µm operator; despite this slight wavelength difference,
HRRR serves as a baseline numerical forecast. The color scale at the bottom indicates brightness
temperature in Kelvin (K), where lower temperatures correspond to higher cloud tops and more intense
convective activity.

Figure 6a shows that this does not come at the expense of fundamental probabilistic skill metrics;
CRPS also outperforms the HRRR lagged ensemble.

Finally, to provide one view of performance beyond the radar channel, we assess the deterministic
skill for the clean IR window in Figure 7. Consistent with our radar scores, over the first 3 hrs the
results indicate superior Fractions Skill Score for two convection-relevant IR thresholds (235 K and
225 K brightness temperature), compared with HRRR forecasts that synthetically emulate a similar
IR wavelength.

In summary, our model clearly outperforms the HRRR model in the first 3 hrs and maintains
competitive skill for the first 5 hrs. Notably, this comparison has summarized skill scores from single-
member forecasts accumulated across common calendar dates, to highlight the predictive power of
the underlying architectures without the added benefit of ensemble averaging which has been used in
Refs. [17, 18] to surpass the strong physics-based HRRR baseline. This confirms our working hypothesis
that explicit storm-resolving dynamical trajectories can be skillfully learned from direct observations,
consistent with the qualitative view.

We next turn to probabilistic assessment, focusing on 24-member Stormscope ensemble forecasts
assessed across the same set of initial dates. Figure 8 evaluates ensemble calibration from the view of
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Figure 5: Comparison of radar reflectivity forecasts at different lead times for a forecast initialized on
3-14-2024 at 00:00 UTC over the central United States. The columns represent (left) the Stormscope
forecast, (middle) the verification observations, and (right) the pySTEPS forecast (see section 2.2.2).
The rows correspond to forecast lead times of: (a–c) 10 min, (d–f) 20 min, (g–i) 60 min, and (j–l) 120
min.
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Figure 6: Precipitation Nearcasting (a) We compare the probabilistic skill of a Stormscope reflec-
tivity forecast with a probabilistic forecast generated by HRRR. In order to construct a probabilistic
forecast from a deterministic HRRR model, we use a lagged ensemble approach to construct 5 ensemble
members. The Stormscope forecast is inherently probabilistic and also uses 5 members for computing
the CRPS. (b,c) We compare the Fractions Skill Score for a single member deterministic forecast of the
radar reflectivity over the Continental United States with the simulated radar reflectivity generated by
HRRR. In each case the forecast is deterministic with no ensembling applied. All scores were averaged
over 360 randomly selected initial conditions uniformly sampled across 2024. Additional statistical
evaluation of the forecast comparison can be found in the supplementary material.

a precipitation forecast reliability diagram. Although the model tends to systematically overestimate
the probability of radar returns exceeding 20 dBZ and 30 dBZ thresholds, its overall calibration does
not deviate dramatically from the 1-to-1 line during the same 1-3 hour lead times that its deterministic
skill exceeded that of the HRRR. We interpret this as a reasonably calibrated baseline although further
tuning of the diffusion model sampler may be necessary to capture inherent variability at longer lead
times.

2.2.2 Nowcasting (0-2hr)

We compare precipitation forecasts on the classical nowcasting timescale with forecasts generated by
pySTEPS [21], an open-source Python library designed for probabilistic forecasting of radar precipi-
tation fields using largely physics-free spatio-temporal stochastic simulation and optical flow methods.
We utilize a deterministic pySTEPS baseline that derives the motion field from the four past frames
of radar reflectivity fields using the Lucas-Kanade optical flow method and applies a semi-Lagrangian
extrapolation scheme to advect the fields, assuming Lagrangian persistence of intensity (i.e., advection
without change in intensity). We use the FSS metric to evaluate forecast accuracy for the nowcasting
timescale.

Object-based verification was also conducted following the approach of WoFSCast [19] which is an
established method in the evaluation of storm-scale and convective-allowing forecasts [36, 37, 38, 39].
In this procedure, contiguous regions with composite reflectivity exceeding 40 dBZ (same as the thresh-
old employed in WoFSCast) are identified as storm objects if their total area is larger than 108 km2.
A forecast object is considered a match with an observed object when both the minimum boundary
distance and the centroid displacement are within 40 km; these parameter values for minimum area
and displacement thresholds follow the precedent of WoFSCast [19]. A pair of matched forecast and
observed objects is defined as a hit. Forecasted storms without corresponding observed storms are
classified as false alarms, and observed storms without corresponding forecasts are classified as misses.
From the total numbers of hits, false alarms, and misses, standard contingency-table metrics are de-
rived [40], including the probability of detection (POD = hits/(hits+misses)), success ratio (SR =
hits/(hits+false alarms)), frequency bias (FB = (hits+false alarms)/(hits+misses)), and critical suc-
cess index (CSI = hits/(hits+misses+false alarms)). These metrics are computed for a single ensemble
member from each importance-sampled forecast initialization time.

Overall, the results indicate superior nowcasting performance relative to both the pySTEPS and
HRRR baselines. Figure 9 shows the Fractions Skill Score accumulated at three separate spatial
pooling length scales; Stormscope FSS detectably exceeds that of pySTEPS and HRRR, especially at
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Figure 7: Satellite Nearcasting This figure shows the Fractions Skill Score for a single member de-
terministic forecast of the GOES 10.3 µm IR channel forecast over the Continental United States. As a
sensible baseline from a numerical model, we include a comparison with the simulated brightness tem-
perature forecast generated by HRRR. Note that the HRRR model simulated brightness temperature
operator models a 10.7 µm wavelength and so is only a close (but not exact) match for the verification
data. In each case the forecast is deterministic with no ensembling applied. All scores were averaged
over 360 randomly selected initial conditions uniformly sampled across 2024.

the largest pooling sizes where the FSS has highest characteristic magnitude, corresponding to most
actionable information content. Likewise, Figure 10 shows that object tracking statistics for discrete
precipitating cloud systems having radar reflectivity above the 40 dBZ threshold generally validate
more favorably in Stormscope than in pySTEPS; the Frequency Bias (FB) is notably closer to 1, and
the Critical Success Index and probability of detection are systematically increased, even if the success
ratio is not uniformly improved.

3 Conclusion

We have demonstrated a km-scale ML forecasting model trained foremost on geostationary multispec-
tral imagery that can perform mesoscale forecasts spanning the entire Continental US. The model
can be run in a nowcasting mode out to 2 hours, at 10-minute time resolution, or in nearcasting
mode out to 12 hours, at 1-hour time resolution, provided sparse synoptic conditioning from a pro-
visional macroscale forecast. Alongside its geostationary backbone, the model includes a prognostic
autoregressive MRMS radar component that is conditioned on the backbone.

Our evaluation suggests Stormscope outperforms a strong physics-based mesoscale forecasting base-
line (HRRR) in predicting explicit storm evolution, as measured on radar and clean IR channels, even
in the absence of ensembling, i.e. for single-member deterministic FSS metrics. Moreover in ensemble
mode its probabilistic performance for radar CRPS systematically outperforms a 5-member lagged-
ensemble HRRR baseline and is reasonably well calibrated on the 1-3 hour timescale of most interesting
uncovered skill.

We readily admit several important limitations of the work. First, we have used only sparse
synoptic conditioning for our nearcasting model – denser conditioning could uncover additional skill
gains; consistent with this view we demonstrate incremental improvements in both nearcasting skill and
probabilistic calibration when using Z500 + GFS radar conditioning as opposed to Z500 conditioning
alone (see Supplementary Material). We also hope to investigate parallax error effects at steep viewing
angles and possible mitigation techniques in future work. While several strong benchmarks exist for
radar-only nowcasting on the 0–2 hour timescale, most notably those by Zhang et al. [22] and Ravuri
et al. [41], we have not performed a direct comparison against those frameworks. As such, we do not
claim our proposed method is state-of-the-art on the 0-2 hour timescale for radar-only nowcasting.
Furthermore, our current method operates at a 6 km resolution, whereas pySTEPS can operate at
the native resolution of the gridded radar product, typically 1–2 km. Although a higher-resolution
comparison against pySTEPS would provide a more rigorous baseline, our ongoing hypothesis is that
our approach offers fundamental advantages in modeling convection initiation and decay informed by
the mesoscale evolution of cloud structure. Beyond resolution, our technique aims to provide a richer
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Figure 8: Reliability diagrams for reflectivity forecasts at thresholds of (a) 20 dBZ and (b) 30 dBZ.
The plots compare forecast probabilities against the actual observed frequencies for lead times of 1,
3, and 6 hours. The dashed black line represents perfect reliability, where forecast probability equals
observed frequency. In both panels, the curves fall below the diagonal, indicating that the model is
overconfident. The calibration plots were computed using 24 ensemble members per forecast over 360
forecasts uniformly sampled across the year 2024.
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Figure 9: Precipitation Nowcasting Fractions skill score for strong precipitation (composite radar
reflectivity over 40 dBZ) benchmarked against pySTEPS. The FSS scores are averaged over 250 initial-
izations in Winter and Spring 2024 selected for having strong precipitation events occurring during the
duration of the forecast. We note that at 6 km spatial scale, the models have comparable, but low skill
for forecasting storms of intensity over 40 dBZ. However as the evaluation spatial scale is increased, the
FSS increases and Stormscope appears to be notably better than pySTEPS after 20-minute lead times.
This indicates that while all models struggle with exact pixel-level placement, Stormscope maintains
much higher structural reliability when the forecast is evaluated over a larger “neighborhood” or area.
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Figure 10: Precipitation Nowcasting We measure the forecast skill of Stormscope using the metrics
Probability of Detection (POD), Success Ratio (SR), Critical Success Index (CSI), and Frequency Bias
(FB). The forecasts were scored for their ability to correctly place storm objects verified against MRMS
verification data. Storms were defined using a reflectivity threshold of 40 dBZ. Higher values indicate
a better forecast for POD, SR and CSI, whereas a value of 1.0 is ideal for FB. All forecasts were scored
at a resolution of 6 km.

meteorological overview through multi-modal radar and satellite integration, while facilitating well-
calibrated uncertainty quantification via large ensembles. Finally, while the HRRR lagged ensemble
serves as a baseline for physics-based probabilistic skill, future work should involve scoring against full
physics-based ensembles [6] to better contextualize performance against non-ML methods, despite the
data heterogeneity challenges inherent in such archives.

Meanwhile, we hope that this work provides a convincing case that ML methods have the capacity
to surpass strong physics baselines of storm evolution at mesoscale resolution of 6 km/10min, as has
become well established at coarser resolutions of 25 km/6 h for synoptic-scale dynamics relevant to
medium range global weather forecasting. Importantly, this is achieved by generating fundamental
object trajectories exhibiting satisfying spatial resolution and time evolution reminiscent of multi-
scale convective dynamics (Figures 1–5) – which then collectively validate as performant statistical
characteristics.

Moreover, since we directly learn from observables, our work also points to a future of high-
frequency initialization (every few minutes) that bypasses the latency of traditional data assimilation
workflows, relevant to rapid response to evolving severe weather hazards, and offering a path for
democratizing skillful mesoscale weather forecasting throughout the globe, thanks to the ubiquity of
multispectral geostationary coverage. We hope the success of this prototype demonstrated over the
US emboldens similar attempts over other countries, including ones that do not enjoy the luxury of
a long archive of km-scale physics-based data assimilation to train on. Where comprehensive radar
coverage is likewise lacking, alternatives to the semi-diagnostic MRMS module used for scoring here
can readily be envisioned to permit scoring against nationally available – or sovereign – constraints
of local interest. Likewise impact- and industry-relevant variants can easily be envisioned, such as
solar irradiance forecasting for renewable energy generation, wherever the hypothesis is valid that
geostationary satellite information contains sufficient information to constrain a skillful AI nowcast.
The computational efficiency of our method is amenable to many experiments in such directions.
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Variable Description Modality Use
Blue Visible band at 0.47 µm Satellite Input, Forecast
Red Visible band at 0.64 µm Satellite Input, Forecast
Veggie Near-IR band at 0.86 µm Satellite Input, Forecast
Shortwave Window IR band at 3.90 µm Satellite Input, Forecast
Upper Level Water Vapor IR band at 6.19 µm Satellite Input, Forecast
Mid Level Water Vapor IR band at 6.95 µm Satellite Input, Forecast
Lower Level Water Vapor IR band at 7.34 µm Satellite Input, Forecast
Clean IR Longwave Window IR band at 10.35 µm Satellite Input, Forecast
Radar MRMS Max. Comp. Refl. MRMS Radar Input, Forecast
Z500 Geopotential Height at 500hPa GFS Model Input (Nearcast)
Simulated Radar. Synoptic-scale Sim. Comp. Refl. GFS Model Input (Nearcast)
Time/ Solar Illumination Cosine of Solar Zenith Angle Computed Input

Table 1: Summary of input and forecast data streams

4 Methods

4.1 Data

4.1.1 Satellite and Radar Observations

The primary datasets for model training and evaluation consist of observations from the GOES-16
Advanced Baseline Imager (ABI) and the Multi-Radar Multi-Sensor (MRMS) system. The models
were trained on GOES data from 2018 to 2023 and MRMS data from 2020 to 2023.

• Satellite Data: We utilize a subset of spectral channels from the GOES-16 ABI, as detailed in
Table 1. The raw ABI data were remapped to the 3 km Lambert Conformal Conic grid used by
the High-Resolution Rapid Refresh (HRRR) model and further downsampled to a 6 km grid for
training. The data was temporally sampled at a 10 minute resolution.

• Radar Data: MRMS products serve as the ground truth targets for precipitation and reflectiv-
ity. To align with the satellite observations, the MRMS data were interpolated to the same 6 km
grid at a 10-minute temporal cadence.

4.1.2 Numerical Weather Prediction (NWP) Conditioning

To provide the nearcasting (0–12 hr) models with large-scale atmospheric context, we incorporate
Numerical Weather Prediction (NWP) data as conditioning inputs.

• Satellite Nearcasting (0–12 hr): During the training phase, this model is conditioned on the
geopotential height at 500 hPa Z500 derived from ERA5 reanalysis. During inference, ERA5
is replaced by Z500 forecasts from the Global Forecast System (GFS). This variable provides
essential information regarding steering flow and synoptic-scale dynamics. The synoptic-scale
data which was (both GFS and ERA5) originally at 0.25◦ resolution, was bilinearly interpolated
to the 3 km model grid and further downsampled to 6 km.

• Radar Nearcasting (0–12 hr): This model incorporates GFS-simulated composite reflectiv-
ity forecasts to leverage physics-based predictions of convective initiation. Because hourly GFS
analysis for simulated composite reflectivity is not available (the GFS forecasts being issued every
6 hours), the model utilizes analysis data where available and short-term forecasts for interme-
diate timesteps during training. We provide an experimental ablation in Sec. 6.4 to illustrate
the effect of excluding the synoptic-scale reflectivity conditioning in training and inference. The
radar model is also conditioned on the satellite inputs during training. During inference, the
radar models derive inputs from the satellite forecast models.
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4.2 Model Details

4.2.1 Nowcasting and Nearcasting Approaches

To accommodate the multiple timescales of interest in mesoscale weather products amidst the fast-
evolving nature and limited predictability of convective systems, we find best performance by offering
models specifically targeting nowcasting (0-2 hours) and nearcasting (0-12 hours) lead times. The
nowcasting models provide output at very high temporal resolution, and are only trained using ob-
servational data. They no not require NWP assimilation systems to initialize forecasts and are thus
free from the latency and state estimation difficulties associated with such infrastrucrure. Since geo-
stationary satellite and ground radar data is available every 2-4 minutes over the Continental United
States (CONUS), nowcasts can be generated every few minutes for maximum update frequency in
near-real-time applications.

On the other hand, the nearcasting timescale involves non-negligible changes to the synoptic-scale
state that can strongly affect the propagation of convective systems. Given the limited-area domain
and the relatively long forecast lead time desired of the nearcasting models, we use the NOAA Global
Forecast System (GFS) as additional conditioning for these forecasts. Specifically, the satellite radiance
model is conditioned on the 500 hPa geopotential height forecast, while the weather radar model is
conditioned on the simulated composite reflectivity forecast. To mitigate NWP error propagation and
maintain operational flexibility regarding forecast latency, we intentionally limit synoptic conditioning
to a single channel. Table 2 summarizes the two modeling approaches. While we choose to use the
GFS model for providing the synoptic-scale information in this work, this conditioning information
could also be provided by an AI medium-range weather model.

Nowcasting Nearcasting
Target Timescale 0–2 hours 0–12 hours
Primary Data Sources Geostationary Sat. & Radar Geostationary Sat., Radar & GFS
Temporal Resolution 10 minutes 1 hour
NWP Conditioning None (Independent) Single-channel GFS Conditioning
Update Frequency High (every few minutes) Moderate (NWP-dependent)
Conditioning Variable N/A 500 hPa Geopotential Height (GFS)/

Simulated Composite Reflectivity (GFS)

Table 2: Comparison of Stormscope Nowcasting and Nearcasting Approaches

The high-level inference workflow for our multi-modal forecasting system is illustrated in Figure 11,
highlighting both operational modes. In the nowcasting setup (Fig. 11a), the Diffusion Transformer
(DiT) architecture functions as a pure data-driven model, leveraging a temporal history of GOES and
MRMS observations to resolve high-frequency atmospheric evolution. The nearcasting configuration
(Fig. 11b) extends this capability by integrating synoptic-scale guidance from the Global Forecast
System (GFS). In this mode, the DiT blocks act as a learned fusion mechanism, bridging the gap
between coarse-resolution Numerical Weather Prediction (NWP) variables—such as 500 hPa geopo-
tential height and simulated reflectivity—and high-resolution satellite and radar observations. Both
configurations utilize an autoregressive sliding window approach, where predicted states x̃(t) and ỹ(t)
are iteratively recycled as inputs for subsequent steps, enabling the model to generate continuous
forecasts across extended lead times while maintaining physical consistency between the multi-modal
fields.

The satellite forecast models are trained and sampled independent of the radar models. We treat
the satellite model as the feature-rich backbone of the multi-modal forecasting setup, and the radar
models derive information from the satellite models via conditioning. We consider this independence
between satellite and radar modalities to be critical, as it allows deploying our approach even where
radar data is unavailable.

4.2.2 Model Architecture

The backbone of our forecasting system is a Diffusion Transformer (DiT) architecture [31] that operates
on a 512 × 896 grid with a spatial resolution of 6 km (derived from the HRRR grid, as specified in
Section 4.1). We employ a dense input conditioning scheme where exogenous variables, namely the
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Figure 11: Nowcasting and Nearcasting model inference setup (a) Multimodal Nowcasting
Setup: The model takes sequences of previous states for both GOES ({x(t−k∆t), . . . , x(t−∆t)}) and
MRMS ({y(t−k∆t), . . . , y(t−∆t)}) across multiple time steps. These sequences are processed through
Diffusion Transformer (DiT) blocks to generate the predicted current states: the GOES Forecast (x̃(t))
and the MRMS Forecast (ỹ(t)). The predicted states are fed back to the model in a sliding window
approach to generate a continuously running autoregressive forecast. (b) Multimodal Nearcasting
Setup: This setup incorporates external NWP generated forecasts from the GFS model in addition
to previous GOES and MRMS observations. The inputs to the satellite portion of the DiT model
consist of GFS (Global Forecast System) geopotential height data at 500 hPa (z(t−∆t)), along with
the previous time step’s GOES (x(t−∆t)) and MRMS (y(t−∆t)) data. The inputs to the MRMS DiT
model consist of the GOES prior time step, the MRMS prior time step and the simulated composite
reflectivity obtained from the GFS model at the prior time step. DiT blocks fuse these multi-modal
sources to produce the corresponding forecasts x̃(t) and ỹ(t) which are fed back as model inputs to
generate a continuously running autoregressive forecast.
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latitude/longitude and the solar zenith angle, are concatenated with the noisy latent state along
with the previous state (satellite or radar) inputs and NWP conditioning inputs, if used. The model
inputs are first fed through a standard strided convolution-based patch embedding, with a patch
size of 4 × 4, to produce a sequence of 128 × 224 tokens with embedding dimension 768. These are
then processed by 16 transformer blocks, which are conditioned on the diffusion timestep using the
standard conditional layer normalization adopted in DiTs. To mitigate the computational complexity
of standard all-to-all attention we use a sparser 2D Neighborhood Attention (NA) [42, 43, 44]. Unlike
global attention, NA restricts each token’s receptive field to a local window of size 31 × 31, greatly
reducing the compute required for self-attention while allowing long-range dependencies to be captured
gradually over multiple layers. The final prediction is produced by taking the output of the DiT blocks,
projecting and reshaping back to the 512× 896 grid.

Our models have a total of 195 million parameters, and require around 70 GB of GPU memory
during training. Each model trains for approximately 48 hours on a total of 32 NVIDIA H100 GPUs
using data parallelism. In principle, increasing the resolution or size of the model’s input grid much
further would require a substantial increase in GPU memory, but we are able to mitigate this for such
cases by employing domain parallel training, which we demonstrate by training on resolutions up to
3 km (Section 6.2). Once trained, each of the 6 km models require around 5 GB of GPU memory and
take 33 seconds to generate a forecast step in fp32 precision at maximum fidelity (100 sampling steps)
on a single H100 GPU. This corresponds to around 7 minutes to generate a 12 hour forecast from
one of the nearcasting models or a 2 hour forecast from one of the nowcasting models. Multi-modal
(satellite and radar) forecasts take longer due to having to run the models in sequence each forecast
step. We expect the inference speed to be greatly accelerated by techniques such as distillation, domain
parallelism and/or reduced precision.

4.2.3 Training and Inference

We formulate the forecasting task as learning the conditional probability distribution of the future
state xt+ given a sequence of past observations xt−. We utilize the Elucidated Diffusion Models
(EDM) framework [45], which provides a robust discretization of the Diffusion SDE. The models learn
the conditional distribution p(xt+|xt−; c), where xt− represents a temporal stack of previous states
(the nowcasting models use 6 states spaced 10 minutes apart during the preceding hour while the
nearcasting models use a single state an hour prior), and c denotes static or dynamic conditioning
information (such as a solar zenith angle computed from the time of the day). The network Dθ is
trained to minimize the weighted denoising loss:

L(θ) = Ex,σ,n

[
λ(σ)∥Dθ(xt+ + nσ;xt−; c;σ)− xt+∥22

]
, (1)

where nσ ∼ N (0, σ2I) and λ(σ) is the standard EDM loss weighting scheme. Following [45], we apply
pre-conditioning to the inputs and outputs to ensure unit variance across the range of noise levels σ.
To improve the fidelity of both large-scale structure and fine-scale convective detail, we adopt a multi-
expert strategy [46, 47]. The training noise range [σmin, σmax] is partitioned into two regimes (coarse
and fine) at an intermediate point σint with σmin < σint < σmax. The training noise was sampled
from a distribution uniform in log(σ) within the given range. Training was conducted using the Stable
AdamW optimizer [48] with a learning rate from 5 × 10−4 to 0 using a cosine decay schedule and a
batch size of 32 across 32 H100 GPUs for a total of ∼6M iterations (∼48 hours wall-time). During
the sampling phase, we employ an ODE-based deterministic sampler with stochastic perturbations
proposed by Karras et al. [45]. This allows for rapid inference by traversing from σmax to σmin in
100 steps transitioning from the coarse-scale expert to the fine-scale expert at the predefined σint

boundary.
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6 Supplementary Material

6.1 Statistical Comparison

Forecast skill varies a lot over individual forecasts, across forecast models, and forecast lead times.
In Fig. 6, we use a large sample set of forecasts from Stormscope sampled across n = 360 calendar
dates distributed uniformly over a full year and across initialization times. To illustrate the level of
confidence in such a forecast comparison, we perform additional statistical testing. Upon performing
paired t-tests we find the difference in the forecast skill to be statistically significant. Figures 12,13
show the differences in skill across paired forecasts with 95% confidence interval error bars computed
with bootstrapping.
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Figure 12: This figure provides an extended analysis of Figure 6(b) from the main text. The figure
shows the difference in FSS across paired forecasts from Stormscope and HRRR with error bars that
indicate a 95% confidence interval. We found the differences were statistically significant at a confidence
threshold of 0.05 at all lead times.
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Figure 13: This figure provides an extended analysis of Figure 6(c) from the main text. The figure
shows the difference in FSS across paired forecasts from Stormscope and HRRR with error bars that
indicate a 95% confidence interval. We found the differences were statistically significant at a confidence
threshold of 0.05 at all lead times except 4 hours.

6.2 Domain Parallelization and Scaling

Geostationary satellite data is high resolution and spans large spatial domains, so we have developed
the Stormscope framework with these requirements in mind. Previous works have adopted the multid-
iffusion [49, 47] approach, which runs the denoising model on smaller local patches during training to
save memory and compute; during sampling the patches are stitched together via boundary overlaps
at each step. While effective, this approach induces a tradeoff between efficiency and sample quality or
coherence (see discussion in Ref. [47]), and limits the spatial context available to the model, depending
on the local patch size. To sidestep these concerns, we have built a model and training procedure that
can easily leverage domain paralllelism to directly scale both training and inference to larger domains
including full disk forecasts. We demonstrate this capability by training a 3 km satellite nowcast model
over the CONUS domain, spanning a total of 1792× 1024 grid points (≈ 1.8 million pixels).

At this scale, the memory required for standard model training exceeds the capacity of typical
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data-center GPUs (∼80 GB) even when using a local batch size of 1, necessitating the use of some
form of model parallelism to split a model instance across multiple GPUs. Since the input resolution
(and thus number of tokens) for such a model is so large, the bulk of the memory is consumed by
intermediate activations, so parameter-sharding techniques like Fully-Sharded Data Parallel (FSDP)
cannot alone solve the problem. Thus, training the 3 km model requires using model parallelism that
specifically targets the per-GPU memory consumed by model activations, as has been employed in
other large-scale AI weather models [3, 50]. Specifically, we use domain (spatial) parallelism on a
two-dimensional device mesh, using the ShardTensor API from NVIDIA PhysicsNeMo which requires
minimal changes to model code.

Domain Parallel Group

Halo exchange for Natten operation

Sharding input ~ 1.8 M pixels

Figure 14: Domain parallelization scheme, splitting the 2D domain horizontally and passing each shard
to a GPU within the domain-parallel group. During each forward and backward pass, information at
the sharding boundary is communicated between GPUs via halo exchange.
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Figure 15: Device mesh diagram depicting the domain-parallel GPU group with size 2 (green, left)
and the data-parallel group with size 4 (blue, right).

We depict the domain parallelization scheme in Figs. 14 and 15. The 2D spatial domain is sharded
into upper and lower portions, which are processed by a pair of GPUs comprising one model instance.
The GPUs are organized such that GPUs within a domain-parallel group perform exchanges with
each other as necessary during forward and backward passes, then reduce gradients across the data-
parallel groups after the backward pass as in standard data parallel training. Since the underlying
architecture is a Diffusion Transformer (DiT) with Neighborhood Attention (NA), the majority of
internal operations in the model (e.g. tokenization, elementwise MLPs) are embarrassingly parallel
across the domain-parallel axis and require no communication during the forward pass. The only
exception is operations that aggregate/mix features across the token sequence (spatial domain), which
in our case are the 2D Neighborhood Attention kernels. To ensure the output is correctly computed
across shard interfaces, halo exchanges are performed to propagate contextual information for border
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Figure 16: Probabilistic skill evaluation of the 24-member Stormscope ensemble over a 12-hour forecast
horizon. The Continuous Ranked Probability Score (CRPS) is shown for instantaneous rain rate in
mm/hr.

tokens, as shown in Fig. 14. By using NA windows, we are able to reduce the volume of communication
needed since only the halo needs to be exchanged rather than the full token sequence. The width of
each halo corresponds to the kernel size of the NA operator. The loss is computed locally on each
GPU and subsequently reduced across the domain group so that every device possesses the aggregated
loss for the full spatial domain before back-propagation.

Because domain parallelism for 2D NA is a supported operation in PhysicsNeMo ShardTensor,
the implementation for all of these sharding and communication operations is handled automatically,
and the only code changes necessary are in the training loop to handle the initialization of the device
mesh and sharding of input data. A significant advantage of this approach is its scalability and
ease-of-use, as the model can be trained on larger spatial domains, or higher-resolution data, by
simply increasing the domain-parallel group size without modifying the model architecture. To assess
the scaling efficiency of our implementation, we evaluate the ratio of iteration throughput for the
domain-parallel implementation relative to the standard data-parallel-only baseline, measured using
an identical number of GPUs. Using the described configuration, a domain-parallel size of 2 and
data-parallel size of 4, we achieve scaling efficiency of approximately 87.5% for the CONUS-wide 3 km
satellite model, demonstrating that domain-parallelism enables training over much larger domains
while retaining most of the computational throughput.

6.3 CRPS

Figure 16 shows the mean CRPS of a 24-member Stormscope ensemble evaluated over the full set
of evaluation dates. In order to compute the score in mm/hr, the radar reflectivity forecasts and
verification data were converted to instantaneous rain rate using the Marshall–Palmer Z–R relationship
Z = 300R1.4 before computing the CRPS.

6.4 Synoptic-scale Simulated Reflectivity Conditioning

We show the effect of conditioning the radar nearcast using synoptic-scale forecasts of the simulated
composite radar reflectivity from the GFS model in figure 17. In future work, we hope to explore the
trade-offs of including further synoptic-scale conditioning information on the forecast skill as well as
latency of issuing the forecast. For instance, one could include more synoptic-scale information about
steering level flows using a slightly older synoptic forecast which could, in theory, resolve forecast
latency issues while providing the model important information about gusts, cold-fronts and other
large scale atmospheric phenomena that guide storm systems.

6.5 Example forecasts

We highlight a few illustrative example forecasts from the Stormscope nearcasting model below in
Figures 18–25.
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Figure 17: Ablation study demonstrating the impact of GFS conditioning on model performance. The
plot shows the mean Fraction Skill Score (FSS) over a 12-hour lead time over 360 initial conditions,
using a 20 dBZ threshold and an 18 km neighborhood. The Stormscope model that incorporates a
forecast of the GFS simulated reflectivity (blue line) outperforms the version without GFS forcing
(orange dashed line) across all lead times, with the gap being larger at longer lead times. Shaded areas
represent one standard deviation.
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Figure 18: Initialization date: January 27, 2024, 18:00 UTC

27



2 
hr

Stormscope Verification
4 

hr
6 

hr
12

 h
r

0 10 20 30 40 50 60
Reflectivity (dBZ)

Figure 19: Initialization date: March 23, 2024, 18:00 UTC
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Figure 20: Initialization date: April 10, 2024, 00:00 UTC
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Figure 21: Initialization date: May 05, 2024, 12:00 UTC
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Figure 22: Initialization date: May 09, 2024, 00:00 UTC
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Figure 23: Initialization date: July 02, 2024, 6:00 UTC
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Figure 24: Initialization date: July 07, 2024, 12:00 UTC
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Figure 25: Initialization date: November 08, 2024, 00:00 UTC
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